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Directly Derived Non-Hyper-Singular Boundary Integral Equationsfor Acoustic
Problems, and Their Solution through Petrov-Galerkin Schemes

Z.Y.Qian!, Z.D. Han!, and S.N. Atlurit

Abstract: Novel non-hyper-singular [i.e, only
strongly-singular] boundary-integral-equations for the
gradients of the acoustic velocity potentia, involv-
ing only O(r—2) singularities at the surface of a 3-D
body, are derived, for solving problems of acoustics
governed by the Helmholtz differential equation. The
gradients of the fundamental solution to the Helmholtz
differential equation for the velocity potential, are used
in this derivation. Several basic identities governing
the fundamental solution to the Helmholtz differential
equation for velocity potential, are also derived. Using
these basic identities, the strongly singular integral
equations for the potential and its gradients [denoted
here as @-BIE, and g-BIE, respectively], are rendered
to be only weakly-singular [i.e.,, possessing singular-
ities of O(r—1) at the surface of a 3-D body]. These
weakly-singular equations are denoted as R-@-BIE,
and R-g-BIE, respectively. Genera Petrov-Gaerkin
weak-solutions of R-@-BIE, and R-g-BIE are discussed;
and special cases of collocation-based boundary-element
numerical approaches [denoted as BEM-R-@-BIE,
and BEM-R-g-BIE], as well as Symmetric Galerkin
Boundary Element approaches [denoted as SGBEM-
R-@-BIE and SGBEM-R-¢-BIE, respectively] are also
presented. The superior accuracy and efficiency of the
SGBEM-R-@-BIE and SGBEM-R-g-BIE are illustrated,
through examples involving acoustic radiation as well as
scattering from 3-D bodies possessing smooth surfaces,
aswell as surfaces with sharp corners.

keyword: Boundary integral equations,
singularity, Petrov-Galerkin
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1 Introduction

The difficulties in dealing with hyper-singular integrals,
and the nonuniqueness, are two of the well known draw-
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backs of the existing boundary integral equation (BIE)
methods for solving acoustic problems, even though the
boundary integral equation method offers more advan-
tages over other popular numerical methods such as
the finite element method [Chien, Rajiyah, and Atluri
(1990)]. In 1968, Schenck pointed out that the inte-
gral equation for potential mathematically failed to yield
unique solutions to the exterior acoustic problem, and
proposed a method labeled as CHIEF[Schenck (1968)],
inwhich an over-determined system of equationsat some
characteristic frequencies was formed by combining the
surface Helmholtz equation with the interior Helmholtz
equation. The system of equations was analytically
proved to provide a unique solution at the characteris-
tic frequencies, to some extent. However, the method
might fail to produce unique solutions, when the inte-
rior points used in the collocation of BIEs were |ocated
on a nodal surface of an interior standing wave. The
nonuniqueness of solutions, at certain frequencies of the
associated acoustic problem in the interior of the solid
body, isactually apurely mathematical issuearising from
the boundary integral formulation, without any physical
significance. Meanwhile, Burton and Miller (1971) de-
veloped a combination of the surface Helmholtz integral
equation for potential, and the integral equation for the
normal derivative of potential at the surface, to circum-
vent the problem of nonuniqueness at characteristic fre-
guencies. Their method waslabeled as CHIE (Composite
Helmholtz Integral Equation), or CONDOR (Composite
Outward Normal Derivative Overlap Relation) by Reut
[Reut (1985)]. The CHIE method is more straightfor-
ward, as compared to the CHIEF method; however, it in-
troduces the hypersingular integrals, which are computa:
tionally costly. Moreover, in CHIE method, the accuracy
of the integrations affects the results, and the conven-
tional Gauss quadrature can not be used directly. Reg-
ularization techniques are commonly employed by the
followers of the CHIE methodology, to improve the ap-
proach by reducing the problem to the one involving
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O(r~1) singular integrals near the point of singularity.
Chien, Rajiyah, and Atluri (1990) employed some known
identitiesof the fundamental solutionfrom the associated
interior Laplace problem, to regularize the hypersingular
integrals. This concept was used by many successive re-
searchers. Hwang (1997) reduced the singularity of the
Helmholtz integral equation also by using some iden-
tities from the associated Laplace equation. However,
the value of the equipotential inside the domain must be
computed, because the source distribution for the equipo-
tential surface from the potential theory was used to reg-
ularize the weak singularities. Yang (2000) also uses
the identities of the fundamental solution of the Laplace
problem, to efficiently solvethe problem of acoustic scat-
tering from a rigid body. Besides, Meyer, Bell, Zinn,
and Stallybrass (1978) and Terai (1980) developed reg-
ularization techniques for planar elements. The regular-
ized normal derivative equation [Wu, Seybert, and Wan
(1991)] proposed by Wu et al. converged in the Cauchy
principal value sense, rather than in the finite-part sense.
The computation of tangential derivatives was required
everywhere on the boundary. Another way commonly
used in the literature is to develop the methods to di-
rectly evaluate the hypersingular integrals. Recently, to
solve the intensive computation of double surface inte-
gral, Yan, Hung, and Zheng (2003) empl oyed the concept
of adiscretized operator matrix to replace the evaluation
of double surface integral with the evaluation of two dis-
cretized operator matrices. In summary, most of regular-
ization techniquesor evaluating the hyper-singular in-
tegrals in the acoustic BIEs arise from certain identities
associated with the fundamental solution to the Laplace
equations.

In the present paper, however, novel hon-hyper-singular
boundary integral equations are derived directly, for the
gradients of the velocity potential. The acoustic poten-
tial gradients are related to the sound velocity in their
physical meaning. The basic idea of using the gradients
of the fundamental solution to the Helmholtz differential
equation for velocity potential, as vector test-function®
write the weak-form of the original Helmholtz differen-
tial equation for potential, and thereby directly derive a
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and displacement gradient boundary integral equations
in elastic/plastic solid problems, and traction boundary
integral equations[Han and Atluri (2003a)]. The current
method can be shown to be fundamentally different from
the regularized normal derivative equation by Wu et al.
[Wu, Seybert, and Wan (1991)], which used tangential
derivativesto reduce the singularity.

The boundary integral equations for the potentia [la-
beled here as @-BIE], and itsgradient [labeled here as ¢-
BIE], which are used as starting pointsin the present pa-
per, are only strongly singular [O(r ~2)]. The further reg-
ularization of these strongly singularg-BIE, and g-BIE,
to only weakly singulafO(r ~1)] types, which arelabeled
here as R-@-BIE, R-g-BIE, respectively, is achieved by

using certain basic identities of the fundamental solu-

tion of the Helmholtz differential equation for potential
Thesebasicidentities, intheir most general form, areaso
newly derived in thispaper. These basicidentitiesare de-
rived from the most general scalar and vector weak-forms
of the Helmholtz differential equation for potential, gov-
erning the fundamental solution itselfThe boundary
element methods [BEM] derived by simply collocating
the regularized @-BIE, and g-BIE, as developed in the
present paper, are referred to as the BEM-R-¢-BIE, and
BEM-R-g-BIE, respectively. In addition, in the present
paper, we formulate general Petrov-Galerkin methods to
solve the R-@-BIE, and R-g-BIE, in their weak senses.
By using the test functions in these Petrov-Galerkin
schemes to be the energy-conjugates of the respective
trial functions, we develop Symmetric Galerkin Bound-
ary Element Methods (SGBEM) for solving R-@-BIE,
and R-g-BIE, respectively. We label these SGBEM as
SGBEM-R-@-BIE and SGBEM-R-g-BIE, respectively.
These SGBEM-R-¢-BIE and SGBEM-R-g-BIE are to-
tally different from the ones in [Chen, Hofstetter, and
Mang (1997), Gray and Paulino (1997)]. In the present
SGBEM-R-@-BIE and SGBEM-R-g-BIE, C° continuity
of @ and q over the boundary elements is sufficient
for numerical implementation. Though the double sur-
face integral may increase the numerical accuracy of the
SGBEM, many fast SGBEM methods are proposed to
speed up the computation of double surfaceintegrals, in-

non-hyper-singular boundary integral equations for vecluding panel clustering methods, wavelet methods and

locity potential gradientshas its origins in [Okada, Ra-
jiyah, and Atluri (19893, b), Okada and Atluri (1994)],
which use the displacement and velocity gradientsto di-
rectly establish the numerically tractable displacement

so on [Aimi, Diligenti, Lunardini, and Salvadori (2003),
Breuer, Steinbach, and Wendland (2002)].

As another recent extension of boundary element meth-
ods, meshless methods for solving BIES have been
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developed through the meshless local Petrov-Galerkin
(MLPG) approaches [Han, and Atluri (2003b)]. The
meshless method, as an alternative numerical approach
to eliminate the well known drawbacks in the finite ele-
ment and boundary element methods, has attracted much
attention recently [Atluri, Han, and Shen (2003); Atluri,
and Shen (20024, b)]. These are aso briefly discussed in
the present paper.

2 The governing wave equation, and its fundamen-
tal solution

The propagation of acoustic waves through an un-
bounded homogeneous medium isdescribed by thewave
equation:

_ 1d%g(ny)
¢z ot2

TPo(r,t) =0 (1)

where (12 denotes the Laplacian operator, ¢ isthe acous-
tic velocity potential at a point r at timet, and c is the
speed of sound in the medium at the equilibrium state.
For time-harmonic waves with a time factor e '™, the
Helmholtz differential equation for ¢ can be written as
follows:

D29+ k?@=0 )
wherei istheimaginary unit, wis the angular frequency
of the acoustic wave, and k = w/c is the wave number.
The acoustic pressure p and the velocity u of the fluid
particles induced by the sound waves are determined
through the vel ocity potential @, as:

_ 00
P=—Pog; (©)
and
u=I[g 4)

where 0O is the gradient operator, and pg denotes the
density of the fluid at the equilibrium state. For time-
harmonic waves, we have:

p=iwpo® 5)

The power-flux-density of sound wavesis given by:

P=pu=p@o (6)
In general, the acoustic velocity potential can be repre-
sented as a sum of the incident potential and the scattered
potential:

=g +¢ (7)
At the surface of a soft scatterer, the boundary condition
is

¢=0 (8)
At the surface of a hard scatterer, the boundary condition
on the normal component of the particle velocity is

n-p =0 9)
inwhich, n isthe unit outward normal vector of the sur-
face. Usualy these two conditions are generally referred
to, as the Dirichlet and the Neumann boundary condi-
tions, respectively. Also, the scattered potential should
satisfy the Sommerfeld radiation condition

limr @—ik(ps‘ =0in3D

r—oo

3 (20)

The fundamental solution of the Helmholtz differential
equation Eq. (2) at any field point & due to a point sound
source at X, iswell known asthe free-space Green’sfunc-
tion G (x,&), which is listed here for 2- and 3-D prob-
lems, respectively, as follows:

For a 2D problem, the Green’s functionis:

Ge(x.5) = ;H{Y (k) (11
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0G

= (11b)

[
(x,8) = —zkH; (kn)
where Hél) (kr) denotes the Hankel function of the first
kind, and r represents the distance between thefield point
& and the source point x. For a 3D problem,

Gk (x,&) = —e X (11c)
0k (y gy = & 'kr( ikr — 1) (11d)
o 7 4Am?
inwhichr = [x—&|,andr; = & = _Kh
n(z)
oQ £edQ

Figure1: A solution domain with source point x

In the following sections, we use ¢*(x,§) to denote
Gk (x,&), without losing any generality. Consider a body
of an infinite extent (Fig. 1), subject to a point sound
source at a generic location x. The fundamental solution
isthe sound field, denoted by @* (x,§), at any point § due
to the point sound source, and is governed by the wave
equation:

@ (%,8) +K*¢" (x,8) +B(x.§) = (122)

or
@i (x.8) + K" (&) +5(x,8) = (12b)

Wealsorefer to Eq. (12) asthe Helmholtz potential equa-
tion governing the fundamental solution.
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3 Boundary integral equations for the velocity po-
tential ¢, and itsgradient @

3.1 Thecurrent state-of-science for BIE in acoustics:
Strongly singular @ and Hyper-singular ¢«

L et @ be thetest function chosen to enforce the Helmholtz
equation, Eq. (2), in terms of the tria function ¢, in a
weak form. The weak form of Helmholtz equation can
then be written as:

/ (D20+K2Q) dQ = 0 (13)
Q

If we apply the divergence theorem oncein Eg. (13), we
obtain a“symmetric” weak form:

/ NiigdS— / 0:9,dQ + / KpdQ = 0 (14)
Glo) Q Q

Thus, in the “symmetric weak-form”, both the trial func-
tion ¢, aswell asthetest functions @ are only required to
be first-order differentiable. 1f we apply the divergence
theorem twicein Eq. (13), we obtain:

[ moids— | nepast [ o@; +19) da =0
0Q 0Q i Q
(15)

We labd Eg. (15) as the “unsymmetric weak-form”.
Now, the test functions ¢ are required to be second-order
differentiable, while @is not required to be differentiable
[Han and Atluri (2003a)] in Q.

If we take the fundamental solution @*(x,&) to bethetest
function @ in Eg. (15), and noting the property from Eq.
(12), we have:

£)0" (x,£)dS (16)

where by definition,
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a® = 2% _n )o@ geon a7
3

and the kernel function,

o x8) - T n@)eiixd) tem (9

Thus, q(&) is the potential gradient along the outward
normal direction of the boundary surface.

Eqg. (16) is the “traditiona” BIE for ¢, that is widely
used in literature. We refer to Eq. (16), hereafter, as @
BIE. The nonuniguenessof the solutionof Eq. (16) arises
because, this homogeneous equation has nontrivial solu-
tions at some characteristic frequencies [Chien, Rgjiyah,
and Atluri (1990)]. As noted in the introduction, many
researchers have investigated and expended substantial
effortsin solving this problem of nonuniqueness.

If we differentiate Eq. (16) directly with respect to xy,
we obtain the integral equations for potential gradients

Ok (X) as:

99 (x)

% ds

(19)

- [ a@ %8s
0Q

00 (x,§)
. o) =

00 OXic

The second term on the right hand side of Eq. (19) is
hyper-singular, since % isof order O (r—3) fora3D
problem. Eg. (19) is aso the integral equations for the
gradients of @(x) that are widely used in the literature;
and hence a wide body of literature is devoted to deal

with the hyper-singularity in this equation.

3.2 Presently proposed Non-Hyper-Singular BIE for
O35

Onthe other hand, the new method proposedin thispaper
starts from writing a vector weak-formas opposed to a
scalar weak-form] of the governing equation Eq. (13) by
using the vector test functions @ ,, asin [Okada, Rajiyah,
and Atluri (19893, 1989b)]:

/Q (9ii +K2) 9,dQ =0 for k=1,2,3 (20)

After applying the divergence theorem three timesin Eq.
(20), we can write:

/ niQ;@,dS— / @i Q;dS+ / niQx®;dS
30 ! 30 ! 30

b [ engats- [ @ @0 @

Using the gradients of the fundamental solution, viz.,
¢} (x,&), asthetest functions, and using the identity from
Eqg. (21), we obtain

~ou(0 = [ _a@®ei(xE)ds
- | @0 @)9; (x8)ds
0Q
+/mcp,k<z>e* (x,£)dS

+ [ K (8)@(E) " (x,€)dS
0Q

(22)

It should be noted that the integral equations for @(x)
[Eq. (16)], and @k (X) [Eq. (22)], are derived indepen-
dently of each otherThe most interesting feature of the
“directly derived” integral equations Eq. (22), for @ x (),

is that they are non-hyper-singular, viz, the highest order
singularity in the kernels appearing in Eq. (22) is only
O(r~2) ina 3D problem

We define the surface tangential operator as

0
Dt = Nr€st o (23)

0&s

in which e isthe permutation symbol. Then, we may
rewrite Eq. (22) as:

0k = [ a®ei(xE)ds
+/BQ Di@(&) et @; (x,§)dS

+ [ K (8)0(E) " (x,€)dS
0Q

(24)
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3.3 Some basicphysical & mathematical propertiesof
the fundamental solution ¢*, which permit simple
and direct regularizationsof the strongly singular
BIEsfor @and q(@k)

We write the weak form of Eq. (12), governing the fun-
damental solution, over the domain, using a constant ¢ as
the test function, and obtain

JAG;

or

@ (%,&) + K¢ (x,§)]cdQ+c=0 a xeQ
(25a)

/[(p“(x £)+ k2" (x,£)]dQ+1=0 a xcQ (25b)

or

/n,(E) (xEdS+/k2 (%,)dQ+1=0 & xeQ
0Q
(25¢)

Eg. (25c) is a “basic identity” of the fundamental
solutiong* (x,&). Now, consider an arbitrary function
@(x) in Q as the test function, and once again write the
weak form of Eq. (12), as

e

or

¢ (x.8) + K" (x,€) +3(x,E)] 9(x)dQ =0
a xeQ (269

[ [0 (x.8) + K (48)] 9(d0-+0() =0 & xeQ
(26b)

or

| o @0

ds+/k2 (%,E)9(x)dQ +@(x) = 0
a xeQ (26¢)

Once the point x approaches a smooth boundary, i.e., X €
0Q, thefirst term in Eq. (26¢) can be written as

cmes, vol.5, no.6, pp.541-562, 2004

lim
x—0Q .J9Q

O (x,§) 9(x)dS

CPV

- [ o' xHords 2000 (2D
0Q

in which we introduce the notion of a Cauchy Principal
Value (CPV) integral. The physical meaning of Eq. (27)
can be understood by rewriting Eq. (25c) and (26c), re-
spectively as:

CPV 1
/ O*(x,E)dS+/ g (x,€)dQ+ = — 0
0Q Q 2

a xe0Q (283

CPV

2
o xbe dS+/k (%,8)0(x)dQ
2000 =0

a xcoQ (28b)

Eqg. (28a) implies that only a half of the sound source
at point x is applied to the domain Q, when the point x
approaches a smooth boundary, x € Q. Eq. (28b) can
be likewiseinterpreted physically.

We again consider another weak form of Eq. (12), by
taking the vector test functions to be the gradients of an
arbitrary function @(&) in Q, which are so chosen that
they have constant values, as.

Pk (&) (29)

Then theweak form of Eq. (12) may be written as:

= @k (X)

[ [0 08) 120 ()] @x(8) 02 + 0w (x) =0 (30)
After applying the divergence theorem, we can obtain

from Eq. (30):

& ek dSt [ 19 (<) pux)d2+ @i (¥
=0 (31)
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In addition, we may observe that the first two terms in
Eq. (22) have the following property:

| @000k (x9S [ n(®ei(99; (xE)dS

—/cp. ) @i (%,€)dQ — /cp.

By adding Eq. (32) and (31), we have:

|k X E)
(32)

/BQ N (E) (p=i (X) (p*k (X7E) ds
_/ (&) @i (X) @5 (x,&)dS
9Q
+/BQ O" (X,§) Pk (x)dS
+/Qk2cp* (%,&) @k (X)dQ + @k (X) = 0 (33)

or

/aQ ni (&) @i (X) P (x,§)dS
+ /(,Q ek D@ (x) @ (x,€) dS

+ /Q K@ (%,€) Ok (X) dQ + @ () =0 (33b)

Figure2: Theloca coordinates at a boundary point x

For the numerical implementation purpose, we define
the local coordinates at point X on the boundary 0Q, as
shownin Fig. 2, and we have ) (x) interms of @; (x) on
the boundary, as

(34)

in which, the vector (x) in local coordinates comes
from two physical terms: the gradient q(x) spansthe vec-
tor in the outward normal direction, and the gradients of
the potential @(x) span the vectors in the other two tan-
gential directions.

We rewrite Eq. (33b) as:

[ n@w g8 dS+ | euDiox) @i (xE)ds
0Q 0Q

CPV 1
_ / ©" (x,£) Qi (x) dS+ 5@k (x) = 0
0Q

X € 0Q (35)
Using other carefully chosen weak forms of Eq. (12), one
can derive any number of “properties’ of the fundamental
solution [Han and Atluri (2003a)].

We now use the fundamental propertiegtfas enumer-
ated in this section, to give simple, straightforward and
elegant physical and mathematical regularizations of the
strongly-singular BIEs fop, and@ y, as givenin Eq. (16)
and (22) respectively

3.4 Regularization of ¢-BIE, Eq. (16)

In this section, we consider the regularization of @-BIE,
as well as the possibility of satisfying thep-BIE itself in
a weak format 0Q, through a general Petrov-Galerkin
scheme. It is well known the Eq. (16) is numerically
tractable if it is restricted only for boundary points, ie.,
x € 0Q, because nk (§) @} (x,&) contains the weak singu-
larity [O (r‘l)]. Most researchers have implemented the
@-BIE based on this equation and solved the boundary
problems. On another hand, considering a domain point
which is approaching the boundary, one may encounter
the higher singularity [O (r~2)] with Eg. (16).
Subtracting Eg. (26¢) from Eq. (16), and obtain:

(&) —0(x)]|O" (x,€)dS

(36)

Q&) ¢’ (x.8)ds- /

0Q
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With Eqg. (28b), Eq. (36) is applicable at point x on the
boundary 0Q, as:

| at

¢ (Bds- [ [0@)-900)0" (x&)dS
CpPV

. 1
= [, ©x{exdst e

xcdQ (37

Onecan seethat (&) — @(x) becomes O (r) when§ — X,
and thus Eq. 37 becomes weakly-singular [O (r~1)]. For
a point close to the boundary, a reference node on the
boundary may be used for regularization [Han and Atluri
(2003a)]. Hence, dl the integrals in Eq. (37) can be
evaluated numerically, for both the boundary points and

the points close to the boundary. We refer to Eq. (37) as

the regularizedp-BIE or “R-@-BIE”.

On the other hand, when 0Q has corners, @ may be ex-
pected to have avariation of r ¥ (A < 1) near the corners.
In such cases, ¢(&) — @(x) may become O (r*~1) when
& — x, and thus, in a theoretical sense, Eq. (37) is no
longer weskly singular. However, in a numerical solu-
tion of R-@-BIE (37) directly, through a collocation pro-
cess, to derive a ¢ Boundary Element Method (BEM-R-
@-BIE), we envision using only C° polynomial interpola-
tionsof @and g. Thus, in the numerical implementation
of the BEM-R+-BIE by a collocation of Eq. (37)we
encounter only weakly singular integrals. This method
of BEM-R-@-BIE, using a direct collocation of (37), is
presented el sewhere [Qian, Han, and Atluri (2003)]. By
using C° elements and employing an adaptive boundary-
element refinement strategy near corners at the boundary,
one may extract the value of (A < 1) in the asymptotic
solution for @ near such a corner.

We can also use a Petrov-Galerkin scheme to write the
weak-form for Eq. (37) as:

/ de&/ q@) e (x,§)dS
/ w(x dS(/ X)] 0" (x,§)dS
= [ winds ;Pvewx,z)cp(x)d%

+3 [ weoemds,

(38)
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where w(x) is a test function on the boundary 0Q.
Ifw(x)is chosen as a Dirac delta function, i.e.,, w(x) =
O(X,Xm) aoQ, we obtain the standard “collocation”
boundary element method, i.e, BEM-R-@-BIE men-
tioned earlier. The collocation BEM-R-@-BIE method
and the attendant numerical details are presented else-
where [Qian, Han, and Atluri (2003)]. In the present pa-
per, we consider the general Petrov-Galerkin weak solu-
tions of the weakly singular @-BIE.

By using Eq. (28b), we may obtain from Eqg. (38):

> | we(ds -
w098 0w s
/aQ CPV

ds( 0 (x,&) 9(§) (39)

d%

If w(x) is chosen to be identical to a function which is
energy-conjugate to @(x), viz. the tria function , we
obtain the symmetric Galerkin @-BIE form as [Han and
Atluri 20033)]

3 |, Ao ds -
/. a00ds [_a®¢ (x@ds

CPV
/BQ

ds( 0" (x,&) @(€)dS  (40)

Eg. (40) leads to the present novel formulation for
a Symmetric Galerkin Boundary Element Method for
the weakly singular BEM-R-@-BIE. We label this as
SGBEM-R¢-BIE for convenience.

3.5 Regularization of g-BIE, Eqg. (21)

By subtracting Eq. (24) from Eq. (35), we can obtain the
fully regularized form of Eq. (24) as:
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/69 [Q(&) — i (&) Wi (X)] @ (x,&)dS
+/aQ ewt [Di@(E) — (D@) (X)] @ (x,€)dS

+ anznk(E)cp(E)cp*(x,E)dS
CPV 1
+ 0" (x,§)q(x)dS+ zq(x)=0 (42)
90 2
We define a kernel function as;
& (1,8 = - 28 _ 9 200 @ .

If we contract with ny (x) on both sides of Eq. (41), we
obtain

|1 -1 @ w1 & (x&)ds
+ [ [Do®)— (D19) (9] () e (x.£) 0

+ o k2N, X) N (&) (&) ¢ (x,&)dS
CPV

+ [ e (E)q(x)dS+ Zq(x) = 0 (43)
Q 2

We label Eq. (43) as the regularized g-BIE, of/ w (X d&/ k2 (€) @(€) nic (x

“R-g-BIE”.  When 0Q is smooth, one can see that
[9(8) — i (&) Wi (x)] and [Dy@(E) — (D) (x)] become
O(r) when & — x, and Eq. 41 becomes weakly singu-
lar [O(r~*)] on a 3D problem. Thus, all the integrals
in Eq. 43 can be evaluated numerically, and applica
ble to any point x on the boundary 0Q. On the other
hand, when 0Q has corners, [q(§) —ni (§) Wi (x)] and

D@ (€) — (D) (x)] may become O (1) when& — x,
and thus, in a theoretical sense, Eq. 43 is no longer
weakly singular. However, in a numerical implementa-
tion of the R-g-BIE, viz. Eq. (43), directly, through a col-

- d/ SAW() S,
location process, to derive a qBoundary Element Metho

(BEM-R-g-BIE) we envision using only C° polynomial
interpolations of ¢ and g. Thus, in the numerical im-
plementation of the BEM-g-BIE by a collocation of Eq.
(43), we encounter only weakly singular integrals. The
method of BEM-R-g-BIE using a direct collocation of

Eqg. (43), is presented elsewhere [Qian, Han, and Atluri
(2003)].

We can also use a Petrov-Galerkin scheme to write a
weak form for Eq. (43) as:

W) ds, / [De@(E) — (D) (X)] N (X) e (X, E) S
+/ w(x d&/ Wi (x)] " (x.8) dS
+ deS(/ k2 (X) N (8) 9 (&) @ (x,8) dS

0Q
CPV

d& 0" (x,§)q(x)d&

_nl

+ W

3 oo

wherew(x) isatest function. If w(x) ischosenasaDirac
delta function, i.e., w(x) = &(x,xm) atoQ, we obtain
the standard “collocation” boundary element method.
[BEM-R-g-BIE]

Also, we can directly use a Petrov-Galerkin scheme to
write aweak-form for Eq. (24) as:

_/aQq(x)w x)da:/aQw(x)d&/aQq(E)é*(x,E)dsf
+/ w(x) d&/ Dy(§) & (X) 5 (x, &) dS
)@ (x.&)dSg

0

X)dS = (44)

(45)

Thefirst integral at the right side of Eq. (45) can be writ-
ten as:

/wxd&/q{é*x{dg

_/ ot dg/CPV

X) 0% (x,&)dS,

(46)

inwhich Eq. (280) isused, and 2 = —31.

The second integral on the right side of Eq. (45), can be
simplified by using the Stokes theorem. We introduce a
kernel function, X}, defined as
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2k (X,&) = e @; (X, &)
= 6ink (—5nt(PTi (X,E))

= @nkHpyj (X,€) (47)

Thus, by definition, H}; (x,&) = —nt@* (X,§), and this
kernel function is seen to be;

Mot (%.8) = —7HY (k)& in2D (482)
and

—ikr
Hiy (6,8) = ———8y in3D (48b)

4mr

The second integral ontheright side of Eq. (45) isrewrit-
ten as

| wix)ds. [ D@ eanc() ¢ (x.8)ds

= /as) DkW(X)d&/BQ D@ (&) Hie (x,§)dS (49)

Then, through combining Eq. (45), (46) and (49), the
final equation becomes:

~3 [ atweds,
CPV R
= [La@ds [ wixé xgas
+/69 D|<W(X)dS</aQ Di@(E) Hit (x,£) dS
+ w(x)dS</aQ KCn () &) () ¢ (x.E)dS  (50)

0Q

If the test function w(x) is chosen to be identical to a
function which is energy-conjugate to ¢ (x), viz. thetrial
function @(x), we obtain the symmetric Galerkin g-BIE
form as

cmes, vol.5, no.6, pp.541-562, 2004

~3 [ a0,
CPV _ .
= [ a®ds [ 6006 (c8)ds
+ [ D) dSc | DiplE)Hie (x.)dS
[ a0 ds | Knd®e®¢ x&)ds 6

Eqg. (51) leads to the present novel formulation for a
Symmetric Galerkin Boundary Element Method for the
regularized R-g-BIE. We label this as “SGBEM-R-g-
BIE” for convenience, in this paper

3.6 Some detailed propertiesof kernel functions
3.6.1 O (x,&) and®* (x,E)
First of al, itisquite straight forward to see that

0" (x,&) = 0" (&,x) (52)
from the definition of ©* (x,§) and o (x,&). Eq. (52)
results in the symmetry of the “SGBEM-R-@-BIE” and
“SGBEM-R-g-BIE”, as seen in the next section.

3.6.2 H*(x,§)

¢From the definition of 2* (x,&) in Eq. (47), we know
that

0.3 (x,£) = 0 (53a)

ZF(x,&) =0xH" (x,§) (53b)

which means that Z* (x,&) spans a solenoidal field, and
there existsa potential field, in thiscase, H* (x,§), to con-
struct the solenoidal field by using a curl operator. These
properties ensure the application of the Stokes theorem
in Eq. (49) to obtain simplified boundary integral equa-
tions.

Also, H* (x,&) becomes O (r~*) in 3 dimensional prob-
lem, which is of the same order as ¢* (x,§), when§ — Xx.
Therefore, H* (x,§) possesses the weak singularity, and
itis convenient for the numerical implementation.

Now, the@-BIE and the g-BIE have been fully desingu-

larized simply, and elegantly in the present work
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3.7 Numerical Detailsof the“ SGBEM-R-¢@-BIE” and
“SGBEM-R-g-BIE”

Let the regular boundary S be partitioned into a portion
S, on which potential is prescribed, and a portion Sgq
where velocity potential gradientsare prescribed. We ap-
ply the @-BIE weak form on S, with = 0on ;, and the
g-BIE weak form on §; with =0 on S,. Thus we ob-
tain:

/ /q  (x,E)dSdS,

- d(x)/;we*(xz £)dsds,

2/q ds‘/ /q

+/ /CPVe*xz ) 9(E) dSdS,

" (x,8)dSdS

(544)

CPV _ (:)* ds.d
/Sqq(i)/sp O(x) " (x,8)dSdS
+/Squfp(X)/SqDt(P(E)Hkt(X7E)d%dS‘
+ [ 09800 [ Kne(®)0(®)

3 awd0oas

e 0" (x,£)dSd
—/Sqqm/sq () &" (x,£)dSdS

- /Sq Did(x) /Sp Di(E) Hit (x.E) dS dS;

—/San X x)/spkznk(z)cp(z)

Due to the properties of the kernel functions, with the
symmetric features of the Eq. (54a) and (54b), the
symmetry of the “SGBEM-R-BIE” and “SGBEM-R-g-
BIE” equations is guaranteed

@ (x,§)dSdS

@ (x,§)dSdS  (54b)

4 Numerical results

In the implementation of the “SGBEM-®BIE” and
“SGBEM-R-g-BIE", another key step is to evaluate the
double area integrals of the weakly singular kernels.

An efficient approach for triangular boundary elements,
which is based on coordinate transformations, is pre-
sented by [Andra (1998); Erichsen and Sauter (1998)].
The transformation Jacobian cancels the weak singular-
ity of the kernels. The method used in this paper is
based on the approach presented in [Nikishkov, Park,
and Atluri (2001)], which is designed for quadrilateral
boundary element$-or coincident elementsand for ele-
ments with common edges or common vertices, the four-
dimensional integrationdomainisdividedinto severa in-
tegration subdomains. In each subdomain, a specia co-
ordinate transformation is introduced, which cancels the
singularity.

In order to check the accuracy and efficiency of the pro-
posed method, three different acoustic problems are con-
sidered: (1) acoustic field radiated by a sphere with driv-
ing and admittance surfaces; (2) the standard pulsating
sphere problem; and (3) acoustic scattering from the sur-
face of asolid cone and a cube.

4.1 Application to radiation

4.1.1 Acoustic field radiated by a sphere with driving

and admittance surfaces

Driving surface
o specified

Admittance surface

% / P specified
y on

Figure 3 : Specifications of boundary conditions on the
surface of the sphere

The sound field radiated by a sphere is studied in this
section. The sphere is of unit radius with both a driving
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(a)

(b)

Figure 4 : Numerical solution by SGBEM-R-¢-BIE & SGBEM-R-g-BIE of (@) |¢|; (b)

surface as well as an admittance surface (Fig. 3), which
constitute discontinuous boundary conditions. This nu-
merical example is commonly used, because the exact
solution is known [Meyer, Bell, Zinn, and Stallybrass
(1978)]

To check the numerical approach and the computer code,
the first case of the radiated field, with the wave number

g—‘r‘]’ on the surface

k = 2 isinvestigated. 32 8-node quadrilateral elements
are employed in the present boundary element model.
The exact solution for the conditions:

Driving surface:

g_;p = (0.0385+1.12i) cos6
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0.6 [
0.4

0.2

Magnitude of potential

90°

surface f

0.2 1200

04

(O

6 t+—
180°

Figure5: Exact and numerical solution of |¢| for k = 2:
-, Exact; 0o, SGBEM-R-@-BIE & SGBEM-R-g-BIE

Admittance surface:

0p ,
an = (-1.2+16)o
isgiven by:

¢@= (0.435—0.351i) cos® on the surface, and

¢@ = (—0.00867 +0.00498i) cosB at the far field (kr =
100).

The solution of this caseis 6 dependent, as shownin Fig.
4. A comparison between the numerical and exact so-
lutions for the amplitude || of the velocity potential on
the surface of the sphere is presented in Fig. 5, wherein
excellent agreement between the two solutionsis noted.

The second case of a radiating sphere is studied at the
wave number k = 4.49 (the second internal eigenval ue of
the sphere, and the first eigenvalue is 1), which has the
largest value of error (~ 14%) in the numerical solution
of [Meyer, Bell, Zinn, and Stallybrass (1978)]. The exact
solution for the radiated field, for the given conditions:

Driving surface:

o9 _
on

Admittance surface:

(—0.976 — 0.239i) cosb

0p ,

an = (—1.05+4.28)¢

isgiven by:

@ = 0.228i cosb on the surface, and

@ = (—0.00867 + 0.00498i) cos® at the far field (kr =
100).

A comparison between the conventiona collocation-
based boundary integral equations (¢-BIE) viz., the
BEM-R-@-BIE approach, the present SGBEM-R-¢-BIE
and SGBEM-R-g-BIE, and the exact solutions, for the
amplitude || of the velocity potential on the surface and
at the far field of the sphere is presented in Fig. 6. The
excellent agreement between the present SGBEM solu-
tions and the exact solution is noted. And, the results
also show the very high accuracy at the characteristic
frequencies, of the present SGBEM method in compar-
ison to the conventional boundary element method, i.e.,
the BEM-R-@-BIE method. The agreement of the pro-
posed method with that of the exact solution is superior
to that of the numerical solution of Meyer, Bell, Zinn,
and Stallybrass (1978).

4.1.2 Application to a pulsating sphere

Thefield radiated from apulsating sphereinto theinfinite
homogeneous medium is chosen as an example for the
exterior problem. The analytical solution of the acoustic
pressure for a sphere of radius a, pulsating with uniform
radial velocity v, isgiven by [Chien, Rgjiyah, and Atluri
(1990)]

p(r) a ika

_“ —ik(r—a)
Zova rl+ika

(55)

where z; is the characteristic impedance, p(r) is the
acoustic pressure at distance r, and k is the wave hum-
ber. In this example, the hatched area on the surface
in Fig. 7 is assigned the Dirichlet boundary condition
(using SGBEM-R-@-BIE correspondingly), and the re-
mained area on the surface is assigned the Neumann con-
dition (using SGBEM-R-g-BIE correspondingly). The
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SGBEM-R-{ @ -BIE& ¢-BIE}

" BEM-R-¢ -BIE

180

140 160

120

40 60
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04
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(a)

Exact

SGBEM-R-{ @ -BIE& ¢-BIE}

\

0.02

0018 - -+-----

0.008 -

60

40

20

0(°)

(b)

100); k = 4.49

Figure 6 : Solutionsof |@|: (a) on the surface and (b) at the far field (kr
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Figure 7 : Surface discretization with quadrilateral elements (a) 24 element model; (b) 216 element model

whole sphere is considered for modeling: a 24 element
model and a 216 element model, as shown in Fig. 7.
The models are discretized by using 8-node i soparamet-
ric quadrilateral elements. The evaluation of all integrals
of kernels is performed by using 3x3 Gaussian quadra-
ture.

In Fig. 8 and Fig. 9, the real and imaginary parts of di-
mensionless surface acoustic pressures are plotted with
respect to the reduced frequency ka. Fig. 8 presents
the numerical solutions with 24 elements, while results
with 216 elements are plotted in Fig. 9. The present
results are seen to converge to the analytical solution,
with a mesh refinement. It is obvious that the conven-
tional BIE method fails to provide unigue solutions near
k = 11, 211- - -, Which is a'so demonstrated in many earlier
works, such as[Yan, Hung, and Zheng (2003)]. Thereis
agood agreement between the present SGBEM solutions
and exact solutionwith kaupto 7.5.

4.2 Application to scattering

555
(b)
L awomss [ anw
- [ _ax da/q ' (x.8)ds
- [ acds [ o 8@ ds (50

where ¢ (x) is theincident acoustic potential, and also a
similar changeto Eq. (51) is needed.

For comparison purposes, 3 different-sized models are
used for ka= 1 (92 elements; 318 elements; 952 ele-
ments). The analytical solution for the above problem is
unavailable and hence the solution at the horizontal plane
of symmetry, which is aligned with the incoming wave,
is studied. The non-dimensionalized scattered pressure
ps/ pi, a distancer from the center of the cone, versusthe
polar angleisplotted in Fig. 13 for non-dimensionalized
wave number ka= 1.0. The solution shows that the
method converges, as the number of elements increases.

4.2.1 Scattering of pressure field around a solid cone

To test the capability of handling the sharp corners by

To deal with the non-smooth boundary, i.e., the discon-
tinuity of normal gradient of the pressure in this case,

the proposed SGBEM method, the acoustic scattering of  we must note that the degrees of freedom at the discon-
plane waves with unit amplitude (e —¥*) along the axisof  tinuous points should not be mixed or combined. There
a truncated ordinary cone with base radiusrp, = 1 and a is no other special treatment required for the discontin-
much smaller top radius ry = 0.1 as shown in Fig. 10, uous boundary. This example shows that the SGBEM-
is studied in this example. To make the method to be R-@-BIE and SGBEM-R-g-BIE methods are applicable
applicable to scattering problem, only a small changeis to scattering problems. One of the advantages of the
necessary to Eq. (40) as: present method is that no discontinuous element is re-
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Figure 8 : Dimensionless surface acoustic pressure of a pulsating (24 elements): (a) real part; (b) imaginary part
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Figure9: Dimensionlesssurface acoustic pressure of a pulsating sphere (216 elements): (a) real part; (b) imaginary

part



558 Copyright (© 2004 Tech Science Press cmes, vol.5, no.6, pp.541-562, 2004

Figure 10 : The geometry of the truncated ordinary cone

Plane waes .~

Figure 11: The geometry and the location of the cube

quired for solving the non-smooth boundary problem.
Further more, in the widely used collocation method, the
coefficients (1/2) in Eg. (39) and (50) actualy work
for smooth boundary only, and they shall be assigned
different values for the respective geometries [for in-
stance, 6/4ttfor a sharp corner with subtended solid an-
gleB]. However, thiscoefficient changewon't ariseinthe
present SGBEM method due to the involvement of the
double integrals. Without doubt, these properties make
the proposed SGBEM method more convenient for non-
smooth boundary problems from the view point of nu-
merical implementation.

(ii) Scattering of pressure field around a cube

The acoustic scattering of plane waves with unit ampli-
tude (e~**) at normal incidence on a rigid cube with
length a (a= 1) is considered to check the practicality of
the present method for non-smooth boundaries. The cube
isrotated so that the plane waves are toward its corner.

For comparison purposes, 3 different-sized models are

Figure 12 : The surface discretization of the cone with
92 8-node quadrilateral elements
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Figure 13 : The angular dependence of % for atruncated ordinary conewith () r = 8.0; (b) r = 10.0; and ka=1
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Figure 14 : The angular dependence of % for acubewith (@) r = 1.0; (b) r =5.0; and ka= 1
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used for ka = 1 (24 elements;, 96 elements;, 384 ele-
ments). The analytical solution for the above problem is
unavailable and hence the solution at the horizontal plane
of symmetry, which is aligned with the incoming wave,
is studied. The non-dimensionalized scattered pressure
ps/ pi, a distancer from the center of the cube, versusthe
polar angleisplotted in Fig. 14 for non-dimensionalized
wave number ka = 1.0. The solution shows that the
method converges, as the number of elements increases.

5 Conclusion

The symmetric Galerkin Boundary Element formulations
of the regularized forms of newly derived non-hyper-
singular boundary integral equations [denoted in the
paper as “SGBEM-R-@-BIE” and “SGBEM-R-g-BIE"]
have been presented, in order to overcome the difficulties
with hyper-singular integrals involved in the composite
Helmholtz integral equations presented by Burton and
Miller [Burton and Miller (1971)]. The methods based
on BEM-R-¢-BIE, and BEM-R-g-BIE, using direct col-
locations of (36), is presented elsewhere [Qian, Han, and
Atluri (2003)]. The wesk singularities make the present
approach highly accurate and more efficient in the nu-
merical implementation. Also the non-unigqueness prob-
lem isresolved with the demonstration of the example of
a pulsating sphere, i.e., the approach is applicable even
a the characteristic frequencies. Moreover, there is no
requirement of smoothness of the chosen trial functions
for @ and g, and C° continuity is sufficient for numer-
ical implementation. Ancther advantage of symmetric
Galerkin formulation is the symmetry of system matrix.
Further investigation will extend the present approach,
using the Meshless Local Petrov Galerkin approach, to
develop MLPG-R-@-BIE, and MLPG-R-g-BIE, respec-
tively. These MLPG methodswill be presented in subse-
quent papers.
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