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A Hybrid Atomistic–Continuum Formulation for Unsteady, Viscous,
Incompressible Flows

H.S. Wijesinghe1 and N.G. Hadjiconstantinou2

Abstract: We present an implicit hybrid atomistic–
continuum formulation for unsteady, viscous, incom-
pressible flows. The coupling procedure is derived from
a domain decomposition method known as the Schwarz
alternating method. A dilute gas impulsive Couette flow
test problem is used to verify the hybrid scheme. Finally,
a method to reduce computational costs through limited
ensemble averaging is presented. The implicit formula-
tion proposed here is expected to be significantly faster
than a time explicit approach based on a compressible
formulation for the simulation of low speed flows such
as those found in micro- and nano–scale devices.

1 Introduction and Background

Hybrid atomistic–continuum formulations allow the
simulation of complex hydrodynamic phenomena at
the nano and micro scales without the prohibitive cost
of a fully atomistic approach. Hybrid formulations
typically employ a domain decomposition strategy
whereby the atomistic model is limited to regions of
the flow field where required and the continuum model
is used in the remainder of the domain within a single
computational framework. Over the years a fair number
of unsteady hybrid formulations have been proposed
for gases [Eggers and Beylich (1994); Garcia, Bell,
Crutchfield, and Alder (1999); Hash and Hassan (1997);
Roveda, Goldstein, and Varghese (2000); O’Connell
and Thompson (1995); Wadsworth and Erwin (1990,
1992)] and recently for liquids [Delgado and Coveney
(2003); Flekkoy, Wagner, and Feder (2000)]. These
hybrid formulations are typically based on time explicit
flux matching techniques which are natural extensions
of control volume integration. In this paper we show
that these approaches, while successful when the flow
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physics is appropriately compressible, are inefficient
when applied to incompressible flow fields [Wijesinghe
and Hadjiconstantinou (2004)].

1.1 Challenges in Unsteady Incompressible Hybrid
Formulations

It is well known that unless special measures are taken,
such as pre–conditioning, a compressible continuum for-
mulation should in general be avoided for the solution
of incompressible flow fields [Wesseling (2001)]. The
timestep for explicit integration of a compressible con-
tinuum formulation,∆tc, scales with the physical time
step,∆th = ∆xc/U (which, in continuum applications, is
in balance with the physical time scaleL/U), according
to [Wesseling (2001)],

∆tc ≤ M
1+M

∆th (1)

where∆xc is the continuum grid spacing,L andU are
characteristic length and velocity scales andM is the
Mach number. As the Mach number decreases,∆tc be-
comes increasingly smaller than∆th and the well–known
stiffness problem arises whereby the computational
efficiency of the numerical scheme degrades due to
disparity of time scales in the system of governing
equations. Moreover the accuracy of the compressible
solution degrades because the magnitude of fluxes in
the original equations approach the corresponding terms
due to numerically added artificial viscosity [Wong,
Darmofal, and Peraire (2001)].

In the hybrid case, the atomistic integration time step,
∆tp, also needs to be considered.∆t p is at most of the
order of∆tc (for some cases in gases when∆x � λ) and
in most cases significantly smaller (especially in liquids).
These considerations make unsteady incompressible
problems particularly challenging since asL grows,
the separation between∆t p and ∆th makes the explicit
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integration of the atomistic subdomain to the time of
interest increasingly expensive and eventually infeasible.
These issues have been addressed forsteady incompress-
ible problems [Hadjiconstantinou and Patera (1997);
Hadjiconstantinou (1999)] with the use of iterative
methods that lead to convergence to the global steady
state solution without the need for explicit integration
of the atomistic subdomain to this solution. Time
explicit coupling schemes should therefore be avoided
for steady problems. In unsteady flows however, since
the interest lies in the transient solution, iterative steady
state methods cannot be used. Innovative integrative
frameworks which can coarse grain the time integration
of the atomistic subdomain may alleviate some of these
problems in the future.

In this paper we assume thatL is sufficiently small such
that explicit integration of the atomistic subdomain to
the global time of interest is possible. Under these condi-
tions, explicit and implicit coupling techniques based on
incompressible formulations offer advantages compared
to the commonly used time explicit flux matching based
on the compressible continuum (control volume) formu-
lation. An example of an implicit technique is introduced
next and is the subject of the remainder of this paper. An
explicit technique based on the incompressible formula-
tion was presented in [O’Connell and Thompson (1995)].

1.2 An Implicit Coupling Technique

Here we explore the use of a coupling method more
in tune with the physics of the incompressible flow
field. The approach considered is an extension of
the Schwarz alternating method [Han and Atluri (2002,
2003); Lions (1988)] used to provide hybrid descriptions
of steady state liquid systems [Hadjiconstantinouand Pa-
tera (1997)] and demonstrated more recently for a 2–
dimensional driven cavity gas flow [Wijesinghe and Had-
jiconstantinou (2002)] and for microfluidic design [Ak-
tas and Aluru (2002)]. In the Schwarz method, coupling
is achieved in an implicit sense through the successive
exchange of state variables (Dirichlet boundary condi-
tions) across an overlap region. The Schwarz procedure
is guaranteed to converge for elliptic problems [Lions
(1988)], and has recently been shown to converge for fi-
nite Reynolds numbers [Liu (2001)].

In the current paper we choose to focus our atten-

tion on dilute gas systems where the Navier-Stokes
description fails as the characteristic length scale of
interest decreases [Hadjiconstantinou and Simek (2002);
Hadjiconstantinou (2002, 2003); Hadjiconstantinou
and Simek (2003)]. The hybrid formulation introduced
here is nonetheless equally applicable to liquids. As
explained in [Wijesinghe and Hadjiconstantinou (2004)],
in the case of liquids the only significant modification
required is a reliable boundary condition imposition
method in the atomistic subdomain for which progress
has been made recently [Delgado and Coveney (2003);
Flekkoy, Wagner, and Feder (2000); Li, Liao, and Yip
(1999)].

The Schwarz method offers two advantages compared
to time explicit coupling approaches based on flux
matching. First, the time scale decoupling properties of
the approach are manifested by the ability to couple only
at the time where solutions are required. This not only
allows the use of optimal time steps in each subdomain
but also the use of acceleration methods such as the
limited ensemble approach developed here to gain an
efficiency advantage.

The second advantage arises from the fact that Schwarz
coupling using state variables provides cost savings over
traditional flux based coupling schemes. Flux based for-
mulations suffer from adverse signal to noise ratios in
connection with the averaging required for imposition of
boundary conditions from the atomistic subdomain to the
continuum subdomain. In the case of an ideal gas and
low speed flows it has been shown [Hadjiconstantinou,
Garcia, Bazant, and He (2003)] that, for the same num-
ber of samples, flux (shear stress, heat flux) averaging
exhibits relative noiseE f which scales as

E f ≈ Esv

Kn
(2)

where Esv is the relative noise in the corresponding
state variable (velocity, temperature) which varies
as 1/

√
(number of samples). HereKn = λ/L is the

Knudsen number based on the characteristic length scale
of the transport gradients,L, andλ is the mean free path
which is expected to be much smaller thanL since, by
assumption, a continuum subdomain is present. It thus
appears that coupling using fluxes will be significantly
disadvantaged in this case since 1/Kn2 times the number
of samples required by state–variable averaging is
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required to achieve comparable variance reduction in the
matching region (whereKn � 1).

The disadvantage of the Schwarz method is the need for
O(10) iterations for convergence. This computational
cost can however easily be recuperated through the
efficiency gained from the above advantages, especially
in higher dimensions; the number of iterations required
is fairly insensitive to the dimensionality of the problem.

The outline of the paper is as follows. First, the unsteady
Schwarz coupling approach is described and evaluated
using a continuum–continuum test problem. A strategy
for reducing the computational cost of unsteady schemes
using a limited ensemble averaging technique is then
presented. Finally a hybrid atomistic–continuum formu-
lation for an unsteady impulsively driven Couette flow
test problem is presented.

2 Unsteady Schwarz Coupling

The Schwarz alternating method can be extended to cou-
ple time unsteady flows to some timet n by exchanging
boundary condition information similar to steady flow
coupling [Lions (1988)]. As shown schematically in
Figure 1, an overlap region between the subdomains fa-
cilitates information exchange in the form of Dirichlet
boundary conditions. A continuum solution based on
the unsteady equations of motion is first obtained using
boundary conditions taken from the atomistic subdomain
solution. At the first iteration this latter solution can be
a guess. An atomistic solution is then found by integrat-
ing the atomistic subdomain to timet n using boundary
conditions taken from the continuum subdomain. This
exchange of boundary conditions corresponds to a sin-
gle Schwarz iteration. This process is repeated to con-
vergence. The converged solution att n forms the initial
condition for subsequent Schwarz iterations to advance
the solution to time levelt n+1. The unsteady Schwarz
scheme still allows for time scale decoupling; each sub-
domain can be advanced at the local most favorable time
step and the choice oft n+1 is arbitrary. The computa-
tional cost of performing multiple Schwarz iterations per
time level is thus partially offset by the ability to implic-
itly advance to the time of interest without the need for
explicit coupling at previous times. This also allows for
acceleration techniques such as the one we describe be-

low. Note that the steady Schwarz method can be consid-
ered as the special case of the unsteady Schwarz method
for tn → ∞ in the presence of a steady state.

Figure 1 : Illustration of the unsteady Schwarz coupling
method in one spatial dimension.

Implementation of the unsteady Schwarz method re-
quires 2 additional constructs not present in the steady
scheme; the first is ensemble averaging of the unsteady
atomistic subdomain solution and the second is time
interpolation of solutions between atomistic and con-
tinuum subdomains to allow for different time steps in
these subdomains.

2.1 Particle Ensembles

Integration of the continuum subdomain in hybrid
methods is achieved by receiving boundary data (state
or flux variables) from the atomistic subdomain. This
data is typically obtained by averaging the atomistic
solution field over a number of realizations (time or
ensemble members). In unsteady flows, unless the flow
is evolving very slowly, time averaging has the result
of smearing the solution and is thus avoided; ensemble
averaging is therefore used instead. Additionally, due
to their low characteristic speeds, incompressible flows
suffer from high relative statistical error (defined here as
the one standard deviation of the statistical fluctuation in
estimating the mean value of a quantity over the mean
value of the same quantity [Hadjiconstantinou, Garcia,
Bazant, and He (2003)]). For this reason ensemble
averaging and large numbers of particles per cell are an
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integral part of atomistic simulations of unsteady low
speed flows.

2.2 Time Interpolation

A distinctive advantage of steady Schwarz coupling is
its ability to decouple time scales [Wijesinghe and Had-
jiconstantinou (2002)]; the time step for the continuum
subdomain∆tc is often larger than the time step for the
atomistic subdomain∆t p. Similar time scale decoupling
is also possible using unsteady Schwarz coupling. For
the case where∆tc > ∆tp, the boundary values from the
continuum solutionsmust be interpolated to the atomistic
subdomain as shown schematically in Figure 2, to ensure
the atomistic subdomain solution has the most accurate
boundary conditions during advance to any time level
tn+1. Note that during time advance of the continuum
subdomain, direct imposition of the atomistic subdomain
boundary condition is possible provided the continuum
subdomain time step is an integer multiple of the atom-
istic subdomain time step.

Figure 2 : Interpolation of boundary conditions.

The effectiveness of linear time interpolation of the
continuum boundary condition is assessed next using
a hybrid (unsteady Schwarz) continuum–continuum
scheme. The continuum–continuum test problem helps
evaluate the time interpolation routines independently
of the ensemble averaging required for an atomistic–
continuum formulation and hence in the absence of
statistical fluctuations which make quantitative compari-
son difficult.

2.3 Method Verification Using a Continuum–
Continuum Problem

The impulsive Couette flow shown in Figure 3 is used as
a test problem. The wall atx = L moves with velocityVo

at time t = 0 while the wall atx = 0 is held stationary.
The hybrid scheme consists of 2 continuum subdomains
I andII extending between 0≤ x ≤ b and froma ≤ x ≤ L
respectively with overlap widthh.

Figure 3 : Computational domain for the impulsively
started Couette flow test problem.

The resulting flow is obtained by solution of a diffusion
equation for y–momentum,

∂v
∂t

−ν
∂2v
∂x2 = 0 x ∈ (0,L), t ∈ (0,T) (3)

whereν = µ/ρ is the kinematic viscosity. This equation
can be solved numerically using an implicit backward
difference scheme (i.e. Backward Euler),

∂t,∆t v
n
i −∂2

x,∆xvn
i = 0 (4)

where,

∂t,∆t v(x, t) =
v(x, t)−v(x, t−∆t)

∆t
(5)

∂2
x,∆xv(x, t) =

v(x−∆x, t)−2v(x, t)+v(x+∆x, t)
∆x2 (6)

Here∆t is the time step and∆x is the spatial discretiza-
tion. Equation (4) is used in both subdomainsI andII. In
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Property Value
Domain lengthL 2.00×10−6 m

Kinematic viscosity 1.1688665×10−5m2/s
Characteristic timet0 L2/ν = 3.4221188×10−7 s

Wall velocityV0 30 m/s
Non–dimensional overlap widthh/L 0.03

Non–dimensional boundarya/L 0.47
Non–dimensional boundaryb/L 0.50

SubdomainI non–dimensional time step ∆t I = 2.922×10−4

SubdomainI non–dimensional grid size ∆xI = 0.01
SubdomainII non–dimensional time step ∆t II = 2.922×10−5

SubdomainII non–dimensional grid size ∆xII = 0.01
Schwarz iterations /∆tI 10

Table 1 : Properties of hybrid continuum–continuum scheme used for the impulsive Couette flow test problem.

this test problem, subdomainII is advanced at 1/10th the
time step of subdomainI. The LHS boundary condition
for subdomainII, vII(a, t) is linearly interpolated from
the subdomainI solution as follows,

vII(a, tk) = vI(a, t i)+
(k− pi)

p

(
vI(a, t i+1)−vI(a, t i)

)

wherei is given by t i < tk ≤ t i+1 (7)

Here p = ∆tI/∆tII, and i,k are the indices of the time
step used in subdomainsI andII respectively. The RHS
boundary condition for subdomainI, vI(b, t) is obtained
by direct imposition of the subdomainII solution as fol-
lows,

vI(b, t i) = vII(b, tk) wherek = pi (8)

Additional parameters for the impulsive Couette flow test
are listed in Table 1.

The velocity profiles predicted by the hybrid scheme are
plotted in Figure 4 together with a solution obtained by
numerical integration of Equation (3) in a single domain
with ∆x/L = 0.01 and∆t/t0 = 2.922×10−5 (referred to
here as the exact solution). The hybrid scheme velocity
profiles are in good agreement with the exact solution.
The number of Schwarz iterations for convergence varies
between 3 and 8 ash/L varies between 0.02 and 0.04,
with larger number of iterations required for smaller
overlaps.

The convergence of the velocity profile at timet/t 0 =
0.11688 to the exact solution as a function of Schwarz
iterations and interpolation scheme is plotted in Fig-
ure 5. The linearly interpolated boundary condition so-
lution converges after approximately 5 Schwarz itera-
tions. The velocity solution using stepwise boundary
condition interpolation (i.e. vII(a, tk) = vI(a, t i+1) for
pi < k ≤ p(i + 1)) also converges but with larger devi-
ation. The use of equal time steps∆t/t0 = 2.922×10−5s
in both subdomains, i.e. where direct boundary condi-
tion imposition is possible between subdomainsI → II
and II → I shows the best performance. This final re-
sult verifies consistency of the unsteady Schwarz cou-
pling when no time step difference between the sub-
domains is exists. While use of equal time steps in
both subdomains results in greater accuracy, this must
be weighed with the benefit of reduced hybrid simula-
tion cost through time step decoupling. Linear interpola-
tion of the boundary condition provides a reasonable bal-
ance between the two constraints in this case. Applica-
tion of unsteady Schwarz coupling to hybrid atomistic–
continuum schemes is demonstrated next.

3 Application to Atomistic–Continuum Systems

We now proceed to apply the unsteady Schwarz method
to atomistic–continuum systems. The atomistic model
in this paper is the direct simulation Monte Carlo
method [Bird (1994)]. The DSMC method is based on
the assumption that a small number of representative
“computational particles” can accurately capture the
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Figure 5 : Convergence of the hybrid continuum–
continuum velocity profile att/t0 = 0.11688as a function
of number of Schwarz iterations and boundary condition
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complete domain.

bulk hydrodynamics of a complete system of gas atoms
or molecules. In DSMC the particle positions and
velocities (r i,vi , i = 1...N) are advanced in time by
a two–step process of advection and collision which
corresponds to a splitting method of solution for the
underlying Boltzmann equation. Particle advection is
ballistic with time step∆t p chosen to be a fraction of
the mean collision time [Hadjiconstantinou (2000)].
Collisions are performed between randomly chosen
particle pairs within small cells of size∆x p [Alexander,
Garcia, and Alder (2000)]. This approach has been
shown to produce correct solutions to the Boltzmann
equation in the limit∆x p, ∆tp → 0 [Wagner (1992)].
Argon gas (atomic massm = 6.63× 10−26kg and hard
sphere diameterσ = 3.66× 10−10m) was used for all
simulations.

3.1 Acceleration Using a Limited Number of Ensem-
bles

In this Section we develop an acceleration scheme that
takes advantage of the time scale decoupling properties
of the Schwarz method to reduce the computational cost
associated with ensemble averaging the atomistic subdo-
main solution. The idea behind this method is that a large
number of ensemble members is only needed for noise
reduction purposes whereas the hydrodynamic behavior
of the system is present inany of the ensemble members
albeit in a noisy form. Thus, since the coupling proce-
dure used here allows for a large gap between sampling
times (sampling is required only when matching occurs,
which can be as infrequent as only once in the calcu-
lation) it is natural to attempt to use a large number of
ensembles only during the sampling phase. This can be
achieved by noting that the decorrelation time between
different calculations is small compared to the hydrody-
namic time scale (especially for large problems). Thus
if a small number of ensemble members are used for the
majority of the time integration and from these systems
a larger amount of systems are generated by perturbation
at a time which allows for decorrelation, a full decorre-
lated sample will exist when required without integrating
this full ensemble through time. In the case of our DSMC
calculation sufficiently perturbed systems can be gener-
ated by simply changing the random number seed while
using the same initial configuration.

In our nomenclature, in the standard non–accelerated
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unsteady Schwarz coupling approachN max
E particle en-

semble members are created and advanced through each
time intervalt n → tn+1. On the other hand, according
to the approach proposed here we split the ensemble
creation within a single time intervalt n → tn+1 into
2 stages, i.e. Nmax

E1 ensemble members for simulation
time tn → tn+δ and Nmax

E2 ensemble members for time
tn+δ → tn+1 such that,

Nmax
E1 (tn+1− tn+δ)/∆tp +Nmax

E2 (tn+δ− tn)/∆tp

< Nmax
E (tn+1− tn)/∆tp (9)

Nmax
E1 < Nmax

E2 (10)

where∆tp is the time step of the atomistic subdomain
simulation and 0< δ< 1. Note thatN max

E2 can equalNmax
E

to allow the same degree of error reduction in the final
solution at timet n+1 as we had in the implementation in
the previous Section.

The computation cost reduction of the unsteady Schwarz
method using limited ensembles in this manner is depen-
dent on the values ofδ andN max

E1 required to maintain ac-
curacy. Results from an initial analysis of the method us-
ing a fully atomistic simulation of an impulsive Couette
flow are shown in Figure 6. For these testsN max

E2 = 2000
and δ is chosen such that(t n+1− tn+δ)/∆tp = (tn+δ−
tn)/∆tp = 500 DSMC time steps. This provides a 26.9τ
decorrelation time before sampling of the atomistic so-
lution. Good comparison is obtained for theN max

E1 = 100
simulation. The reduction in error as a function ofN max

E1 is
further plotted in Figure 7 which shows a slow decay with
Nmax

E1 which indicates that a small number of ensembles
is required to carry the dynamics forward in time, i.e.,
Nmax

E1 should be kept as small as possible. The choice of
parameters for this test using limited ensemble accelera-
tion results in a speed–up of 1.95 over a non–accelerated
fully atomistic unsteady simulation. Clearly, the longer
tn+1− tn the larger the savings sinceδ is associated with
the decorrelation time which does not depend on the sys-
tem size or time of interest. The limited ensemble ap-
proach is incorporated within an unsteady hybrid scheme
applied to an impulsive Couette flow test problem next.
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Property Value
Total domain widthL 4×10−6 m

Wall velocityV0 30 m/s
Kinematic viscosityν 1.1688665×10−5m2/s

Characteristic collision timeτ 1.8559×10−10s
Continuum subdomain widthLc/L 0.9275

Continuum nodes inLc 186
Continuum time step∆tc/τ 0.5388

Atomistic subdomain widthLa/L 0.075
DSMC cells inLa 15

No. of particles in each cell 2000
DSMC time step∆tp 0.05388

No. of ensemblesNmax
E1 100

No. of ensemblesNmax
E2 2000

DSMC time steps per ensemble 500 for bothN max
E1 andNmax

E2
Non–dimensional reservoir region width 0.01

Overlap region widthh/L 0.0025
Schwarz iterations per time step 10

Table 2 : Simulation parameters for the hybrid impulsive Couette flow test problem using accelerated unsteady
Schwarz coupling.

3.2 Impulsive Couette Flow Test Problem

A hybrid atomistic–continuum scheme using unsteady
Schwarz coupling is verified in this section for the
1–dimensional impulsive Couette flow test problem
shown in Figure 3. The subdomainsI andII correspond
to the continuum and atomistic subdomains respectively.
The continuum solution is obtained by solving Equa-
tion (3) for the y–momentum diffusion using the implicit
backward difference scheme detailed in Equation (4).
The atomistic subdomain is solved using DSMC.

The imposition of continuum boundary conditions on the
atomistic subdomain is facilitated by a particle reservoir
extending fromx/L = 0.915 tox/L = 0.925. Particles
are created in the reservoir with a uniform spatial distri-
bution in the x–coordinate direction and a velocity drawn
from a Chapman–Enskog distribution [Garcia and Alder
(1998)]. The mean and gradient of velocity (v,∂v/∂x)
used to generate the Chapman–Enskog distribution is ob-
tained by linear time interpolation according to Equa-
tion (7) followed by linear spatial interpolation between
the continuum nodes. Imposition of the atomistic bound-
ary conditions on the continuum subdomain follows the
use of overlapping continuum nodes and DSMC cell cen-

ters. Direct imposition is possible here as the continuum
time step is chosen to be an integer multiple of the DSMC
time step. Parameters for the unsteady simulation are
listed in Table 2.

Limited ensemble acceleration can be incorporated
within the hybrid scheme with minor modifications.
The ensemble creation loop is split into 2 stages during
advance of the atomistic solution calculated by DSMC;
we utilize two families of particle ensembles that
consist ofNmax

E1 and Nmax
E2 members respectively where

Nmax
E2 > Nmax

E1 . TheNmax
E2 members are created by splitting

off an additional (Nmax
E2 −Nmax

E1 ) members with different
random number seeds at timet n+δ from theNmax

E1 original
ensembles as shown graphically in Figure 8. Ensemble
creation in this manner is repeated forN max

s Schwarz
iterations in the time intervalt n to tn+1. At each Schwarz
iteration, updated boundary conditions are exchanged
between the atomistic and continuum subdomains to
achieve a converged solution at time levelt n+1. At the fi-
nal Schwarz iterationNmax

s , theNmax
E2 ensemble members

are averaged to yield the time levelt n+1 flow solution. A
limited subset of theN max

E2 ensemble members are then
advanced forward as the newNmax

E1 ensemble family for
the next time interval. The velocities of these newN max

E1
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Figure 8 : Graphical illustration of the limited ensemble acceleration approach.

members are initialized to thet n+1 ensemble–averaged
solution. The ensemble creation process is then repeated
for the next time interval.

In this simulation 10 Schwarz iterations are used to cou-
ple the solution at every 53.9τ. While this choice is
driven by the need to provide sufficient decorrelation
time before sampling of theNmax

E2 ensembles, it also high-
lights the versatility of the hybrid Schwarz coupling to
match solutions at arbitrary times.
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The results from the accelerated unsteady hybrid scheme
are shown in Figure 9. Good comparison is obtained
with a fully atomistic solution. The simulation cost of
this scheme is compared to a fully atomistic scheme and
a non–accelerated unsteady Schwarz scheme in Table
3. The use of limited ensemble acceleration has helped
reduce the total simulation cost of the unsteady hybrid
scheme to a total of more than a factor of 2 despite the
fact that the parameter choices forδ andNmax

E1 have not
been optimized in any way. Of course hybrid methods
are capable of significantly larger speed–ups. The rea-
son for the modest speed–up observed here is two fold.
First, the problem is one–dimensional. Second, the prob-
lem was chosen small enough such that a fully atomistic
solution would be feasible for comparison purposes. For
problems of practical interest we expect the volume of
the continuum region to be larger thus leading to sig-
nificantly larger savings. Larger continuum domain vol-
umes may result from larger systems or simply higher di-
mensionality. The importance of dimensionality can be
demonstrated by considering that the speed–up in a two–
dimensional problem of the same approximate linear di-
mensions as the above test problem would be ofO(20);
for a three–dimensional problem it would be ofO(200).
These savings are possible since the number of iterations
to convergence for the Schwarz method is insensitive to
the dimensionality of the problem. Larger linear system
dimensions bring additional savings because the decorre-
lation timescale becomes a smaller fraction of the char-
acteristic system timescale.
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Property Atomistic Hybrid Hybrid (accelerated)
Atomistic subdomain widthLa 4.00µm 0.3µm 0.3µm

EnsemblesNmax
E 2000 2000 Nmax

E1 = 100,Nmax
E2 = 2000

DSMC time stepsNmax
m1 1000 1000 500 for bothN max

E1 andNmax
E2

Schwarz iterationsNmax
s 0 10 10

Cost (La ×Nmax
m1 ×Nmax

E ×Ns) 8×106 6×106 3.15×106

Speed–up - 1.33 2.54

Table 3 : Comparison of simulation cost.

4 Conclusions

In general, large savings can be achieved by hybrid meth-
ods in more than one dimension where the volume of
the continuum subdomain grows fast with the linear di-
mensions of the problem [Aktas and Aluru (2002)]. In
this paper the Schwarz alternating method for hybrid
atomistic–continuum coupling has been extended to cou-
ple unsteady incompressible flows. Tests for an impul-
sively driven Couette flow highlight the versatility of this
coupling approach to advance solutions implicitly in time
by exchanging Dirichlet boundary conditions at arbitrary
times. A technique which uses limited ensemble averag-
ing of the atomistic solution has also been developed to
realize computational savings over a standard ensemble
process while maintaining the same variance reduction.
Since a large number of ensembles need only be run for
a small fraction of the calculation using this approach,
large savings can be achieved in cases of practical inter-
est where the global time scales of evolution will be long
compared to the atomistic collision (decorrelation) time.
Note that if the timescale between solutions is not signifi-
cantly longer than the decorrelation timescale, an explicit
coupling method, again based on the incompressible for-
mulation may be preferrable. The current method isesti-
mated to beO(10) times faster than a time explicit cou-
pling technique based on the compressible formulation
for the particular test problem solved here. This estimate
does not include the savings from using a simple incom-
pressible solver in the continuum subdomain compared
to a compressible formulation which would be limited
by CFL time step considerations. In the future we plan to
investigate the relation between the cost of flux and state
property averaging in liquids. As shown in this paper
this relation has a large bearing on the type of coupling
algorithm used.
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