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Orienting a Protein Model by Crossing Number to
Generate the Characteristic Views for Identification

Chikit Au1, Yiyu Cai2, Jianmin Zheng3 and Tony Woo4

Abstract: A protein model (such as a ribbon model) can be created from the
atomic coordinates in the protein data base files. These coordinates are obtained by
X-ray crystallography or NMR spectroscopy with the protein arbitrarily oriented.
As such, identifying or comparing a novel structure with a known item using pro-
tein model in the protein data base can be a timely process since a large number of
transformations may be involved. The identification efficiency will be improved
if the protein models are uniformly oriented. This paper presents an approach
to orient a protein model to generate the characteristic views with minimum and
maximum crossings respectively. The projection directions for these characteristic
views are determined by a set of crossing maps (C-maps). Re-orientating the pro-
tein models in the protein data base to two characteristic views will facilitate the
process of identification.

Keywords: Characteristic views, crossing, projection, C-map, spherical poly-
gons

1 Introduction

There are currently a huge number of protein structures in the data base, depending
on whether the site is public or private. Current protein data bases (PDB) contain
about 100,000 known structural domains [am Busch, Mignon, Simonson (2009)].
The number is bound to increase owing to the automated techniques of X-ray crys-
tallography and NMR spectroscopy. Unlike an object resting on a plane, protein
suspended in liquid has no "neutral" pose. Most techniques to see the invisible
nano-world are to take snapshots. Inherently, these processes are four-dimension
(space and time) to three-dimension (space) projection. Since the information cap-
tured by snapshot largely depends on the projection direction, the majority of the
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atomic coordinates of a protein in the PDB obtained by X-ray crystallography or
NMR spectroscopy is generally having an arbitrary orientation.

The protein data base files can be viewed by using a visualization program which
often creates a protein model (such as a ribbon model) to highlight the way a pro-
tein chain folds. The concept that concerns protein three-dimensional structural
homology is done partly by visual inspection [Rogen, Bohr (2003)] using com-
puter graphics [Orengo, Michie, Jones, Swindells, Thornton (1997), Conte, Bren-
ner, Hubbard, Chothia, Murzin (2002)]. Although the advanced graphic tools can
rotate or translate the model freely to yield various views, the non-uniform orien-
tation of the proteins in PDB causes difficulties in visually comparing two protein
models geometrically since it could involve an unpredictable number of transfor-
mations. Furthermore, it is also not easy to identify a protein structurally with the
two-dimensional images, which are three-dimension to two-dimension projection,
obtained from the visualization program. Figure 1 depicts the difficulty of recog-
nizing a protein with two-dimensional images. Two different views of a protein
model with PDB code 1b2v are shown with different orientations. It can be seen
that the visualization can be totally different for the same protein model. Both α-
helices and β -sheets are packed in Figure 1(a) but they are well stretched in Figure
1(b).
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oriented. As such, it may also facilitate the process of comparing a novel struc-
ture with a known item in the protein data base, for instance.

2 Related Work

Objects with same orientations are the basic requirement for structural or geomet-
ric comparison. Various approaches for geometric comparison of images are pro-
posed [Otterloo (1991), Scott, Nowak (2006)]. Basically, these approaches are for
two-dimensional image matching. One of the two-dimensional objects, usually a
contour extracted from the image, is used as a reference while the other object is
re-positioned into the same orientation for the comparison task.

The majority of work involving orienting a protein model relates to obtaining the
two-dimensional images from a three-dimensional structure with the topology pre-
served. TOPS cartoon [Westhead, Sidel, Flores, Thornton (1999), Flores, Moss,
Thornton (1994), Levitt, Chothias (1976)] is a popular two-dimensional represen-
tation of a protein. It is a simplified representation of protein structure which em-
phasizes the secondary structure elements. A circle and a triangle are employed to
represent an alpha helix and a beta strand respectively - both connected by straight
lines. The result is somewhere between a three-dimensional and a two-dimensional
view. The spatial proximity is preserved between secondary structure elements
along with the chirality of the connections which is of great importance to topolog-
ical studies of a protein.

[Barlow, Richards (1995)] addressed the creation of two-dimensional representa-
tion by using Sammon mapping [Borg, Groenen (1997)] which aimed to preserve
all distances between the α-carbons. The limitation of these approaches was the
loss of the spatial meaning of the protein structure. Thus, they did not give the
three-dimensional spatial information to the viewers.

[Sverud, Maccallum (2003)] used Kohonen’s self organizing map to reduce the
three-dimensional α-carbon coordinate to two dimensional. The original protein
model was then oriented to a view which is most closely to the two-dimensional
mapping. The view quality was measured by a web-based user survey. However, it
might not be practical to perform the user survey each time a technical development
is made. Furthermore, the view quality is subjective. A consistent result may not
be generated every time for the same protein.

Obviously, it is almost impossible to orient a protein before it is snapshot by X-
ray crystallography and NMR spectroscopy. However, the model of the snapshot
protein such as the ribbon model created by a visualization program can be oriented
before generating the two-dimensional views. Orienting a protein model involves
a sequence of rotations which requires a reference. Since reference co-ordinate
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system does not actually exist, the most appropriate reference should be an intrinsic
characteristic of the protein model. A protein backbone can be modeled as an
open string, connecting sequential residues via their α-carbons. Consequently, a
protein structure can be analyzed by the writhe and the crossing number. [Levitt
(1983)] used the writhe to differentiate the chain threading while [Arteca (1993),
Arteca, Tapia (1999)] characterized the shape and global structural homologies by
the average crossing number. In fact, the writhe of a curve is actually defined
based on the self-crossing number [Au (2008)]. As a result, the crossing number is
considered as an intrinsic characteristic to orient a protein model.

This paper presents an approach, from both theoretical and the applied perspective,
to the issue of orienting a protein model. A view of a protein model from a specific
orientation is characterized by its crossing number. A crossing map (C-map), which
is a spherical polygon on a unit sphere, is defined for each protein. By manipulating
the C-maps, the orientations with optimal crossings are produced. In doing so,
all the protein models can be uniformly oriented based on these characteristics to
produce a two-dimensional image for identification and comparison.

3 Maximization and Minimization Principle

A protein is primarily a polypeptide backbone structure. For this investigation, a
string of line segments is used to represent the protein in three-dimensional space.
When a string is projected onto a view plane along a specific projection direction,
two phenomena exist in the projected image due to occlusions:

i. the images of line segments overlap partially or totally and

ii. the images of line segments intersect.

Define the number of intersections between two line segment images on a view
plane as the crossing number. Obviously, the crossing number differs as per pro-
jection. Equally obviously, there is a maximum crossing number and a minimum
crossing number over all the projection directions. If the crossing number is to be
used as measures of complexity, then the optimally complex projection giving the
least and the most number of crossings should have room in view characterization.

The intent of a view is to manifest as much as possible. This is referred as max-
imization principle. Since a crossing gives the depth information between two
spatial line segments, a characteristic view should possess as much crossings as
possible – maximum crossing number. Yet, when there are "too many" details (suf-
ficient to "confuse" a viewer), complexity reduction amendment is necessary such
as conversing a solid line into a dashed or hidden is typical.
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On the other hand, the overlapping of the line segment images causes information
loss since two (or more) segment images are either totally or partially mapped onto
the same location of the view plane. Obviously, line segment overlapping (either
totally or partially) has more information loss than intersection. Hence, (total or
partial) overlapping of images should be avoided and the crossing number should
be minimum in a characteristic view. This is the minimization principle.

Therefore, two characteristic views with maximum and minimum crossings are
employed to characterize the protein orientation.

4 Projection Direction and Crossing

The crossing of the images of two skewed line segments is determined by the vis-
ibility. A point q is visible to point p if there is projection direction pq connecting
the points p and q. Two skewed line segment images cross each other if a point on
one line segment is visible to a point on the other line segment.

4.1 Two skewed line segments

Consider two skewed line segments j and k with end points p j, p j+1 and pk, pk+1
as shown in Figure 2(a). The vectors p jpk, p jpk+1, p j+1pk and p j+1pk+1 are four
extreme projection directions to have the images of line segment j crossing that of
k. Plotting these four projection directions on a unit sphere S with centre o defines
a C-map (or crossing map) S jk which is a convex spherical polygon as depicted in
Figure 2(b).

The unit sphere is partitioned into three regions: the C-map S jk, its boundary ∂S jk
and their complement S̄ jk . For any point v on the unit sphere, it defines a direction
ov projecting line segments j and k on the view plane.

1. The images of line segments j and k intersect each other on the view plan
when v ∈ S jk.

2. The images of line segments j and k do not intersect each other on the view
plane when v ∈ S̄ jk.

3. The images of points p j, p j+1, pk or pk+1 lie on the images of the line seg-
ments on the view plane when v ∈ ∂S jk.

4.2 Two line segments are on the same spatial plane

The C-map degenerates into an arc of the great circle on the unit sphere when two
line segments are on the same spatial plane. Hence, only two partitions arise: the
degenerated spherical quadrilateral boundary ∂S jk and its complement ∂̄ S̄ jk.
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Figure 2: Crossing of two skewed line segment

The images of the line segments partially or totally overlap on the view plane when
v ∈ ∂S jk. By comparing with the situation of two skewed line segments, either

1. the complement S̄ jk = /0 and ∂̄ S̄ jk = S jk which implies these two line seg-
ments intersect on the spatial plane, or

2. the complement S jk = /0 and ∂̄ S̄ jk = S̄ jk which implies these two line seg-
ments do not intersect on the spatial plane.

The region of ∂̄ S̄ jk covers the whole unit sphere in both situations.

5 C-map Re-organization

For a string of m line segments, m(m-1) C-maps S jk (∀k 6= j, j = 1, · · · , m and
k = 1, · · · , m) will form on the surface of the unit sphere. A point v in the C-map
S jk implies a crossing between the images of line segments j and k after projecting
onto the view plane along the direction ov.

Figure 3(a) shows a string of six line segments. The C-maps of line segment L1
(S1k, ∀k = 2, · · · ,6) is shown in Figure 3(b). Hence, line segment L1 has five C-
maps. The C-map S12 degenerates into an arc (of great circle) on the unit sphere
since line segments L1 and L2 lie on the same spatial plane. C-maps S16 and S15
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Figure 3: A string and the C-maps of line segment L1

overlap map S14, which implies the image of line segment L1 crosses the images
of two line segments if point v is inside the overlapping region. For instance, if a
point v is in the overlapping region of S14∩S16, then the image of line segment L1
crosses the images of line segment L4 and L6 on the view plane when the projection
direction is along ov (where point o is behind point v in Figure 3(b)) as shown in
Figure 3(a).

Since every C-map covering a region on the unit sphere refers to one crossing
between a pair of line segment images, there can be some C-maps that overlap each
other. A C-map with overlapping means various crossings in different region within
the same map. For example, the C-map S16 shown in Figure 3(b) has two regions.
One region (overlapping map S14) has two crossings while the other region has only
one crossing. A way of sorting out this intransitive relation is to use clustering. A
cluster consists of a set of C-maps with common intersection.

Table 1 shows, for example, that C-map S26 is in cluster C5 with C-map S14. It is
also in cluster C3, with C-maps S14, S15 and S25. It can be seen that the maximum
number of maps in a cluster is 4 (in cluster C3 or C9), which means the maximum
crossing number is 4.

The minimum crossing number depends upon the following conditions:

1. S−∪ j,k
j 6= k

S jk = /0 which implies the unit sphere is completely covered
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Table 1: Clustering of C-maps

MAP CLUSTER 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

S13             
S14             
S15             
S25             
S26             
S31             
S35             
S41             
S51             
S52             
S53             
S62             

 

by the C-maps and the minimum crossing number can be obtained from the
clustering table.

2. S−∪ j,k
j 6= k

S jk 6= /0, and then the minimum crossing of the string is zero.

Reorganizing the C-map S jk (∀ j ∈ [1,m],∀k = [1,m] and k 6= j) to Sn
i (∀i ∈ I, n ∈ I)

based on a crossing number n yields a new set of maps such that Sn
i =

⋂
∀ j,k

S jk and

n = (number of j×number of k) (the subscript i is an integer to identify the reorga-
nized maps. Its range depends upon the number of line segments in the string and
its spatial structure). Each reorganized map covers a region with consistent cross-
ing number. Sn

i is not necessarily an original C-map. It is the result of Boolean set
operation applied to several C-maps S jk(∀ j ∈ [1,m],∀k = [1,m] and k 6= j). There-
fore, a C-map S jk is a convex spherical polygon, but a re-organized C-map Sn

i is
not necessary convex.

Figure 4(a) shows a unit sphere with reorganized crossing maps of the string de-
picted in Figure 3(a). Each crossing map refers to a specific crossing number. The
grey C-map is S61 (crossing between L6 and L1), which is separated into four reor-
ganized maps S1

i ,S2
i+1, S3

i+2 and S4
i+3. Each has a consistent crossing number 1, 2,

3 and 4 respectively.

Every C-map is a convex spherical polygon. Various algorithms and their com-
plexity for separating and intersecting the spherical polygons are well discussed in
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Figure 4: A unit sphere with reorganized C-maps

reference [Chen, Chou, Woo (1993), Gan, Woo, Tang (1994), Woo (1994)].

Figure 4(b) and 4(c) show two views of the string when the projection directions
are inside the red quadrilateral and triangular map respectively. The string and the
unit sphere are rotated until the projection direction is coincident with the view
direction which is perpendicular to the paper. Both maps give crossing number of
1. For the projection direction inside the red quadrilateral map, the image of line
segment L3 crosses the image of line segment L5. When the projection direction is
inside the triangular map, the crossing is given by the intersection of the images of
line segments L2 and L5.

6 Characteristic views

Since every point v on the unit sphere corresponds to the projection direction ov.
The unit sphere is basically categorized into two categories: the boundaries ∂Sn

i
of the map Sn

i (with n crossings) and its complement. A point on the boundaries
∂Sn

i either gives an overlapping (totally or partially) of line segment images or has
an end point projected onto the image of a line segment. Hence, the vector ov
forv ∈ ∂Sn

i , i ∈ I is a bad projection direction.

Figure 5 illustrates two situations with the projection directions falling on the bound-
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(a) Partial overlapping of line segment 
images 

 

(b) Total overlapping of point image 
with line segment images 

 
Figure 5: Views generated by bad projection directions

aries of the C-maps. Both views show total overlapping of end point image with
line segment images and partial overlapping of the line segment images.

The characteristic views of a protein have optimal crossings n0 (either maximum
value n0 = nmax or minimum value n0 = nmin). The projection direction ov0 to
produce a characteristic view with n0 crossings has the point v0 in either map Sn0

u
(for some value u) when n0 6= 0 or map S−∪iSn

i (where S is the complete surface
of the unit sphere) when n0 = 0.

A C-map is a region on the unit sphere and there can be more than one C-map with
the optimal crossing numbers. Since the boundary of each map is a bad projection
direction and the point v0 is inside the map, it should locate as far as possible from
the boundary. A heuristic approach is used to evaluate the location of point v0 by:

1. selecting the map (either Sn0
u or S−∪iSn

i ) with maximum area; and

2. picking a location for point v0 which is within the map but is far away from
its boundaries.

The characteristic views with maximum crossings and minimum crossings of the
string shown in Figure 3(a) are listed in Figure 6(a) and 6(b) respectively. The C-
maps for their projection directions (which are coincident with the paper normal)
are also shown.

7 Examples

Two characteristic views of a ribbon model of a protein Apolipoprotein (a) Kringle
IV Type 7 (PDB code: 1i71) is generated by this approach. Figure 7(a) shows the
backbone of the protein expressed in the form of a set of line segments. Its re-
organized C-maps with crossing numbers are flattened and plotted in Figure 7(b).
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(a) Characteristic view with 
maximum crossings 

(b) Characteristic view with 
minimum crossings 

 Figure 6: Characteristic views of a string

Each point on the unit sphere is expressed in terms of two angles, (θ , ψ) measured
form x and z axes of the unit sphere. It can be seen that there may be more that one
model orientation to produce a characteristic view (of either maximum or minimum
crossing number).

The two characteristic views of the protein are shown in Figure 8. Figure 8(a) gives
the view with maximum crossing number while Figure 8(b) shows a minimum
crossing. Both backbones are also depicted in the figures.

Figure 9 gives another protein model orientation example. Figure 9(a) shows the
original view a Heme-Binding Protein A model (PDB code: 1b2v) extracted from
the protein database. The other view of the same protein generated by SOM [Sverud,
MacCallum (2003)] is also shown in Figure 9(b). It is hard to decide if these two
images refer to the same protein since they are projected on the view plan with
different orientation.

The characteristic views of the protein model 1b2v with maximum crossing num-
ber and minimum crossing number are listed in Figures 9(c) and 9(d) respectively.
In this example, protein helical structure plays a central role in crossing number
generation. If the helices are well stretched, the crossing number of the protein
view is likely reduced. Otherwise, if a helix is projected along its axial direction or
two helices are projected near each other, it is likely to produce a high number of
crossings. Note in the crossing number computing, all protein secondary structures
are represented as a string of line segments with zero cross-sectional dimension.
(Note: It can be seen that the view generated by SOM is incidentally similar to the
characteristic view with minimum crossing. Turning the SOM view by 900 coun-
terclockwise and flipping it over produce a characteristic view as shown in Figure
9(d)).
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Figure 7: An Apolipoprotein (a) Kringle IV Type 7 and its C-maps.



Orienting a Protein Model by Crossing Number 233

  

(a) View with maximum crossing number at (θ,ψ) = ⎟
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(b) View with minimum crossing number at (θ,ψ) = ⎟
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2
3,

40
ππ  

 Figure 8: The characteristic views of the Apolipoprotein (a) Kringle IV Type 7.

8 Discussion

In fact, the issue of generating characteristic (two-dimensional) views from three-
dimensional structure is commonly found in the engineering design, computer vi-
sion and medical imaging.
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(a) The Original view of Protein 1b2v 

 
(b) The best view of Sverud and 

MacCallum’s SOM method 
 

 
(c) A characteristic view with maximum 

crossings 

 
(d) A characteristic view with 

minimum crossings 
 

Figure 9: The characteristic views of the protein model 1b2v.

In engineering design, projecting a three-dimensional object onto a two-dimensional
medium to obtain a line drawing, which should be able to be represented by a sin-
gle edge-vertex graph, appears to be a fundamental task. A moment’s reflection,
however, validates the fact that there does not exist a characteristic view to reveal
all the edges and vertices of the object for an arbitrary mechanical drawing nei-
ther. In human vision, the issue of whether three-dimensional object recognition
should rely on internal representations that are inherently three-dimensional or on
collections of two-dimensional views is still being explored, while an aspect graph
[Koenderink, Van Doom (1976), (1979)] is used to represent a three-dimensional
object by a set of two-dimensional views in computer vision.

Perhaps useful is the approach employed in computer tomography [Cucchiara,
Lamma, Sansoni (2004)] or magnetic resonance imaging, the radiologists or imag-
ing professionals often do image scans in a pre-defined orientation. The axial,
sagittal and coronal views are typically used in diagnostic or therapeutic proce-
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dures. These pre-defined orientations are inherent form of the object such as a
human body.

There can be many surface curvatures defined at a point on a surface. It was Gauss
who noted that, of the infinitely many curvatures, only two of them really matter –
one exhibiting the maximum and the other the minimum – the product of which is
the celebrated Gaussian curvature. Similarly, two views with minimum and maxi-
mum crossings are employed to characterize a protein among the infinite number
of views.

One way to measure the complexity of a task is to have several procedures that
accomplish the same task and to compare them by counting the number of steps in
each procedure (Turing model [Turing (1952)]). The minimum number of steps is
defined (by Kolmogorov [Li, Vitanyi (2008)]) as the complexity of the task. This
gives an idea of using the minimum crossings in a characteristic view to measure
the geometric complexity of a protein.

Despite the crossing of the line segment images is considered as information loss
due to obstruction, it also gives the three dimensional spatial information of the line
segments. This can easily be illustrated by comparing the top view with the iso-
metric view of a pyramid. A top view of a pyramid consists of eight line segments
without any crossing. However, it does not give any depth information while there
is one crossing in the isometric view which shows more spatial information of the
object. Hence, the view with maximum crossings of a protein is selected as the
other characteristic view to show the spatial information.

9 Conclusion

A view of a protein reveals the most about its structure. This information facili-
tates the understanding of the protein structure, the classification of the structure
and the formulation of hypothesis about protein functions. A geometric approach
is developed for protein view characterization based on the crossing number. By
simplifying a protein as a string of line segments, its crossing in a two dimensional
view generated by projection is shown by computing its C-maps. Two charac-
teristic views with optimal crossings can easily be generated. One of the major
applications of these characteristic views is to facilitate the processes of protein
identification, comparison and structural matching. It will be easier to identify a
protein if its characteristic views of maximum and minimum crossing are included
into their entry in PDB. The authors hope to report on a future date the protein
structural comparison and matching by using the C-maps.
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