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Numerical modeling of shape-memory alloys in orthodontics

F. Auricchio1 L. Petrini2 R. Pietrabissa3 and E. Sacco4

Abstract: Since 80’s many devices were developed to
exploit the unique blend of mechanical and biocompat-
ibility properties ofshape memory alloys in orthodontic
applications. It results in a high clinical effectiveness, but
also in a spreading of technical knowledge on the proper-
ties of the single appliances. The goal of the present con-
tribution is to contrast this sense of bewilderness and to
prepare the basis for a simulation tool able to support the
orthodontist choice. In particular a finite-element beam
with a one-dimensional constitutive law, able to describe
the SMA superelasticity and shape memory effect, is pre-
sented: it is shown how computer modeling can be help-
ful in the understanding of the single appliance response
as well as in the design of new more advanced, and pos-
sibly more effective, applications.

keyword: Shape memory alloys, orthodontics applica-
tion, numerical simulations.

1 Introduction

Advances in production technologies and developments
of new alloys as well as their progressive transfer from
research to applications are producing a significant evo-
lution in orthodontics.

In particular, while stainless steel and chrome-cobalt-
nickel have been traditionally among the most popular
alloys in clinical orthodontic practice, nickel-titanium
(Ni-Ti) is registering an increasing use since the last
two decades [Drake, Wayne, Powers, and Asgar (1982);
Miura, Mogi, Ohura, and Hamanaka (1986); Sachdeva
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and Miyazaki (1990)]. In fact, due to a unique blend
of mechanical and biocompatibility properties [Sha-
balovskaya (1996); Ryhanen (1999)], Ni-Ti or more gen-
erally shape-memory alloys (SMA) result in a high clin-
ical effectiveness, often combined with a reduction in
treatment duration and chairside time [Duerig, Pelton,
and Stökel (1996); Gil and Planell (1998); Van Hum-
beeck, Stalmans, and Besselink (1998); Torrisi (1999);
Chu, Dai, Zhu, and Mi (2000); Pelton, St¨okel, and Duerig
(2000)].

However, such a SMA technology transfer is resulting
not only in new products – each one with its own ge-
ometrical and mechanical properties, hence in a wider
spectrum of possible orthodontic treatments – but also in
a spreading and dispersion of technical knowledge on the
properties of the single appliances.

In fact, even limiting the discussion to SMA materials,
the dental market is characterized by several producers,
each one with a wide range of proposals. Accordingly,
the orthodontist should be able to select the appliance
with the geometry, the material and the mechanical prop-
erties which meet at best the demand for the specific clin-
ical situation, and, due to all the available possibilities,
the choice is becoming more and more complex. More-
over, the technical informations available on each single
appliance are in general limited, making even more diffi-
cult for the practitioner to orient himself and to make the
optimal choice.

This is particularly true since one of the SMA features
consists in the fact that the material mechanical proper-
ties can be sensibly tuned through proper thermomechan-
ical treatments. Accordingly, the effectiveness of each
single appliance is closely related to the specific material
properties.

The goal of the present contribution is to contrast this
sense of bewilderness and to prepare the basis for a sim-
ulation tool able to support the orthodontist choice. To
do so, after a brief review of the SMA mechanical be-
havior and their use in orthodontics, we show how com-
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puter modeling can be helpful in the understanding of
the single appliance response as well as in the design of
new more advanced, and possibly more effective, appli-
cations.

2 Shape-memory materials

Shape-memory alloys (SMA) are “materials with an in-
trinsic ability to remember an initial configuration”. This
memory is revealed at the macroscopic level in two main
unusual behaviors, thesuperelastic effect (SE) and the
shape-memory effect (SME). In particular, the supere-
lastic effect indicates the material ability to undergo
large deformations – up to 10-15% strains – in mechani-
cal loading-unloadingcycles without showing permanent
deformations; the shape-memory effect indicates the ma-
terial ability to present inelastic deformations during me-
chanical loading-unloading cycles, which can be recov-
ered through thermal cycles.

As usual, the macro-behavior finds its explanation and
justification in the underlying micro-mechanics.

From a crystallographic point of view, shape-memory al-
loys may in general present two different structures, one
characterized by a more ordered unit cell, theaustenite
(A), the other characterized by a less ordered unit cell the
martensite. Moreover, the martensite may have a global
structure where the unit cells have a variable orientation
minimizing the misfit with the surrounding material, or
a global structure where the unit cells follow a preferred
orientation given by an external field such as stress; in
the former case we talk oftwinned or multiple-variant
martensite (M), in the latter case ofdetwinned or single-
variant martensite (S).

From a micro-mechanical point of view, the presence of
two different crystallographic structures is the base for a
reversible solid-solid phase transformation between the
austenite and the martensite. The phase transformation is
in general function of temperature and stress. In partic-
ular, for the case of a stress-free material, we may dis-
tinguish two reference temperatures,A f and M f , with
A f > M f , such that: the austenite is the only phase sta-
ble at temperatures aboveA f ; the martensite is the only
phase stable at temperatures belowM f ; an austenite-
martensite mixture is possible in the temperature interval
betweenA f andM f . In general, bothA f andM f depend
on the material composition as well as on the thermo-
mechanical treatment. For the case of a stressed material,

a similar situation occurs, with the difference that the ref-
erence temperatures are monotonic (approximatively lin-
ear) function of the loading level.

From a macro-mechanical point of view, as mentioned
above, the reversible martensitic phase transformation re-
sults in two unique effects, thesuperelasticity (SE) (or
pseudoelasticity) and theshape memory effect (SME). At
temperatures aboveA f , if loaded the material shows non-
linear large deformations, which are recovered during the
unloading, describing an hysteretic loop in terms of stress
and strain (Figure 1). This response can be explained not-
ing that the load induces a transformation from austenite
to single-variant martensite; however, since the austen-
ite is the only phase stable aboveA f , the reverse trans-
formation occurs during the unloading. At temperatures
belowA f , if loaded the material shows non-linear large
deformations, which are partially retained during the un-
loading; however, this residual strain can be recovered
heating the material aboveA f (Figure 2). This response
can be explained noting that the load induces a transfor-
mation from austenite or multiple-variant martensite to
single-variant martensite and that both type of martensite
are stable for temperature belowA f in the case of un-
stressed material. However, since the martensite is unsta-
ble aboveA f , heating the material, a transformation from
martensite to austenite occurs and the material recovers
the initial shape; moreover, such a shape is retained also
during the cooling at the initial temperature.

As a consequence of these two behaviors, in general
not present in traditional materials, shape-memory alloys
lend themselves to be used in innovative applications rel-
ative to many different fields, ranging from cardiovascu-
lar non-invasive surgery to micro-actuator for endoscopy,
and in particular relative to orthodontics, as discussed in
the following Section.

2.1 Applications in orthodontics

Dental movement during orthodontic therapy is achieved
by applying forces to teeth, resulting in a bone remod-
eling process. The optimal tooth movement is in general
achieved applying forces which are low in magnitude and
continuous in time; in fact, light constant forces are op-
timal to induce physiological dental movements without
damaging the underlying tissues as well as to minimize
patient discomfort. In contrast, forces with high mag-
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Figure 1 : Superelasticity effect. At a constant high tem-
perature the material is able to undergo large deforma-
tions with zero final permanent strain.

Figure 2 : Shape-memory effect. At the end of a me-
chanical loading-unloading path (ABC) performed at a
constant low temperature, the material presents resid-
ual deformation (AC), which can be recovered through
a thermal cycle (CDA).

nitude encourage hyalinization5 of the periodontal liga-
ment and they may cause irreversible tissue damage and
root resorption.

Accordingly, SMA appliances, such as archwires or re-
traction loops, are more effective compared to appliances
made of classical alloys, since they take advantage of the
material ability to exert light constant springback forces
over a large range of deformations [Duerig, Pelton, and
Stökel (1996)]. Moreover, they are particularly suitable

5 Hyalinization. Pathology: the forming of hyalin, a smooth, glassy
substance resulting from some types of tissue and cell disintegra-
tion har (2001).

in situations requiring large deflections such as the pre-
liminary alignment stage, in most cases resulting also in
a limited mobility at the end of the therapy.

It is interesting to observe that a large variety of situ-
ations can occur, depending on the archwire geometri-
cal parameters, on the material properties as well as on
the specific loading conditions. Moreover, the oral cavity
temperature varies during the day, for example due to the
intake of cold or hot drink; henceforth, the springback
force may also vary and it would important to control the
variation range in terms of therapy effectiveness and pa-
tient comfort.

3 A SMA finite-element beam

In the present section, we briefly review the finite-
element beam model proposed and discussed in Refer-
ence [Auricchio and Sacco (1999)]. The beam is able
to describe the extension-bending response of a shape-
memory element both in the superelastic and in the
shape-memory range; accordingly, it is a valid compu-
tational tool for the simulation of orthodontic appliances,
as shown in Section 4.

3.1 Superelastic and shape-memory constitutive
model

The macroscopic material behavior is described through
a one-dimensional constitutive model, cast within the
generalized plasticity theory [Lubliner and Auricchio
(1996)], adopting as control variables the uniaxial strain,
ε, and the temperature,T . In the following we review the
model basic ingredients.

Phase transitions and activation rules. We assume to
describe the material crystallographic state through three
scalar variables6:

• multiple-variant martensite fraction,ξM

• single-variant martensite fraction,ξS

• austenite fraction,ξA

6 By convention, the capital letters M, S and A used as subscripts
refer to specific material fractions. Accordingly,ξ i = 0 (with i =
M,S,A) indicates absence of the corresponding phase, whileξ i = 1
indicates that the material is completely in the indicated phase.



368 Copyright c© 2003 Tech Science Press CMES, vol.4, no.3&4, pp.365-380, 2003

which should fulfill the following relation at any time:7

ξM +ξS +ξA = 1 (1)

Consequently, only two fractions are independent, in
the following chosen to beξ M and ξS [Auricchio
and Lubliner (1997); Auricchio, Taylor, and Lubliner
(1997)].

Experimental investigationsshow that for the adopted in-
ternal variables, in a uniaxial stress-temperature regime
and in the usual range of applications, the region in which
phase transformations may occur are delimited with good
approximation by straight lines (Figure 3). Dealing with

Figure 3 : Phase transformation zones in uniaxial ten-
sion and compression. Experimental investigations show
that in a uniaxial stress-temperature diagram and in the
usual range of applications the region in which phase
transformations may occur (indicated in the figure with
a dotted pattern) are delimited with good approximation
by straight lines. We also indicates the regions in which
only single fractions are stable (S: single-variant marten-
site, M: multiple-variant martensite, A: austenite).

three material fractions, we consider the corresponding
three production processes:

• Production of multiple-variant martensite. It can
occur only as conversion (reduction) of austenite
and the region for the phase transformation occur-

7For simplicity the dependency of the variables on a scalar param-
eter, such as time, is not explicitly stated.

rence is expressed through the following material
parameters8:

o T AM
s , representing the temperature at which

the transformation starts at zero stress

o T AM
f , representing the temperature at which

the transformation finishes at zero stress

• Production of single-variant martensite. It can oc-
cur at the expenses of the austenite as well as
at the expenses of the multiple-variant martensite.
Based on experimental evidences, the region for the
phase transformation occurrence is piecewise linear
in temperature and it expressed through the follow-
ing material parameters:

o CAS, representing the phase transformation
Clausius-Clapeyron constant

o σAS
s , representing the stress value at which

the transformation starts for temperature be-
low T AM

s

o σAS
f , representing the stress value at which the

transformation finishes for temperature below
T AM

s

• Production of austenite. It can occur at the expenses
of the multiple-variant martensite as well as at the
expenses of the single-variant martensite. The re-
gion for the phase transformation occurrence is ex-
pressed through the following material parameters:

o CSA, representing the phase transformation
Clausis-Clapeyron constant

o T SA
s , representing the temperature at which the

transformation starts at zero stress

o T SA
f , representing the temperature at which the

transformation finishes at zero stress

Strain decomposition and martensite reorientation.
We assume an additive decomposition of the strain be-
tween an elastic quota, a phase-transformation quota
and a thermal-expansion quota. Recalling that only the
single-variant martensite can give a contribution to the
strain [Wayman (1964)], we set:

ε = εe +ξSβ+α(T −To) (2)

8 By convention, the superscripts refer to specific evolution pro-
cesses; as an example, the superscriptAM refers to the conversion
of austenite into multiple-variant martensite.
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whereεe is the elastic strain,α andTo are material pa-
rameters with:

o α, representing the thermal expansion coefficient

o To, representing an initial reference temperature in
which the material is unstrained, unstress and fully
in the austenitic phase

while β is an internal variable describing the orienta-
tion of the martensite. In particular, being in a one-
dimensional setting,β represents the change of marten-
site orientation corresponding to a change from tension
to compression or viceversa.

Different models can be introduced to describe the reori-
entation process. As discussed in Reference [Auricchio
and Sacco (1999)], we consider a simple mechanisms ex-
pressed through the following material parameters:

o γ, measuring the velocity of the reorientation pro-
cess

o σSS, representing the stress threshold for the activa-
tion of the reorientation process

Moreover, the reorientation process is such that in the
limit β → εLsgn(σ), with the material parameter:

o εL, representing the recoverable strain or maximum
residual strain,

Accordingly,εL is a measure of the maximum deforma-
tion obtainable only by multiple-variant martensite de-
twinning, hence, a measure of the maximum deforma-
tion obtainable aligning all the single-variant martensites
in one direction [Wayman (1964); Brinson (1993)].

Elastic relation. We choose a linear elastic stress-
strain relation; taking into account Equation 2, we set:

σ = E
[
ε−ξSβ−α(T −T0)

]
(3)

with E the Young’s modulus. Due to the experimen-
tally observed difference between the austenite and the
martensite elastic properties, we introduce a dependence
of E on the martensite fraction. In particular, the follow-
ing functional form is adopted:

E(ξS) =
EAES

ES +ξS(EA−ES)
(4)

whereEA andES are respectively the austenite and the
martensite elastic moduli [Auricchio and Sacco (1997a)].

Remark 3.1 Because of the general framework in which
the model is developed [Lubliner and Auricchio (1996)],
there is no limitation on the relative position of the phase-
transition zones; hence, they may intersect or they may
be disjoint, since neither case would be problematic.

Remark 3.2 Experimental evidences show that shape-
memory materials behave quite differently in tension
and compression [Org´eas and Favier (1998); Gall, Sehi-
toglu, Chumlyakov, and Kireeva (1999); Lim and Mc-
Dowell (1999)]. Recalling that we are dealing with a
one-dimensional constitutive model, to obtain this effect,
it is sufficient to distinguish between a set of material pa-
rameters valid in tension (indicated in the following with
a superscript+) and a set of material parameters valid
in compression (indicated in the following with a super-
script−).

Accordingly, we need to distinguish between tension and
compression for the following parameters:

CAS,+ , CSA,+ , σAS,+
s , σAS,+

f , ε+
L , σSS,+

CAS,− , CSA,− , σAS,−
s , σAS,−

f , ε−L , σSS,−

while the parameters:

EA , ES , T AM
s , T AM

f , T SA
s , T SA

f , γ

are assumed to be equal in tension and compression.

3.2 Time-discrete model and solution algorithm

From a computational standpoint we treat the non-linear
material behavior as atime-discrete strain-driven prob-
lem. Accordingly, as discussed in Reference [Auric-
chio and Sacco (1999)] we first introduce a time-discrete
counterpart of the constitutive model and then compute
the stress from the strain history by means of areturn-
map algorithm.

Time-discrete model. The time-discrete model is ob-
tained integrating over the time interval[t n, tn+1] the
model rate equations, wheretn andtn+1 are two generic
instant of time, such thattn+1 > tn. In particular, we adopt
a backward Euler scheme to integrate the equations.

Return-map algorithm. The corresponding time-
discrete nonlinear problem is solved using a return-map
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algorithm. The solution at timet n is assumed to be
known, together with the strainε at timet n+1.

The return-map is, in general, a two-step procedure of
the type elastic-predictor inelastic-corrector, used for the
integration of elastoplastic constitutive equations [Simo
(1999)]. However, due to the specific model now investi-
gated, a classical two-step return-map is not adequate as
solution scheme. In fact:

• the evolutionary processes here considered are
phase transformations; accordingly, for each of
them there exist conditions at which the evolution
is completed (exhausted). This results in a non-
connected elastic domain [Lubliner and Auricchio
(1996)].

• multiple phase transformations may be active at the
same time

The details of the modified return-map algorithm can be
found in Reference [Auricchio and Sacco (1999)], to-
gether with the algorithmically tangent moduli, obtained
linearizing the stress constitutive equation in terms of the
strain.

3.3 Finite-element beam

At this stage it is possible to develop a finite-element
formulation for a beam made of a shape-memory mate-
rial, whose constitutive behavior is described through the
model presented in the previous Section.

A classical small-deformation Euler-Bernoulli beam the-
ory is herein adopted [Popov (1990)]. The beam occu-
pies a volumeV , has cross-sectionA and lengthL. We
indicate with(x,y, z) a Cartesian coordinate system hav-
ing thex-axis coincident with the centerline axis of the
undeformed beam. Thex-y plane is also a plane of sym-
metry for the problem, such that the beam can undergo
only elongation and deflection within this plane.

Kinematics and temperature field. Following the
Euler-Bernoulli beam theory, the cross-sections are as-
sumed to remain plain and orthogonal to the centerline
of the deformed beam. The beam kinematics and defor-
mation are defined as:

u = uo(x)−yv′o(x) axial displacement
v = vo(x) transv. displacement

ε = εo −yχ strain

(5)

where a superscript′ indicates a derivative with respect
to x, whileεo = u′o andχo = v′′o are the elongation and the
curvature, respectively.

Moreover, in the present work we assume to neglect the
production of thermal energy associated to the material
fraction evolutions. According to this position, we re-
tain the temperature as a given field (control variable);
in particular, recalling the symmetry condition on thex-
y plane, the thermal field is set to be linear in the cross
section withy and constant along the beam axis:

T =
Td −Tu

h
y +

Td +Tu

2
(6)

whereTd andTu are respectively the temperature at the
beam bottom and top, whileh is the beam height.

Equilibrium equations. The beam equilibrium equa-
tions are derived introducing the kinematical assump-
tions into the principle of virtual displacementL ve = Lvi,
whereLve andLvi are the external and the internal virtual
works, respectively. In particular, using Equation 5 the
internal virtual work reduces to:

Lvi =
∫

V
σ δε dV =

∫
L
[Nδεo +Mδχ] dx (7)

where the axial forceN and the bending momentM are
defined as:

N =
∫

A
σ dA , M = −

∫
A

yσ dA (8)

Written in residual form, Equations 8 can be considered
as the cross-section equilibrium equations.

Finite-element interpolation. The finite-element for-
mulation is performed introducing an approximation on
the displacement fields (u,v). The axial displacementu
is taken linear along the beam axis, while the transversal
displacementv is interpolated by the classical Hermite
shape functions as required by the Euler-Bernoulli beam
theory.

Substitutionof the interpolation functions in the principle
of virtual work returns the finite-element beam equilib-
rium equations. These nonlinear equations are first writ-
ten in residual form and then solved through a Newton
algorithm [Luenberger (1984)]. For the development of
the Newton algorithm the following steps are required9:

9The adopted Newton scheme consists of two nested loops: the
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1. time integration of the local constitutive equations

2. solution algorithm for the time-discrete equations

3. determination of the algorithmically tangent moduli

4. evaluation of the line and area integrals

In particular, the integration along the beam axis is per-
formed numerically by Gauss formulas; the integration
over the cross-section is performed discretizing the cross-
section in strip elements orthogonal to they-axis and ap-
plying again Gauss formulas within each strip. This com-
putational scheme allows to calculate the martensite frac-
tion distribution within each cross section and along the
beam axis; in this way the effects of phase transition on
the shape of the loaded beam, particularly evident dur-
ing bending test, are caught, as deeply described by Au-
ricchio and Sacco (1997b) and experimentally tested by
Berg (1995).

Moreover, extensive numerical simulations assessing the
performances of the proposed procedure in studying
structures made of shape-memory materials have been
detailed in Reference [Auricchio and Sacco (1999)].

4 Orthodontic simulations

As previously commented, SMA superelastic elements
are very effective for the correction of teeth malocclu-
sions in orthodontics, allowing to obtain an optimal teeth
movement as well as to control and drastically shorten
the therapy [Sachdeva and Miyazaki (1990)].

However, the investigation of orthodontic appliances can
be very intrigate, not only as a consequence of the geo-
metric parameter randomness but also, for example, as a
consequence of the frequent temperature modifications in
the oral cavity, due to possible food/drink intakes. These
aspects lead to complex loading patterns and, in gen-
eral, to a variable range for the recovery forces acting
on the tooth, with possible consequent painful sensations
as well as with an influence on the therapy effectiveness.

According to these considerations, the role of numerical
simulations can be of non-negligible interest, as shown in

outer one relative to the satisfaction of the beam global equilib-
rium equations, the inner one relative to the satisfaction of the
cross-section beam equations. For a more detailed discussionof the
linearization and solution algorithm for the cross-section equilib-
rium equations, you may refer to Reference [Auricchio and Sacco
(1997b)].

the following. Herein, we focus on three different SMA
orthodontic applications:

• archwire

• retraction T-loop

• retraction V-loop

For each problem we assume to start the simulation
from an initial temperatureT0 (with T0 = 37oC), corre-
sponding to an unstrained, unstressed and fully austenitic
state. Moreover, we study the appliance response under
a mechanical loading followed by a thermal cyclic load-
ing, the former attempting to reproduce the implantation
procedure, the latter attempting to reproduce a possible
food/drink intake.

The mechanical loading is imposed while keeping fixed
the appliance temperature (T = T0 = 37oC) and control-
ling the displacementd of some significative cross sec-
tion; in particular, we distinguish between two different
mechanical histories:

L: the displacementd of the significative cross sec-
tion goes from zero up to a valuedmec (loading
type history)

U: the displacementd of the significative cross sec-
tion goes from zero up to a valuedmax and then
from the valuedmax down to a valuedmec, with
dmec < dmax (loading-unloading type history)

Moreover, the thermal loading is imposed while keeping
fixed the displacement of the significative cross section
(d = dmec) and controlling the appliance temperature (T );
in particular, we distinguish between two different ther-
mal histories:

HC: the appliance temperatureT goes from the ini-
tial valueT0 up to a valueTmax, down to a value
Tmin and then back to the initial valueT0 (heating-
cooling type history)

CH: the appliance temperatureT goes from the ini-
tial valueT0 down to a valueTmin, up to a value
Tmax and then back to the initial valueT0 (cooling-
heating type history)

Accordingly, in the following we may have at most one
of the following four possible loading combinations:
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L-HC: mechanical loading followed by an heating-
cooling thermal cycle

L-CH: mechanical loading followed by an cooling-
heating thermal cycle

U-HC: mechanical loading-unloading followed by
an heating-cooling thermal cycle

U-CH: mechanical loading-unloading followed by
an cooling-heating thermal cycle

In the following, all the thermal cycles are characterized
by the following temperature range:

Tmax = 55oC Tmin = 5oC

Finally, all the SMA elements considered are supposed to
be made of a commercial Ni-Ti wire produced by GAC
International Inc. This specific alloy has been experi-
mentally investigated by Airoldi and coworkers in tensile
and three-point bending conditions [Airoldi, Riva, and
Vanelli (1995)]. Starting from their experimental results,
we set for all the forthcoming investigations:

EA = 55000 MPa
ES = 25000 MPa
σAS,+

s = σAS,+
f = 130 MPa

σAS,−
s = σAS,−

f = 190 MPa
σSS,+ = 30 MPa
σSS,− = 40 MPa
CAS,+ = 6 MPa/oC
CSA,+ = 9 MPa/oC
CAS,− = 8.2 MPa/oC
CSA,− = 11.4 MPa/oC
T AM

s = 10oC
T AM

f = 5oC
T SA

s = T SA
f = 25oC

ε+
L = 0.08

ε−L = 0.06
γ = 1 MPa/sec

It is important to point out that the assessment of the
constitutive-model material constants from the experi-
mental data reported in Reference [Airoldi, Riva, and
Vanelli (1995)] is a difficult and by no mean exhaustive
process; in fact, the tests were originally not designed for
this goal. Hence, even for the tensile case, the constants
reported have some degree of discretionality; as an ex-
ample, the choice of the recoverable strainε+

L is arbitrary

and clearly it affects the global structural response inves-
tigated in the following.

Moreover, the uniaxial data available [Airoldi, Riva, and
Vanelli (1995)] are all relative to tensile states. As a
consequence, the determination of the constitutive-model
constants for the compressive range are obtained in part
extrapolating results relative to a Ni-Ti-Cu alloy [Adler,
Yu, Pelton, Zadno, Duerig, and Barresi (1990); Auric-
chio, Taylor, and Lubliner (1997)].

4.1 Archwire

To investigate the response of a superelastic archwire, we
first consider a simplifying case, i.e. a 3-point bending
state, analyzing then the complete dental implant. It is
interesting to observe that the 3-point bending situation
has been often explored experimentally and some data
are available in the literature; on the other hand, the study
of the more realistic complete dental implant has always
been neglected, possiblyas a consequence of the problem
greater complexity.

For both cases we consider a rectangular 0.558 mm (h)
× 0.406 (b) mm cross-section.

3-point bending

Following the experimental investigations reported by
Airoldi and coworkers [Airoldi, Riva, and Vanelli
(1995)], we study the behavior of a simply supported
beam subjected to a pointwise central force (three-point
bending test) under the thermo-mechanical loading com-
bination U-CH. In particular, the mechanical load is ap-
plied controlling the mid-span cross-section displace-
ment with:

dmax = 8 mm dmec = 4 mm

The beam has lengthL = 14 mm and, due to symmetry
conditions, only half of the beam is discretized using a
mesh of 30 elements with 4 Gauss points per element.
The cross-section integrals are computed dividing each
section in 20 strips and using 4 Gauss points in each strip.

As output parameter we consider the reaction force at
the beam mid-span and Figure 4 shows the force vari-
ation in terms of deflection and temperature. It is inter-
esting to observe how the numerical solution is able to
reproduce the experimentally observed changes in the re-
covery force as a consequence of the intake of hot/cold
quantities [Airoldi, Riva, and Vanelli (1995)], predicting
a force on the teeth in the range of few newtons.
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Figure 4 : Orthodontic wire. Applied force versus
midspan deflection and temperature. The temperature cy-
cle performed at fixed deflection (d = 4.0 mm) induces a
change in the recovery force.

Complete implant

We now consider the complete archwire sketched in Fig-
ure 5. The geometrical parameters are:

A = R = 30 mm B = 22.5 mm

The mechanical load is applied controlling the displace-
ment of a teeth (canine) in the direction orthogonal to the
wire with:

dmax = 8 mm dmec = 4 mm

The archwire is modeled using 5 beam elements be-

Figure 5 : Orthodontic archwire: geometric parameters.

tween each couple of tooth. The interaction between the
archwire and the single teeth is described with different
boundary conditions (bc); in particular, we consider:

• clamped or sliding roller for the molar teeth

• roller or hinge or sliding roller or clamped boundary
conditions for the remaining teeth

Because the presented simulation tool is devoted to sup-
port the orthodontist choice, as output parameters we
consider the reaction forces and moments on the canine
(for which we control the displacement) and on the mo-
lar (closer to the former canine). In particular, we distin-
guish between force components orthogonal to the wire
(F⊥) and force components parallel to the wire (F‖). Any-
way, we remember the capability of the implemented
model to calculate also other peculiar material behavior
parameters, as the changes of the different phase volum
fractions throughout the archwire during the mechanical
loading [Auricchio and Sacco (1997b)].

Tables 1 and 2 reports the output parameters for all the
thermo-mechanical loading and all the boundary condi-
tions under investigations. It is interesting to observe that
the only situation which predicts actions on the canine in
the possible physiological range corresponds to sliding
roller for all boundary conditions; this condition is also
the one considered as the most consistent with effective
practice.

As a final example, Figure 6 reports some deformed con-
figuration at the end of the mechanical-thermal loading
(U-CH) in comparison with the undeformed configura-
tion (dotted line).
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Figure 6 : Orthodontic archwire: Deformed configura-
tion at the end of the mechanical-thermal loading (U-CH)
and undeformed configuration (dotted line) for the fol-
lowing boundary conditions: clamped bc for the molar
teeth and roller bc for the remaining teeth, clamped bc
for the molar teeth and hinge bc for the remaining teeth,
clamped bc for the molar teeth and clamped bc for the
remaining teeth.

4.2 Retraction T-loop

We now investigate the response of a retraction appliance
in the form of a T-loop, sketched in Figure 7. Following
Reference [Raboud (1998)], the geometrical parameters
are set equal to:

A = 8 mm B = 2 mm C = 2.5 mm

D = 9 mm R = 1 mm

Moreover, we assume a rectangular 0.432 mm (h)×
0.635 mm (h) cross-section.

The appliance is mechanically loaded imposing outward
displacements, equal in magnitude, on sectionS c (Figure
7), assuming for the same sections no vertical displace-
ments and no rotations (clamped boundary conditions).
In particular, we set:

dmax = 20 mm dmec = 10 mm

As output parameters, we consider the horizontal reac-
tion force and moment in sectionSc; in general, we also
report the moment/force ratio, since it represents the ef-
fective position of the applied force, hence a parameter of
particular interest from the applicative perspective. The
vertical reaction force is clearly equal to zero for symme-
try reasons. Table 3 reports the output parameters for all
the investigated thermo-mechanical loadings.

It is interesting to observe that:

• the force and the moment produced by the appliance
varies in a quite small interval depending on the spe-
cific thermo-mechanical loading considered; how-
ever, all the values obtained are contained within the
possible physiological range;

• the ratio moment/force produced by the appliance
is almost constant independently from the specific
thermo-mechanical loading considered.

Finally, we consider a parametric analysis for the T-loop
rectraction appliance to investigate the effects induced
by changes in the geometric parameters. The paramet-
ric analysis is expressed in terms of the following non-
dimensional parameters:

A� =
A
A0

B� =
B
B0

C� =
C
C0

D� =
D
D0

R� =
R
R0

F�
i =

Fi

Fi
0

M�
i =

Mi

Mi
0

F�
f =

F f

F f
0

M�
f =

M f

M f
0
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Figure 7 : T-loop retraction appliance: geometric data.

Figure 8 : T-loop retraction appliance: deformed con-
figuration at the end of the mechanical-thermal loading
(U-CH) and undeformed configuration (dotted line).

where the subscript 0 indicated the geometric and the
output parameters relative to the appliance so far con-
sidered and in the following referred as “standard appli-
ance”. Accordingly, for the case of the “standard appli-
ance” all the geometric and output non-dimensional pa-
rameters are equal to 1.

Table 4 reports the results relative to output parameters
at the end of the thermo-mechanical loadings U-CH and
U-HC, where we vary single geometric parameters.

It is interesting to observe:

• the geometric parameterA�, C� andD� have a small
influence on the appliance response

• the geometric parametersB� andR� have a greater
influence on the appliance response; in fact, increas-
ing B and R increases the appliance flexibility, in
particular, reducing only the horizontal stiffness (i.e.
decreasing the horizontal force while keeping al-
most constant the moment), hence resulting in an

increase of ratio moment/force

4.3 Retraction V-loop

We now investigate the response of a retraction appliance
in the form of a V-loop, sketched in Figure 9. Following
Reference [Raboud (1998)], the geometrical parameters
are set equal to:

A = 8 mm B = 4 mm R = 1 mm

Moreover, we assume the same rectangular cross-section
as for the T-loop.

The appliance is mechanically loaded imposing outward
displacements, equal in magnitude, on sectionS c (Figure
9), assuming for the same sections no vertical displace-
ments and no rotations (clamped boundary conditions).
In particular, we set:

dmax = 20 mm dmec = 10 mm

As output parameters, we consider the horizontal reac-
tion force and moment in sectionSc; in general, we also
report the moment/force ratio, since it represents the ef-
fective position of the applied force, hence a parameter of
particular interest from the applicative perspective. The
vertical reaction force is clearly equal to zero for symme-
try reasons. Table 5 reports the output parameters for all
the investigated thermo-mechanical loadings.

It is interesting to observe:

• the force and the moment produced by the appliance
varies in a quite small interval depending on the spe-
cific thermo-mechanical loading considered; how-
ever, all the values obtained are contained within the
possible physiological range;

• the ratio moment/force produced by the appliance
is almost constant independently from the specific
thermo-mechanical loading considered.

Finally, we consider a parametric analysis for the V-loop
rectraction appliance to investigate the effects induced
by changes in the geometric parameters. The paramet-
ric analysis is expressed in terms of the following non-
dimensional parameters:

A� =
A
A0

B� =
B
B0

R� =
R
R0

F�
i =

Fi

Fi
0

M�
i =

Mi

Mi
0

F�
f =

F f

F f
0

M�
f =

M f

M f
0
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Figure 9 : V-loop retraction appliance: geometric data.

Figure 10 : V-loop retraction appliance: deformed con-
figuration at the end of the mechanical-thermal loading
(U-CH) and undeformed configuration (dotted line).

where the subscript 0 indicated the geometric and the
output parameters relative to the appliance so far con-
sidered and in the following referred as “standard appli-
ance”. Accordingly, for the case of the “standard appli-
ance” all the geometric and output non-dimensional pa-
rameters are equal to 1. Table 6 reports the results relative
to output parameters at the end of the thermo-mechanical
loadings U-CH and U-HC, where we vary single geomet-
ric parameters. It is interesting to observe:

• the geometric parameterA� has a small influence on
the appliance response

• the geometric parametersB� andR� have a greater
influence on the appliance response; in fact, increas-
ing B and R increases the appliance flexibility, in
particular, reducing only the horizontal stiffness (i.e.
decreasing the horizontal force while keeping al-
most constant the moment), hence resulting in an
increase of ratio moment/force
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Table 1 : Archwire: sliding roller boundary conditions for the molars. Appliance response on the canine for different
thermo-mechanical loading histories and for different boundary conditions on the tooth (except the molars).

Fi
⊥ Fi

‖ Mi Ff
⊥ Ff

‖ M f

[ N ] [ N ] [ Nmm ] [ N ] [ N ] [ Nmm ]

Roller L-HC 3.20 – – 2.06 – –
L-CH 4.66 – – 4.16 – –
U-HC 1.79 – – 2.25 – –
U-HC 1.79 – – 4.16 – –

Hinge L-HC 33.5 0.00 – 23.8 0.03 –
L-CH 33.5 0.00 – 29.9 0.00 –
U-HC 18.4 0.00 – 23.3 0.02 –
U-CH 18.4 0.00 – 29.8 0.00 –

Sl.roller L-HC 4.95 – 0.63 2.60 – 0.42
L-CH 4.95 – 0.63 4.60 – 0.53
U-HC 2.00 – 0.13 2.50 – 0.41
U-CH 2.00 – 0.13 4.60 – 0.54

Clamped L-HC 34.4 0.00 0.00 23.7 0.00 0.00
L-CH 33.5 0.00 0.00 29.8 0.00 0.00
U-HC 18.4 0.00 0.00 22.9 0.00 0.00
U-CH 18.4 0.00 0.00 30.1 0.00 0.00

Table 2 : Archwire: clamped boundary conditions for the molars. Appliance response on a canine for different
thermo-mechanical loading histories and for different boundary conditions on the tooth (except the molars).

Fi
⊥ Fi

‖ Mi Ff
⊥ Ff

‖ M f

[ N ] [ N ] [ Nmm ] [ N ] [ N ] [ Nmm ]

Roller L-HC 17.7 – – 10.4 – –
L-CH 17.7 – – 14.8 – –
U-HC 6.88 – – 10.2 – –
U-CH 6.88 – – 14.8 – –

Hinge L-HC 33.5 0.00 – 23.8 0.03 0.00
L-CH 33.5 0.00 – 29.9 0.00 –
U-HC 18.4 0.00 – 23.3 0.02 –
U-CH 18.4 0.00 0.00 29.8 0.00 –

Sl.roller L-HC 20.9 – 0.67 12.5 – 0.67
L-CH 20.9 – 0.67 17.7 – 0.60
U-HC 11.1 – 1.73 12.2 – 0.68
U-CH 11.1 – 1.74 18.1 – 0.38

Clamped L-HC 34.4 0.00 0.00 23.7 0.00 0.00
L-CH 33.5 0.00 0.00 29.8 0.00 0.00
U-HC 18.4 0.00 0.00 22.9 0.00 0.00
U-CH 18.4 0.00 0.00 30.1 0.00 0.00
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Table 3 : Retraction T-loop: standard geometry. Appliance response for different thermo-mechanical loading histo-
ries.

Fi
0 Mi

0 Ff
0 M f

0 Mi
0/Fi

0 M f
0/Ff

0
[ N ] [ Nmm ] [ N ] [ Nmm ] [ mm ] [ mm ]

L-HC 3.19 9.48 1.53 4.57 2.97 2.99
U-HC 1.17 3.51 1.46 4.38 3.00 3.00
L-CH 3.19 9.48 2.85 8.50 2.97 2.98
U-CH 1.17 3.51 2.85 8.51 3.00 2.99

Table 4 : Retraction T-loop: parametric analysis for thermo-mechanical loading U-CH and U-HC.

A� B� C� D� R� F�
i M�

i F�
f M�

f M�
i /F�

i M�
f /F�

f

[ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ]

1.50 1 1 1 1 1.00 1.00 0.99 0.97 1.00 0.98
1 0.50 1 1 1 1.20 1.00 1.20 1.00 0.83 0.83
1 2 1 1 1 0.75 1.01 0.74 0.98 1.34 1.32
1 3 1 1 1 0.61 1.01 0.58 0.95 1.67 1.64
1 4 1 1 1 0.51 1.02 0.46 0.90 1.99 1.96
1 1 2 1.50 1 1.00 1.00 0.99 1.00 1.00 1.01
1 1 0 0.50 1 1.01 1.00 1.00 1.00 0.99 1.00
1 1 1 1.10 1.50 0.75 1.01 0.74 0.98 1.34 1.32
1 2 1 1.10 1.50 0.61 1.01 0.57 0.94 1.67 1.65

1.50 1 1 1 1 1.00 1.00 0.99 0.99 1.00 1.00
1 0.50 1 1 1 1.20 1.00 1.20 1.00 0.83 0.83
1 2 1 1 1 0.75 1.01 0.75 1.00 1.34 1.33
1 3 1 1 1 0.61 1.01 0.60 0.99 1.67 1.66
1 4 1 1 1 0.51 1.02 0.49 0.98 1.99 2.00
1 1 2 1.50 1 1.00 1.00 1.00 1.00 1.00 1.00
1 1 0 0.50 1 1.01 1.00 1.01 1.00 0.99 0.99
1 1 1 1.10 1.50 0.75 1.01 0.92 1.21 1.34 1.32
1 2 1 1.10 1.50 0.61 1.01 0.73 1.20 1.67 1.66
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Table 5 : Retraction V-loop: standard geometry. Appliance response for different thermo-mechanical loading histo-
ries.

Fi
0 Mi

0 Ff
0 M f

0 Mi
0/Fi

0 M f
0/Ff

0
[ N ] [ Nmm ] [ N ] [ Nmm ] [ mm ] [ mm ]

L-HC 3.40 9.49 1.68 4.57 2.79 2.72
U-HC 1.30 3.50 1.60 4.37 2.69 2.73
L-CH 3.40 9.48 3.05 8.50 2.79 2.79
U-CH 1.30 3.50 3.05 8.50 3.05 2.79

Table 6 : Retraction V-loop: parametric analysis for thermo-mechanical loading U-CH and U-HC.

A� B� R� F�
i M�

i F�
f M�

f M�
i /F�

i M�
f /F�

f

[ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ] [ - ]

1.50 1 1 1.00 1.00 0.99 0.97 1.00 0.98
0.50 1 1 1.00 1.00 1.01 1.03 1.00 1.02

1 0.50 1 1.88 0.99 1.77 1.00 0.53 0.57
1 1.50 1 0.70 1.01 0.72 0.98 1.44 1.36
1 2 1 0.55 1.01 0.55 0.95 1.83 1.71
1 2.50 1 0.46 1.02 0.45 0.90 2.21 2.01
1 1 1.50 0.82 1.00 0.82 0.99 1.23 1.21
1 1 2 0.68 1.01 0.70 0.98 1.47 1.39
1 1.50 2 0.55 1.01 0.55 0.94 1.83 1.72
1 2 2 0.46 1.02 0.45 0.90 2.22 2.02
1 2.00 3 0.40 1.03 0.35 0.83 2.59 2.37

1.5 1 1 1.00 1.00 1.19 1.21 1.00 1.01
0.5 1 1 1.00 1.00 1.01 1.00 1.00 1.00
1 0.5 1 1.88 0.99 1.83 0.99 0.53 0.54
1 1.5 1 0.70 1.01 0.71 1.00 1.44 1.40
1 2 1 0.55 1.01 0.56 1.00 1.83 1.77
1 2.5 1 0.46 1.02 0.46 0.99 2.22 2.16
1 1 1.5 0.82 1.01 0.83 1.00 1.23 1.20
1 1 2 0.68 1.01 0.69 1.00 1.47 1.44
1 1.5 2 0.55 1.02 0.56 0.99 1.84 1.79
1 2 2 0.46 1.03 0.46 0.98 2.22 2.13
1 2.00 3 0.40 1.04 0.39 0.97 2.59 2.50


