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Directly Derived Non-Hyper-Singular Boundary Integral Equations for Acoustic
Problems, and Their Solution through Petrov-Galerkin Schemes

Z.Y. Qian1, Z.D. Han1, and S.N. Atluri1

Abstract: Novel non-hyper-singular [i.e., only
strongly-singular] boundary-integral-equations for the
gradients of the acoustic velocity potential, involv-
ing only O(r−2) singularities at the surface of a 3-D
body, are derived, for solving problems of acoustics
governed by the Helmholtz differential equation. The
gradients of the fundamental solution to the Helmholtz
differential equation for the velocity potential, are used
in this derivation. Several basic identities governing
the fundamental solution to the Helmholtz differential
equation for velocity potential, are also derived. Using
these basic identities, the strongly singular integral
equations for the potential and its gradients [denoted
here as φ-BIE, and q-BIE, respectively], are rendered
to be only weakly-singular [i.e., possessing singular-
ities of O(r−1) at the surface of a 3-D body]. These
weakly-singular equations are denoted as R-φ-BIE,
and R-q-BIE, respectively. General Petrov-Galerkin
weak-solutions of R-φ-BIE, and R-q-BIE are discussed;
and special cases of collocation-based boundary-element
numerical approaches [denoted as BEM-R-φ-BIE,
and BEM-R-q-BIE], as well as Symmetric Galerkin
Boundary Element approaches [denoted as SGBEM-
R-φ-BIE and SGBEM-R-q-BIE, respectively] are also
presented. The superior accuracy and efficiency of the
SGBEM-R-φ-BIE and SGBEM-R-q-BIE are illustrated,
through examples involving acoustic radiation as well as
scattering from 3-D bodies possessing smooth surfaces,
as well as surfaces with sharp corners.

keyword: Boundary integral equations, hyper-
singularity, Petrov-Galerkin

1 Introduction

The difficulties in dealing with hyper-singular integrals,
and the nonuniqueness, are two of the well known draw-
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backs of the existing boundary integral equation (BIE)
methods for solving acoustic problems, even though the
boundary integral equation method offers more advan-
tages over other popular numerical methods such as
the finite element method [Chien, Rajiyah, and Atluri
(1990)]. In 1968, Schenck pointed out that the inte-
gral equation for potential mathematically failed to yield
unique solutions to the exterior acoustic problem, and
proposed a method labeled as CHIEF[Schenck (1968)],
in which an over-determined system of equations at some
characteristic frequencies was formed by combining the
surface Helmholtz equation with the interior Helmholtz
equation. The system of equations was analytically
proved to provide a unique solution at the characteris-
tic frequencies, to some extent. However, the method
might fail to produce unique solutions, when the inte-
rior points used in the collocation of BIEs were located
on a nodal surface of an interior standing wave. The
nonuniqueness of solutions, at certain frequencies of the
associated acoustic problem in the interior of the solid
body, is actually a purely mathematical issue arising from
the boundary integral formulation, without any physical
significance. Meanwhile, Burton and Miller (1971) de-
veloped a combination of the surface Helmholtz integral
equation for potential, and the integral equation for the
normal derivative of potential at the surface, to circum-
vent the problem of nonuniqueness at characteristic fre-
quencies. Their method was labeled as CHIE (Composite
Helmholtz Integral Equation), or CONDOR (Composite
Outward Normal Derivative Overlap Relation) by Reut
[Reut (1985)]. The CHIE method is more straightfor-
ward, as compared to the CHIEF method; however, it in-
troduces the hypersingular integrals, which are computa-
tionally costly. Moreover, in CHIE method, the accuracy
of the integrations affects the results, and the conven-
tional Gauss quadrature can not be used directly. Reg-
ularization techniques are commonly employed by the
followers of the CHIE methodology, to improve the ap-
proach by reducing the problem to the one involving
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O(r−1) singular integrals near the point of singularity.
Chien, Rajiyah, and Atluri (1990) employed some known
identities of the fundamental solution from the associated
interior Laplace problem, to regularize the hypersingular
integrals. This concept was used by many successive re-
searchers: Hwang (1997) reduced the singularity of the
Helmholtz integral equation also by using some iden-
tities from the associated Laplace equation. However,
the value of the equipotential inside the domain must be
computed, because the source distribution for the equipo-
tential surface from the potential theory was used to reg-
ularize the weak singularities. Yang (2000) also uses
the identities of the fundamental solution of the Laplace
problem, to efficiently solve the problem of acoustic scat-
tering from a rigid body. Besides, Meyer, Bell, Zinn,
and Stallybrass (1978) and Terai (1980) developed reg-
ularization techniques for planar elements. The regular-
ized normal derivative equation [Wu, Seybert, and Wan
(1991)] proposed by Wu et al. converged in the Cauchy
principal value sense, rather than in the finite-part sense.
The computation of tangential derivatives was required
everywhere on the boundary. Another way commonly
used in the literature is to develop the methods to di-
rectly evaluate the hypersingular integrals. Recently, to
solve the intensive computation of double surface inte-
gral, Yan, Hung, and Zheng (2003) employed the concept
of a discretized operator matrix to replace the evaluation
of double surface integral with the evaluation of two dis-
cretized operator matrices. In summary, most of regular-
ization techniquesfor evaluating the hyper-singular in-
tegrals in the acoustic BIEs arise from certain identities
associated with the fundamental solution to the Laplace
equations.

In the present paper, however, novel non-hyper-singular
boundary integral equations are derived directly, for the
gradients of the velocity potential. The acoustic poten-
tial gradients are related to the sound velocity in their
physical meaning. The basic idea of using the gradients
of the fundamental solution to the Helmholtz differential
equation for velocity potential, as vector test-functionsto
write the weak-form of the original Helmholtz differen-
tial equation for potential, and thereby directly derive a
non-hyper-singular boundary integral equations for ve-
locity potential gradients, has its origins in [Okada, Ra-
jiyah, and Atluri (1989a, b), Okada and Atluri (1994)],
which use the displacement and velocity gradients to di-
rectly establish the numerically tractable displacement

and displacement gradient boundary integral equations
in elastic/plastic solid problems, and traction boundary
integral equations [Han and Atluri (2003a)]. The current
method can be shown to be fundamentally different from
the regularized normal derivative equation by Wu et al.
[Wu, Seybert, and Wan (1991)], which used tangential
derivatives to reduce the singularity.

The boundary integral equations for the potential [la-
beled here as φ-BIE], and its gradient [labeled here as q-
BIE], which are used as starting points in the present pa-
per, are only strongly singular [O(r −2)]. The further reg-
ularization of these strongly singularφ-BIE, and q-BIE,
to only weakly singular[O(r −1)] types, which are labeled
here as R-φ-BIE, R-q-BIE, respectively, is achieved by
using certain basic identities of the fundamental solu-
tion of the Helmholtz differential equation for potential.
These basic identities, in their most general form, are also
newly derived in this paper. These basic identities are de-
rived from the most general scalar and vector weak-forms
of the Helmholtz differential equation for potential, gov-
erning the fundamental solution itself. The boundary
element methods [BEM] derived by simply collocating
the regularized φ-BIE, and q-BIE, as developed in the
present paper, are referred to as the BEM-R-φ-BIE, and
BEM-R-q-BIE, respectively. In addition, in the present
paper, we formulate general Petrov-Galerkin methods to
solve the R-φ-BIE, and R-q-BIE, in their weak senses.
By using the test functions in these Petrov-Galerkin
schemes to be the energy-conjugates of the respective
trial functions, we develop Symmetric Galerkin Bound-
ary Element Methods (SGBEM) for solving R-φ-BIE,
and R-q-BIE, respectively. We label these SGBEM as
SGBEM-R-φ-BIE and SGBEM-R-q-BIE, respectively.
These SGBEM-R-φ-BIE and SGBEM-R-q-BIE are to-
tally different from the ones in [Chen, Hofstetter, and
Mang (1997), Gray and Paulino (1997)]. In the present
SGBEM-R-φ-BIE and SGBEM-R-q-BIE, C0 continuity
of φ and q over the boundary elements is sufficient
for numerical implementation. Though the double sur-
face integral may increase the numerical accuracy of the
SGBEM, many fast SGBEM methods are proposed to
speed up the computation of double surface integrals, in-
cluding panel clustering methods, wavelet methods and
so on [Aimi, Diligenti, Lunardini, and Salvadori (2003),
Breuer, Steinbach, and Wendland (2002)].

As another recent extension of boundary element meth-
ods, meshless methods for solving BIEs have been
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developed through the meshless local Petrov-Galerkin
(MLPG) approaches [Han, and Atluri (2003b)]. The
meshless method, as an alternative numerical approach
to eliminate the well known drawbacks in the finite ele-
ment and boundary element methods, has attracted much
attention recently [Atluri, Han, and Shen (2003); Atluri,
and Shen (2002a, b)]. These are also briefly discussed in
the present paper.

2 The governing wave equation, and its fundamen-
tal solution

The propagation of acoustic waves through an un-
bounded homogeneous medium is described by the wave
equation:

∇ 2φ(r, t)− 1
c2

∂2φ(r, t)
∂t2 = 0 (1)

where ∇ 2 denotes the Laplacian operator, φ is the acous-
tic velocity potential at a point r at time t, and c is the
speed of sound in the medium at the equilibrium state.
For time-harmonic waves with a time factor e−iωt , the
Helmholtz differential equation for φ can be written as
follows:

∇ 2φ+k2φ= 0 (2)

where i is the imaginary unit, ω is the angular frequency
of the acoustic wave, and k = ω/c is the wave number.

The acoustic pressure p and the velocity u of the fluid
particles induced by the sound waves are determined
through the velocity potential φ, as:

p = −ρ0
∂φ
∂t

(3)

and

u = ∇φ (4)

where ∇ is the gradient operator, and ρ0 denotes the
density of the fluid at the equilibrium state. For time-
harmonic waves, we have:

p = iωρ0φ (5)

The power-flux-density of sound waves is given by:

P = pu = p∇φ (6)

In general, the acoustic velocity potential can be repre-
sented as a sum of the incident potential and the scattered
potential:

φ= φi +φs (7)

At the surface of a soft scatterer, the boundary condition
is

φ= 0 (8)

At the surface of a hard scatterer, the boundary condition
on the normal component of the particle velocity is

n · ∇φ = 0 (9)

in which, n is the unit outward normal vector of the sur-
face. Usually these two conditions are generally referred
to, as the Dirichlet and the Neumann boundary condi-
tions, respectively. Also, the scattered potential should
satisfy the Sommerfeld radiation condition

lim
r→∞

r

∣∣∣∣∂φs

∂r
− ikφs

∣∣∣∣ = 0 in 3D (10)

The fundamental solution of the Helmholtz differential
equation Eq. (2) at any field point ξξξ due to a point sound
source at x, is well known as the free-space Green’s func-
tion Gk (x,ξξξ), which is listed here for 2- and 3-D prob-
lems, respectively, as follows:

For a 2D problem, the Green’s function is:

Gk (x,ξξξ) =
i
4

H(1)
0 (kr) (11a)
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∂Gk

∂r
(x,ξξξ) = − i

4
kH(1)

1 (kr) (11b)

where H
(1)
0 (kr) denotes the Hankel function of the first

kind, and r represents the distance between the field point
ξξξ and the source point x. For a 3D problem,

Gk (x,ξξξ) =
1

4πr
e−ikr (11c)

∂Gk

∂r
(x,ξξξ) =

e−ikr

4πr2 (−ikr −1) (11d)

in which r = |x−ξξξ|, and r ,i ≡ ∂r
∂ξi

= −xi−ξi
r .

n

x

Figure 1 : A solution domain with source point x

In the following sections, we use φ∗ (x,ξξξ) to denote
Gk (x,ξξξ), without losing any generality. Consider a body
of an infinite extent (Fig. 1), subject to a point sound
source at a generic location x. The fundamental solution
is the sound field, denoted by φ∗ (x,ξξξ), at any point ξξξ due
to the point sound source, and is governed by the wave
equation:

∇ 2φ∗ (x,ξξξ)+k2φ∗ (x,ξξξ)+δ(x,ξξξ) = 0 (12a)

or

φ∗
,ii (x,ξξξ)+k2φ∗ (x,ξξξ)+δ(x,ξξξ) = 0 (12b)

We also refer to Eq. (12) as the Helmholtz potential equa-
tion governing the fundamental solution.

3 Boundary integral equations for the velocity po-
tential φ, and its gradient φ,k

3.1 The current state-of-science for BIE in acoustics:
Strongly singular φand Hyper-singular φ,k

Let φbe the test function chosen to enforce the Helmholtz
equation, Eq. (2), in terms of the trial function φ, in a
weak form. The weak form of Helmholtz equation can
then be written as:

∫
Ω

(
∇ 2φ+k2φ

)
φdΩ = 0 (13)

If we apply the divergence theorem once in Eq. (13), we
obtain a “symmetric” weak form:

∫
∂Ω

niφ,iφdS−
∫

Ω
φ,iφ,idΩ+

∫
Ω

k2φφdΩ = 0 (14)

Thus, in the “symmetric weak-form”, both the trial func-
tion φ, as well as the test functions φare only required to
be first-order differentiable. If we apply the divergence
theorem twice in Eq. (13), we obtain:

∫
∂Ω

niφ,iφdS−
∫

∂Ω
niφφ,idS+

∫
Ω

φ
(
φ,ii +k2φ

)
dΩ = 0

(15)

We label Eq. (15) as the “unsymmetric weak-form”.
Now, the test functions φare required to be second-order
differentiable, while φ is not required to be differentiable
[Han and Atluri (2003a)] in Ω.

If we take the fundamental solution φ∗(x,ξξξ) to be the test
function φ in Eq. (15), and noting the property from Eq.
(12), we have:

φ(x) =
∫

∂Ω
ni (ξξξ)φ,i (ξξξ)φ∗ (x,ξξξ)dS

−
∫

∂Ω
ni (ξξξ)φ(ξξξ)φ∗

,i (x,ξξξ)dS

≡
∫

∂Ω
q(ξξξ)φ∗ (x,ξξξ)dS−

∫
∂Ω

φ(ξξξ)Θ∗ (x,ξξξ)dS (16)

where by definition,
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q(ξξξ) =
∂φ(ξξξ)
∂nξ

= nk (ξξξ)φ,k (ξξξ) ξξξ ∈ ∂Ω (17)

and the kernel function,

Θ∗ (x,ξξξ) =
∂φ∗ (x,ξξξ)

∂nξ
= nk (ξξξ)φ∗

,k (x,ξξξ) ξξξ ∈ ∂Ω (18)

Thus, q(ξξξ) is the potential gradient along the outward
normal direction of the boundary surface.

Eq. (16) is the “traditional” BIE for φ, that is widely
used in literature. We refer to Eq. (16), hereafter, as φ-
BIE. The nonuniqueness of the solution of Eq. (16) arises
because, this homogeneous equation has nontrivial solu-
tions at some characteristic frequencies [Chien, Rajiyah,
and Atluri (1990)]. As noted in the introduction, many
researchers have investigated and expended substantial
efforts in solving this problem of nonuniqueness.

If we differentiate Eq. (16) directly with respect to xk,
we obtain the integral equations for potential gradients
φ,k (x) as:

∂φ(x)
∂xk

=
∫

∂Ω
q(ξξξ)

∂φ∗ (x,ξξξ)
∂xk

dS−
∫

∂Ω
φ(ξξξ)

∂Θ∗ (x,ξξξ)
∂xk

dS

(19)

The second term on the right hand side of Eq. (19) is
hyper-singular, since ∂Θ∗(x,ξξξ)

∂xk
is of order O

(
r−3

)
for a 3D

problem. Eq. (19) is also the integral equations for the
gradients of φ(x) that are widely used in the literature;
and hence a wide body of literature is devoted to deal
with the hyper-singularity in this equation.

3.2 Presently proposed Non-Hyper-Singular BIE for
φ,k

On the other hand, the new method proposed in this paper
starts from writing a vector weak-form[as opposed to a
scalar weak-form] of the governing equation Eq. (13) by
using the vector test functions φ,k, as in [Okada, Rajiyah,
and Atluri (1989a, 1989b)]:

∫
Ω

(
φ,ii +k2φ

)
φ,kdΩ = 0 f or k = 1,2,3 (20)

After applying the divergence theorem three times in Eq.
(20), we can write:

∫
∂Ω

niφ,iφ,kdS−
∫

∂Ω
nkφ,iφ,idS+

∫
∂Ω

niφ,kφ,idS

+
∫

∂Ω
k2nkφφdS−

∫
Ω

(
φ,ii +k2φ

)
φ,kdΩ = 0 (21)

Using the gradients of the fundamental solution, viz.,
φ∗

,k(x,ξξξ), as the test functions, and using the identity from
Eq. (21), we obtain

−φ,k (x) =
∫

∂Ω
q(ξξξ)φ∗

,k (x,ξξξ)dS

−
∫

∂Ω
nk (ξξξ)φ,i (ξξξ)φ∗

,i (x,ξξξ)dS

+
∫

∂Ω
φ,k (ξξξ)Θ∗ (x,ξξξ)dS

+
∫

∂Ω
k2nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dS (22)

It should be noted that the integral equations for φ(x)
[Eq. (16)], and φ,k (x) [Eq. (22)], are derived indepen-
dently of each other. The most interesting feature of the
“directly derived” integral equations Eq. (22), for φ,k (x),
is that they are non-hyper-singular, viz, the highest order
singularity in the kernels appearing in Eq. (22) is only
O

(
r−2

)
in a 3D problem.

We define the surface tangential operator as

Dt = nrerst
∂

∂ξξξs
(23)

in which erst is the permutation symbol. Then, we may
rewrite Eq. (22) as:

−φ,k (x) =
∫

∂Ω
q(ξξξ)φ∗

,k (x,ξξξ)dS

+
∫

∂Ω
Dtφ(ξξξ)eiktφ∗

,i (x,ξξξ)dS

+
∫

∂Ω
k2nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dS (24)
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3.3 Some basic physical & mathematical properties of
the fundamental solution φ∗, which permit simple
and direct regularizations of the strongly singular
BIEs for φand q(φ,k)

We write the weak form of Eq. (12), governing the fun-
damental solution, over the domain, using a constant c as
the test function, and obtain

∫
Ω

[
∇ 2φ∗ (x,ξξξ)+k2φ∗ (x,ξξξ)

]
cdΩ +c = 0 at x ∈ Ω

(25a)

or
∫

Ω

[
φ∗

,ii (x,ξξξ)+k2φ∗ (x,ξξξ)
]
dΩ +1 = 0 at x ∈ Ω (25b)

or

∫
∂Ω

ni (ξξξ)φ∗
,i (x,ξξξ)dS+

∫
Ω
k2φ∗ (x,ξξξ)dΩ+1 = 0 at x∈Ω

(25c)

Eq. (25c) is a “basic identity” of the fundamental
solutionφ∗(x,ξξξ). Now, consider an arbitrary function
φ(x) in Ω as the test function, and once again write the
weak form of Eq. (12), as

∫
Ω

[
∇ 2φ∗ (x,ξξξ)+k2φ∗ (x,ξξξ)+δ(x,ξξξ)

]
φ(x)dΩ = 0

at x ∈ Ω (26a)

or

∫
Ω

[
φ∗

,ii (x,ξξξ)+k2φ∗ (x,ξξξ)
]
φ(x)dΩ+φ(x)= 0 at x∈Ω

(26b)

or

∫
∂Ω

Θ∗ (x,ξξξ)φ(x)dS+
∫

Ω
k2φ∗ (x,ξξξ)φ(x)dΩ +φ(x) = 0

at x ∈ Ω (26c)

Once the point x approaches a smooth boundary, i.e., x ∈
∂Ω, the first term in Eq. (26c) can be written as

lim
x→∂Ω

∫
∂Ω

Θ∗ (x,ξξξ)φ(x)dS

=
∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ(x)dS− 1

2
φ(x) (27)

in which we introduce the notion of a Cauchy Principal
Value (CPV) integral. The physical meaning of Eq. (27)
can be understood by rewriting Eq. (25c) and (26c), re-
spectively as:

∫ CPV

∂Ω
Θ∗ (x,ξξξ)dS+

∫
Ω

k2φ∗ (x,ξξξ)dΩ+
1
2

= 0

at x ∈ ∂Ω (28a)

∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ(x)dS+

∫
Ω

k2φ∗ (x,ξξξ)φ(x)dΩ

+
1
2

φ(x) = 0

at x ∈ ∂Ω (28b)

Eq. (28a) implies that only a half of the sound source
at point x is applied to the domain Ω, when the point x
approaches a smooth boundary, x ∈ ∂Ω. Eq. (28b) can
be likewise interpreted physically.

We again consider another weak form of Eq. (12), by
taking the vector test functions to be the gradients of an
arbitrary function φ(ξξξ) in Ω, which are so chosen that
they have constant values, as:

φ,k (ξξξ) = φ,k (x) (29)

Then the weak form of Eq. (12) may be written as:

∫
Ω

[
φ∗

,ii (x,ξξξ)+k2φ∗ (x,ξξξ)
]
φ,k (ξξξ)dΩ+φ,k (x) = 0 (30)

After applying the divergence theorem, we can obtain
from Eq. (30):

∫
∂Ω

Θ∗ (x,ξξξ)φ,k (x)dS+
∫

Ω
k2φ∗ (x,ξξξ)φ,k (x)dΩ+φ,k (x)

= 0 (31)
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In addition, we may observe that the first two terms in
Eq. (22) have the following property:

∫
∂Ω

ni (ξξξ)φ,i (x)φ∗
,k (x,ξξξ)dS−

∫
∂Ω

nk (ξξξ)φ,i (x)φ∗
,i (x,ξξξ)dS

=
∫

Ω
φ,i (x)φ∗

,ki (x,ξξξ)dΩ−
∫

∂Ω
φ,i (x)φ∗

,ik (x,ξξξ)dS

= 0 (32)

By adding Eq. (32) and (31), we have:

∫
∂Ω

ni (ξξξ)φ,i (x)φ∗
,k (x,ξξξ)dS

−
∫

∂Ω
nk (ξξξ)φ,i (x)φ∗

,i (x,ξξξ)dS

+
∫

∂Ω
Θ∗ (x,ξξξ)φ,k (x)dS

+
∫

Ω
k2φ∗ (x,ξξξ)φ,k (x)dΩ+φ,k (x) = 0 (33a)

or
∫

∂Ω
ni (ξξξ)φ,i (x)φ∗

,k (x,ξξξ)dS

+
∫

∂Ω
eiktDtφ(x)φ∗

,i (x,ξξξ)dS

+
∫

Ω
k2φ∗ (x,ξξξ)φ,k (x)dΩ+φ,k (x) = 0 (33b)

xte1

xse2

x

xne3

Figure 2 : The local coordinates at a boundary point x

For the numerical implementation purpose, we define
the local coordinates at point x on the boundary ∂Ω, as
shown in Fig. 2, and we have ψ(x) in terms of φ,i (x) on
the boundary, as:




ψ3 (x) = q(x)
ψ1 (x) = ti (x)φ,i (x)
ψ2 (x) = si (x)φ,i (x)

(34)

in which, the vector ψ(x) in local coordinates comes
from two physical terms: the gradient q(x) spans the vec-
tor in the outward normal direction, and the gradients of
the potential φ(x) span the vectors in the other two tan-
gential directions.

We rewrite Eq. (33b) as:

∫
∂Ω

ni (ξξξ)ψi (x)φ∗
,k (x,ξξξ)dS+

∫
∂Ω

eiktDtφ(x)φ∗
,i (x,ξξξ)dS

−
∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ,k (x)dS+

1
2

φ,k (x) = 0

x ∈ ∂Ω (35)

Using other carefully chosen weak forms of Eq. (12), one
can derive any number of “properties” of the fundamental
solution [Han and Atluri (2003a)].

We now use the fundamental properties ofφ∗, as enumer-
ated in this section, to give simple, straightforward and
elegant physical and mathematical regularizations of the
strongly-singularBIEs forφ, andφ,k, as given in Eq. (16)
and (22) respectively.

3.4 Regularization of φ-BIE, Eq. (16)

In this section, we consider the regularization of φ-BIE,
as well as the possibility of satisfying theφ-BIE itself in
a weak form, at ∂Ω, through a general Petrov-Galerkin
scheme. It is well known the Eq. (16) is numerically
tractable if it is restricted only for boundary points, ie.,
x ∈ ∂Ω, because nk (ξξξ)φ∗

,k (x,ξξξ) contains the weak singu-
larity [O

(
r−1

)
]. Most researchers have implemented the

φ-BIE based on this equation and solved the boundary
problems. On another hand, considering a domain point
which is approaching the boundary, one may encounter
the higher singularity [O

(
r−2

)
] with Eq. (16).

Subtracting Eq. (26c) from Eq. (16), and obtain:

∫
∂Ω

q(ξξξ)φ∗ (x,ξξξ)dS−
∫

∂Ω
[φ(ξξξ)−φ(x)]Θ∗ (x,ξξξ)dS

+
∫

Ω
k2φ∗ (x,ξξξ)φ(x)dΩ = 0 (36)
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With Eq. (28b), Eq. (36) is applicable at point x on the
boundary ∂Ω, as:

∫
∂Ω

q(ξξξ)φ∗ (x,ξξξ)dS−
∫

∂Ω
[φ(ξξξ)−φ(x)]Θ∗ (x,ξξξ)dS

=
∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ(x)dS+

1
2

φ(x)

x ∈ ∂Ω (37)

One can see that φ(ξξξ)−φ(x) becomes O(r) when ξξξ → x,
and thus Eq. 37 becomes weakly-singular [O

(
r−1

)
]. For

a point close to the boundary, a reference node on the
boundary may be used for regularization [Han and Atluri
(2003a)]. Hence, all the integrals in Eq. (37) can be
evaluated numerically, for both the boundary points and
the points close to the boundary. We refer to Eq. (37) as
the regularizedφ-BIE or “R-φ-BIE”.

On the other hand, when ∂Ω has corners, φ may be ex-
pected to have a variation of r +λ (λ < 1) near the corners.
In such cases, φ(ξξξ)−φ(x) may become O

(
rλ−1

)
when

ξξξ → x, and thus, in a theoretical sense, Eq. (37) is no
longer weakly singular. However, in a numerical solu-
tion of R-φ-BIE (37) directly, through a collocation pro-
cess, to derive a φ Boundary Element Method (BEM-R-
φ-BIE), we envision using only C0 polynomial interpola-
tions of φ and q. Thus, in the numerical implementation
of the BEM-R-φ-BIE by a collocation of Eq. (37), we
encounter only weakly singular integrals. This method
of BEM-R-φ-BIE, using a direct collocation of (37), is
presented elsewhere [Qian, Han, and Atluri (2003)]. By
using C0 elements and employing an adaptive boundary-
element refinement strategy near corners at the boundary,
one may extract the value of (λ < 1) in the asymptotic
solution for φnear such a corner.

We can also use a Petrov-Galerkin scheme to write the
weak-form for Eq. (37) as:

∫
∂Ω

w(x)dSx

∫
∂Ω

q(ξξξ)φ∗ (x,ξξξ)dSξ

−
∫

∂Ω
w(x)dSx

∫
∂Ω

[φ(ξξξ)−φ(x)]Θ∗ (x,ξξξ)dSξ

=
∫

∂Ω
w(x)dSx

∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ(x)dSξ

+
1
2

∫
∂Ω

w(x)φ(x)dSx (38)

where w(x) is a test function on the boundary ∂Ω.
Ifw(x)is chosen as a Dirac delta function, i.e., w(x) =
δ(x,xm) at∂Ω, we obtain the standard “collocation”
boundary element method, i.e., BEM-R-φ-BIE men-
tioned earlier. The collocation BEM-R-φ-BIE method
and the attendant numerical details are presented else-
where [Qian, Han, and Atluri (2003)]. In the present pa-
per, we consider the general Petrov-Galerkin weak solu-
tions of the weakly singular φ-BIE.

By using Eq. (28b), we may obtain from Eq. (38):

1
2

∫
∂Ω

w(x)φ(x)dSx =
∫

∂Ω
w(x)dSx

∫
∂Ω

q(ξξξ)φ∗ (x,ξξξ)dSξ

−
∫

∂Ω
w(x)dSx

∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ(ξξξ)dSξ (39)

If w(x) is chosen to be identical to a function which is
energy-conjugate to φ(x), viz. the trial function , we
obtain the symmetric Galerkin φ-BIE form as [Han and
Atluri 2003a)]

1
2

∫
∂Ω

q̂(x)φ(x)dSx =
∫

∂Ω
q̂(x)dSx

∫
∂Ω

q(ξξξ)φ∗ (x,ξξξ)dSξ

−
∫

∂Ω
q̂(x)dSx

∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ(ξξξ)dSξ (40)

Eq. (40) leads to the present novel formulation for
a Symmetric Galerkin Boundary Element Method for
the weakly singular BEM-R-φ-BIE. We label this as
SGBEM-R-φ-BIE for convenience.

3.5 Regularization of q-BIE, Eq. (21)

By subtracting Eq. (24) from Eq. (35), we can obtain the
fully regularized form of Eq. (24) as:
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∫
∂Ω

[q(ξξξ)−ni (ξξξ)ψi (x)]φ∗
,k (x,ξξξ)dS

+
∫

∂Ω
eikt [Dtφ(ξξξ)− (Dtφ)(x)]φ∗

,i (x,ξξξ)dS

+
∫

∂Ω
k2nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dS

+
∫ CPV

∂Ω
Θ∗ (x,ξξξ)q(x)dS+

1
2

q(x) = 0 (41)

We define a kernel function as:

Θ̂∗ (x,ξξξ) = −∂φ∗ (x,ξξξ)
∂nx

= nk (x)
∂φ∗ (x,ξξξ)

∂ξk
(42)

If we contract with nk (x) on both sides of Eq. (41), we
obtain

∫
∂Ω

[q(ξξξ)−ni (ξξξ)ψi (x)] Θ̂∗ (x,ξξξ)dS

+
∫

∂Ω
[Dtφ(ξξξ)− (Dtφ) (x)]nk (x)eiktφ∗

,i (x,ξξξ)dS

+
∫

∂Ω
k2nk (x)nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dS

+
∫ CPV

∂Ω
Θ∗ (x,ξξξ)q(x)dS+

1
2

q(x) = 0 (43)

We label Eq. (43) as the regularized q-BIE, or
“R-q-BIE”. When ∂Ω is smooth, one can see that
[q(ξξξ)−ni (ξξξ)ψi (x)] and [Dtφ(ξξξ)− (Dtφ)(x)] become
O(r) when ξξξ → x, and Eq. 41 becomes weakly singu-
lar [O

(
r−1

)
] on a 3D problem. Thus, all the integrals

in Eq. 43 can be evaluated numerically, and applica-
ble to any point x on the boundary ∂Ω. On the other
hand, when ∂Ω has corners, [q(ξξξ)−ni (ξξξ)ψi (x)] and
[Dtφ(ξξξ)− (Dtφ) (x)] may become O

(
rλ−1

)
when ξξξ → x,

and thus, in a theoretical sense, Eq. 43 is no longer
weakly singular. However, in a numerical implementa-
tion of the R-q-BIE, viz. Eq. (43), directly, through a col-
location process, to derive a qBoundary Element Method
(BEM-R-q-BIE), we envision using only C0 polynomial
interpolations of φ and q. Thus, in the numerical im-
plementation of the BEM-q-BIE by a collocation of Eq.
(43), we encounter only weakly singular integrals. The
method of BEM-R-q-BIE using a direct collocation of

Eq. (43), is presented elsewhere [Qian, Han, and Atluri
(2003)].

We can also use a Petrov-Galerkin scheme to write a
weak form for Eq. (43) as:

∫
∂Ω

w(x)dSx

∫
∂Ω

[Dtφ(ξξξ)− (Dtφ)(x)]nk (x)eiktφ∗
,i (x,ξξξ)dSξ

+
∫

∂Ω
w(x)dSx

∫
∂Ω

[q(ξξξ)−ni (ξξξ)ψi (x)]Θ̂∗ (x,ξξξ)dSξ

+
∫

∂Ω
w(x)dSx

∫
∂Ω

k2nk (x)nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dSξ

+
∫

∂Ω
w(x)dSx

∫ CPV

∂Ω
Θ∗ (x,ξξξ)q(x)dSξ

+
1
2

∫
∂Ω

w(x)q(x)dSx = 0 (44)

where w(x) is a test function. If w(x) is chosen as a Dirac
delta function, i.e., w(x) = δ(x,xm) at∂Ω, we obtain
the standard “collocation” boundary element method.
[BEM-R-q-BIE]

Also, we can directly use a Petrov-Galerkin scheme to
write a weak-form for Eq. (24) as:

−
∫

∂Ω
q(x)w(x)dSx =

∫
∂Ω

w(x)dSx

∫
∂Ω

q(ξξξ) Θ̂∗ (x,ξξξ)dSξ

+
∫

∂Ω
w(x)dSx

∫
∂Ω

Dtφ(ξξξ)eiktnk (x)φ∗
,i (x,ξξξ)dSξ

+
∫

∂Ω
w(x)dSx

∫
∂Ω

k2nk (ξξξ)φ(ξξξ)nk (x)φ∗ (x,ξξξ)dSξ (45)

The first integral at the right side of Eq. (45) can be writ-
ten as:

∫
∂Ω

w(x)dSx

∫
∂Ω

q(ξξξ) Θ̂∗ (x,ξξξ)dSξ

=
∫

∂Ω
q(ξξξ)dSξ

∫ CPV

∂Ω
w(x)Θ̂∗ (x,ξξξ)dSx

−
∫

∂Ω

1
2

q(x)w(x)dSx (46)

in which Eq. (28b) is used, and ∂
∂xi

= − ∂
∂ξi

.

The second integral on the right side of Eq. (45), can be
simplified by using the Stokes theorem. We introduce a
kernel function, Σ∗

kt, defined as
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Σ∗
kt (x,ξξξ) = eiktφ∗

,i (x,ξξξ)
= eink

(−δntφ∗
,i (x,ξξξ)

)
= einkH∗

nt,i (x,ξξξ) (47)

Thus, by definition, H∗
nt (x,ξξξ) = −δntφ∗ (x,ξξξ), and this

kernel function is seen to be:

H∗
nt (x,ξξξ) = − i

4
H(1)

0 (kr)δnt in 2D (48a)

and

H∗
nt (x,ξξξ) = −e−ikr

4πr
δnt in 3D (48b)

The second integral on the right side of Eq. (45) is rewrit-
ten as

∫
∂Ω

w(x)dSx

∫
∂Ω

Dtφ(ξξξ)eiktnk (x)φ∗
,i (x,ξξξ)dSξ

=
∫

∂Ω
Dkw(x)dSx

∫
∂Ω

Dtφ(ξξξ)Hkt (x,ξξξ)dSξ (49)

Then, through combining Eq. (45), (46) and (49), the
final equation becomes:

− 1
2

∫
∂Ω

q(x)w(x)dSx

=
∫

∂Ω
q(ξξξ)dSξ

∫ CPV

∂Ω
w(x)Θ̂∗ (x,ξξξ)dSx

+
∫

∂Ω
Dkw(x)dSx

∫
∂Ω

Dtφ(ξξξ)Hkt (x,ξξξ)dSξ

+
∫

∂Ω
w(x)dSx

∫
∂Ω

k2nk (ξξξ)φ(ξξξ)nk (x)φ∗ (x,ξξξ)dSξ (50)

If the test function w(x) is chosen to be identical to a
function which is energy-conjugate to q(x), viz. the trial
function φ̂(x), we obtain the symmetric Galerkin q-BIE
form as

− 1
2

∫
∂Ω

q(x) φ̂(x)dSx

=
∫

∂Ω
q(ξξξ)dSξ

∫ CPV

∂Ω
φ̂(x)Θ̂∗ (x,ξξξ)dSx

+
∫

∂Ω
Dkφ̂(x)dSx

∫
∂Ω

Dtφ(ξξξ)Hkt (x,ξξξ)dSξ

+
∫

∂Ω
nk (x) φ̂(x)dSx

∫
∂Ω

k2nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dSξ (51)

Eq. (51) leads to the present novel formulation for a
Symmetric Galerkin Boundary Element Method for the
regularized R-q-BIE. We label this as “SGBEM-R-q-
BIE” for convenience, in this paper.

3.6 Some detailed properties of kernel functions

3.6.1 Θ∗ (x,ξξξ) andΘ̂∗ (x,ξξξ)

First of all, it is quite straight forward to see that

Θ∗ (x,ξξξ) = −Θ̂∗ (ξξξ,x) (52)

from the definition of Θ∗ (x,ξξξ) and Θ̂∗ (x,ξξξ). Eq. (52)
results in the symmetry of the “SGBEM-R-φ-BIE” and
“SGBEM-R-q-BIE”, as seen in the next section.

3.6.2 H∗ (x,ξξξ)

¿From the definition of Σ∗ (x,ξξξ) in Eq. (47), we know
that

∇ ·Σ∗ (x,ξξξ) = 0 (53a)

Σ∗ (x,ξξξ) = ∇ ×H∗ (x,ξξξ) (53b)

which means that Σ∗ (x,ξξξ) spans a solenoidal field, and
there exists a potential field, in this case, H∗ (x,ξξξ), to con-
struct the solenoidal field by using a curl operator. These
properties ensure the application of the Stokes theorem
in Eq. (49) to obtain simplified boundary integral equa-
tions.

Also, H∗ (x,ξξξ) becomes O
(
r−1

)
in 3 dimensional prob-

lem, which is of the same order as φ∗ (x,ξξξ), when ξξξ → x.
Therefore, H∗ (x,ξξξ) possesses the weak singularity, and
it is convenient for the numerical implementation.

Now, theφ-BIE and the q-BIE have been fully desingu-
larized simply, and elegantly in the present work.
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3.7 Numerical Details of the “SGBEM-R-φ-BIE” and
“SGBEM-R-q-BIE”

Let the regular boundary S be partitioned into a portion
Sp on which potential is prescribed, and a portion Sq

where velocity potential gradients are prescribed. We ap-
ply the φ-BIE weak form on Sp with q̂= 0 on Sq, and the
q-BIE weak form on Sq with φ̂= 0 on Sp. Thus we ob-
tain:

∫
Sp

q̂(x)
∫

Sp

q(ξξξ)φ∗ (x,ξξξ)dSξdSx

−
∫

Sp

q̂(x)
∫ CPV

Sq

Θ∗ (x,ξξξ)φ(ξξξ)dSξdSx

=
1
2

∫
Sp

q̂(x)φ(x)dSx−
∫

Sp

q̂(x)
∫

Sq

q(ξξξ)φ∗ (x,ξξξ)dSξdSx

+
∫

Sp

q̂(x)
∫ CPV

Sp

Θ∗ (x,ξξξ)φ(ξξξ)dSξdSx (54a)

∫
Sq

q(ξξξ)
∫ CPV

Sp

φ̂(x)Θ̂∗ (x,ξξξ)dSxdSξ

+
∫

Sq

Dkφ̂(x)
∫

Sq

Dtφ(ξξξ)Hkt (x,ξξξ)dSξdSx

+
∫

Sq

nk (x) φ̂(x)
∫

Sq

k2nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dSξdSx

= −1
2

∫
Sq

q(x) φ̂(x)dSx

−
∫

Sq

q(ξξξ)
∫ CPV

Sq

φ̂(x) Θ̂∗ (x,ξξξ)dSxdSξ

−
∫

Sq

Dkφ̂(x)
∫

Sp

Dtφ(ξξξ)Hkt (x,ξξξ)dSξdSx

−
∫

Sq

nk (x) φ̂(x)
∫

Sp

k2nk (ξξξ)φ(ξξξ)φ∗ (x,ξξξ)dSξdSx (54b)

Due to the properties of the kernel functions, with the
symmetric features of the Eq. (54a) and (54b), the
symmetry of the “SGBEM-R-φ-BIE” and “SGBEM-R-q-
BIE” equations is guaranteed.

4 Numerical results

In the implementation of the “SGBEM-R-φ-BIE” and
“SGBEM-R-q-BIE”, another key step is to evaluate the
double area integrals of the weakly singular kernels.

An efficient approach for triangular boundary elements,
which is based on coordinate transformations, is pre-
sented by [Andra (1998); Erichsen and Sauter (1998)].
The transformation Jacobian cancels the weak singular-
ity of the kernels. The method used in this paper is
based on the approach presented in [Nikishkov, Park,
and Atluri (2001)], which is designed for quadrilateral
boundary elements. For coincident elements and for ele-
ments with common edges or common vertices, the four-
dimensional integration domain is divided into several in-
tegration subdomains. In each subdomain, a special co-
ordinate transformation is introduced, which cancels the
singularity.

In order to check the accuracy and efficiency of the pro-
posed method, three different acoustic problems are con-
sidered: (1) acoustic field radiated by a sphere with driv-
ing and admittance surfaces; (2) the standard pulsating
sphere problem; and (3) acoustic scattering from the sur-
face of a solid cone and a cube.

4.1 Application to radiation

4.1.1 Acoustic field radiated by a sphere with driving
and admittance surfaces

n

Driving surface

   specified
n

 = 63.4˚
x

y

z

Admittance surface

  specified

Figure 3 : Specifications of boundary conditions on the
surface of the sphere

The sound field radiated by a sphere is studied in this
section. The sphere is of unit radius with both a driving
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(a)

(b)

Figure 4 : Numerical solution by SGBEM-R-φ-BIE & SGBEM-R-q-BIE of (a) |φ|; (b)
∣∣∣∂φ

∂n

∣∣∣ on the surface

surface as well as an admittance surface (Fig. 3), which
constitute discontinuous boundary conditions. This nu-
merical example is commonly used, because the exact
solution is known [Meyer, Bell, Zinn, and Stallybrass
(1978)]

To check the numerical approach and the computer code,
the first case of the radiated field, with the wave number

k = 2 is investigated. 32 8-node quadrilateral elements
are employed in the present boundary element model.
The exact solution for the conditions:

Driving surface:

∂φ
∂n

= (0.0385+1.12i)cosθ
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Figure 5 : Exact and numerical solution of |φ| for k = 2:
-, Exact; o, SGBEM-R-φ-BIE & SGBEM-R-q-BIE

Admittance surface:

∂φ
∂n

= (−1.2+1.6i)φ

is given by:

φ= (0.435−0.351i)cosθ on the surface, and

φ= (−0.00867+0.00498i)cosθ at the far field (kr =
100).

The solution of this case is θ dependent, as shown in Fig.
4. A comparison between the numerical and exact so-
lutions for the amplitude |φ| of the velocity potential on
the surface of the sphere is presented in Fig. 5, wherein
excellent agreement between the two solutions is noted.

The second case of a radiating sphere is studied at the
wave number k = 4.49 (the second internal eigenvalue of
the sphere, and the first eigenvalue is π), which has the
largest value of error (∼ 14%) in the numerical solution
of [Meyer, Bell, Zinn, and Stallybrass (1978)]. The exact
solution for the radiated field, for the given conditions:

Driving surface:

∂φ
∂n

= (−0.976−0.239i)cosθ

Admittance surface:

∂φ
∂n

= (−1.05+4.28i)φ

is given by:

φ= 0.228i cosθ on the surface, and

φ = (−0.00867+0.00498i)cosθ at the far field (kr =
100).

A comparison between the conventional collocation-
based boundary integral equations (φ-BIE) viz., the
BEM-R-φ-BIE approach, the present SGBEM-R-φ-BIE
and SGBEM-R-q-BIE, and the exact solutions, for the
amplitude |φ| of the velocity potential on the surface and
at the far field of the sphere is presented in Fig. 6. The
excellent agreement between the present SGBEM solu-
tions and the exact solution is noted. And, the results
also show the very high accuracy at the characteristic
frequencies, of the present SGBEM method in compar-
ison to the conventional boundary element method, i.e.,
the BEM-R-φ-BIE method. The agreement of the pro-
posed method with that of the exact solution is superior
to that of the numerical solution of Meyer, Bell, Zinn,
and Stallybrass (1978).

4.1.2 Application to a pulsating sphere

The field radiated from a pulsating sphere into the infinite
homogeneous medium is chosen as an example for the
exterior problem. The analytical solution of the acoustic
pressure for a sphere of radius a, pulsating with uniform
radial velocity va, is given by [Chien, Rajiyah, and Atluri
(1990)]

p(r)
z0va

=
a
r

ika
1+ ika

e−ik(r−a) (55)

where z0 is the characteristic impedance, p(r) is the
acoustic pressure at distance r , and k is the wave num-
ber. In this example, the hatched area on the surface
in Fig. 7 is assigned the Dirichlet boundary condition
(using SGBEM-R-φ-BIE correspondingly), and the re-
mained area on the surface is assigned the Neumann con-
dition (using SGBEM-R-q-BIE correspondingly). The
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Figure 6 : Solutions of |φ|: (a) on the surface and (b) at the far field (kr=100); k = 4.49
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Figure 7 : Surface discretization with quadrilateral elements (a) 24 element model; (b) 216 element model

whole sphere is considered for modeling: a 24 element
model and a 216 element model, as shown in Fig. 7.
The models are discretized by using 8-node isoparamet-
ric quadrilateral elements. The evaluation of all integrals
of kernels is performed by using 3x3 Gaussian quadra-
ture.

In Fig. 8 and Fig. 9, the real and imaginary parts of di-
mensionless surface acoustic pressures are plotted with
respect to the reduced frequency ka. Fig. 8 presents
the numerical solutions with 24 elements, while results
with 216 elements are plotted in Fig. 9. The present
results are seen to converge to the analytical solution,
with a mesh refinement. It is obvious that the conven-
tional BIE method fails to provide unique solutions near
k = π,2π· · ·, which is also demonstrated in many earlier
works, such as [Yan, Hung, and Zheng (2003)]. There is
a good agreement between the present SGBEM solutions
and exact solution with kaup to 7.5.

4.2 Application to scattering

4.2.1 Scattering of pressure field around a solid cone

To test the capability of handling the sharp corners by
the proposed SGBEM method, the acoustic scattering of
plane waves with unit amplitude (e−ikx) along the axis of
a truncated ordinary cone with base radius r b = 1 and a
much smaller top radius r t = 0.1 as shown in Fig. 10,
is studied in this example. To make the method to be
applicable to scattering problem, only a small change is
necessary to Eq. (40) as:

1
2

∫
∂Ω

q̂(x)φ(x)dSx−
∫

∂Ω
q̂(x)φi (x)dSx

=
∫

∂Ω
q̂(x)dSx

∫
∂Ω

q(ξξξ)φ∗ (x,ξξξ)dSξ

−
∫

∂Ω
q̂(x)dSx

∫ CPV

∂Ω
Θ∗ (x,ξξξ)φ(ξξξ)dSξ (56)

where φi (x) is the incident acoustic potential, and also a
similar change to Eq. (51) is needed.

For comparison purposes, 3 different-sized models are
used for ka = 1 (92 elements; 318 elements; 952 ele-
ments). The analytical solution for the above problem is
unavailable and hence the solution at the horizontal plane
of symmetry, which is aligned with the incoming wave,
is studied. The non-dimensionalized scattered pressure
ps/pi , at distance r from the center of the cone, versus the
polar angle is plotted in Fig. 13 for non-dimensionalized
wave number ka = 1.0. The solution shows that the
method converges, as the number of elements increases.

To deal with the non-smooth boundary, i.e., the discon-
tinuity of normal gradient of the pressure in this case,
we must note that the degrees of freedom at the discon-
tinuous points should not be mixed or combined. There
is no other special treatment required for the discontin-
uous boundary. This example shows that the SGBEM-
R-φ-BIE and SGBEM-R-q-BIE methods are applicable
to scattering problems. One of the advantages of the
present method is that no discontinuous element is re-
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Figure 8 : Dimensionless surface acoustic pressure of a pulsating (24 elements): (a) real part; (b) imaginary part
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Figure 10 : The geometry of the truncated ordinary cone
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Figure 11 : The geometry and the location of the cube

Figure 12 : The surface discretization of the cone with
92 8-node quadrilateral elements

quired for solving the non-smooth boundary problem.
Further more, in the widely used collocation method, the
coefficients (1/2) in Eq. (39) and (50) actually work
for smooth boundary only, and they shall be assigned
different values for the respective geometries [for in-
stance, θ/4π for a sharp corner with subtended solid an-
gle θ]. However, this coefficient change won’t arise in the
present SGBEM method due to the involvement of the
double integrals. Without doubt, these properties make
the proposed SGBEM method more convenient for non-
smooth boundary problems from the view point of nu-
merical implementation.

(ii) Scattering of pressure field around a cube

The acoustic scattering of plane waves with unit ampli-
tude (e−ikx) at normal incidence on a rigid cube with
length a (a= 1) is considered to check the practicality of
the present method for non-smooth boundaries. The cube
is rotated so that the plane waves are toward its corner.

For comparison purposes, 3 different-sized models are
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Figure 13 : The angular dependence of ps
pi

for a truncated ordinary cone with (a) r = 8.0; (b) r = 10.0; and ka= 1
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used for ka = 1 (24 elements; 96 elements; 384 ele-
ments). The analytical solution for the above problem is
unavailable and hence the solution at the horizontal plane
of symmetry, which is aligned with the incoming wave,
is studied. The non-dimensionalized scattered pressure
ps/pi , at distance r from the center of the cube, versus the
polar angle is plotted in Fig. 14 for non-dimensionalized
wave number ka = 1.0. The solution shows that the
method converges, as the number of elements increases.

5 Conclusion

The symmetric Galerkin Boundary Element formulations
of the regularized forms of newly derived non-hyper-
singular boundary integral equations [denoted in the
paper as “SGBEM-R-φ-BIE” and “SGBEM-R-q-BIE”]
have been presented, in order to overcome the difficulties
with hyper-singular integrals involved in the composite
Helmholtz integral equations presented by Burton and
Miller [Burton and Miller (1971)]. The methods based
on BEM-R-φ-BIE, and BEM-R-q-BIE, using direct col-
locations of (36), is presented elsewhere [Qian, Han, and
Atluri (2003)]. The weak singularities make the present
approach highly accurate and more efficient in the nu-
merical implementation. Also the non-uniqueness prob-
lem is resolved with the demonstration of the example of
a pulsating sphere, i.e., the approach is applicable even
at the characteristic frequencies. Moreover, there is no
requirement of smoothness of the chosen trial functions
for φ and q, and C0 continuity is sufficient for numer-
ical implementation. Another advantage of symmetric
Galerkin formulation is the symmetry of system matrix.
Further investigation will extend the present approach,
using the Meshless Local Petrov Galerkin approach, to
develop MLPG-R-φ-BIE, and MLPG-R-q-BIE, respec-
tively. These MLPG methods will be presented in subse-
quent papers.
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