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Prediction of Dendritic Parameters and Macro Hardness Variation in Permanent
Mould Casting of Al-12%Si Alloys Using Artificial Neural Networks
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Abstract: Aluminium-Silicon alloys are in high de-
mand as an engineering material for automotive,
aerospace and other engineering applications. Mechan-
ical properties of Al-Si alloys depend not only on chem-
ical composition but also more importantly on micro
structural features such as dendritic alpha-aluminium
phase and eutectic silicon particles. As an additive to
Al-Si alloys, sodium improves mechanical properties by
forming finer and fewer needles like microstructures.
Thus, prediction of the macro and microstructures ob-
tained at the end of the solidification is of great inter-
est for the manufacturer of aluminium alloys. Neural
networks are sophisticated non-linear regression routines
that, when properly “trained”, allow for the identification
of complex relationships between a series of inputs and
one or more outputs. In this paper, an approach using ar-
tificial neural networks for predicting alpha- aluminium
dendritic parameters (fraction and secondary dendritic
arm spacing) and macro hardness variation (Brinell hard-
ness number) of permanent mould casting of Al-12%Si
alloy is described. This approach has the advantage that
complex interactions among cooling rate, solidification
velocity and chill position on the amount of dendritic al-
pha Aluminium phase within a fixed modifier content al-
loy can easily be taken into account.

keyword: Dendritic parameters, BHN, Permanent
Mold Casting, ANN.

1 Introduction

Aluminium-Silicon alloys are in high demand as an en-
gineering material for automotive, aerospace and other
engineering applications. Mechanical properties of Al-
Si alloys depend not only on chemical composition but
also more importantly on micro structural features such
as dendritic alpha-aluminium phase and eutectic silicon
particles. As an additive to Al-Si alloys, modifiers like
strontium and sodium improve mechanical properties by
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forming finer and fewer needles like microstructures. Mi-
crostructures are the strategic link between materials pro-
cessing and materials behavior. Microstructure control is
therefore essential for any processing activity. Thus, pre-
diction of the macro and microstructures obtained at the
end of the solidification is of great interest for the manu-
facturer of aluminium alloys.

During the last 40 years, major advances have been made
towards an increased understanding of the effects of heat
and mass transfer on the microstructure evolution. Re-
cent mathematical and computational advances for the
analysis of fluid flow and heat transfer during the cast-
ing process have fashioned a number of researches fo-
cusing on several aspects of modeling and simulation of
solidification microstructures. Hence, deterministic and
stochastic approaches are available for predicting cast
microstructure and thus to estimate mechanical proper-
ties of the cast component. The deterministic approach
takes nucleation and growth into account while solving
energy and solute conservation equations in the casting-
mold domain. These macro-micro models usually yield
information on grain size and dendrite arm spacings at
different locations within the casting. These models
use a variety of computer modeling strategies like Fi-
nite Element Method (FEM), Boundary Element Method
(BEM), Finite Difference Method (FDM), Control Vol-
ume Method (CVM) and their coupled algorithms to de-
termine the desired combination of thermal parameters (a
quality of index or criteria functions).

With the advent of powerful computers, with the in-
creased knowledge gained from experimental observa-
tions, with the advent of new numerical techniques
(phase field, cellular automata, granular methods, etc.)
and with the development of new approaches (hot tear-
ing, two phase method, etc.), modeling of solidification
processes at the macroscopic scale has become a stan-
dard practice in industry, in particular in continuous cast-
ing processes. Indeed, commercial software packages are
available for the modeling of heat and fluid flow, as well
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as for stress-strain calculations and to deal with common
defects like macro segregation. Modeling of macro seg-
regation is still a critical issue as it can have different ori-
gins: convection, solidification shrinkage, grain move-
ment/sedimentation, deformation of the mushy zone. Re-
cently, significant studies have been made in model-
ing microstructure & microporosity formation [Rappaz
(2004)] and to find the impact of different convective ef-
fects like inlet flow, thermal and solutal buoyancy flow
on the formation of macro segregations [Ludwig et al.
(2005)]. As an example, Ludwig et al. (2005) have
stated that a higher permeability increases the possibility
of fluid movement in the mushy zone which goes hand
in hand with more pronounced macrosegregations in the
casting.

Along these lines, the reader may also consider the re-
cent review by Lappa (2005) where a variety of convec-
tive effects potential affecting the microstructure of an
alloy were considered together with a critical discussion
of possible related numerical approaches. In general, the
mechanical behaviors of castings are dependent on var-
ious factors such as the grain size, secondary dendritic
arm spacing, alloy composition, which in turn depend on
aspect ratio, solidification rate, cooling rate, volume to
surface area ratio (V/A) etc. From solidification analyses
carried out using advanced commercial codes like FLU-
ENT, ProCAST CalcoSOFT and MagmaSoft, it has been
understood that velocity, pressure and temperature fields
across casting and mould domain can critically influence
the structure formation, grain orientation and grain size
(usually quantified in terms of dendritic arm spacings).

Unfortunately, the aforementioned mathematical ap-
proaches and models are often limited in their ability to
account for the effects of these variables because of the
restrictive and at times incorrect assumptions.

Since, as illustrated before, the effect of heat and mass
transfer on the formation of dendritic arm spacing is very
a complex phenomenon and existing numerical tech-
niques are often inadequate, this study introduces a new
simulation strategy (artificial neural networks (ANN))
largely based on experimental data.

Artificial Neural networks are sophisticated non-linear
regression routines that, when properly “trained”, allow
for the identification of complex relationships between a
series of inputs and one or more outputs. Because of this
ability to learn and generalize interactions among many
variables, ANN technology has potential in modeling the

material behavior and especially for nonlinear model-
ing applications. In this work, an approach using artifi-
cial neural networks for predicting properties of dendritic
alpha-Aluminium (fraction and secondary dendritic arm
spacing) and macro hardness variation (Brinell hardness
number) of permanent mould casting of Al-12%Si alloy
is described. This approach has the advantage that com-
plex interactions among cooling rate, solidification ve-
locity and chill position on the amount of dendritic alpha
aluminium phase within a fixed modifier content alloy
can easily be taken into account. In order to obtain train-
ing pairs for ANN simulation studies, experiments were
conducted.

2 Experimental studies

Aluminium alloys with silicon as a major alloying el-
ement, represent a class of alloys, which provides the
most significant part of all shaped castings manufactured.
This is mainly due to the outstanding effect of silicon in
the improvement of casting characteristics. An optimum
range of silicon content can be assigned to casting pro-
cesses. For slow cooling rate processes (sand, plaster, in-
vestment) the range is 5–7 wt.%, for permanent moulds
7–11.5 wt.% and for die-castings more than 12 wt.%
[Peres, Asiqueira and Goncia (2004)]. The columnar
growth was observed to prevail throughout the casting for
cooling rates higher than a critical value, which is depen-
dent on the alloy system. It is well established that un-
der most conditions of solidification, the dendritic mor-
phology is the dominant characteristic of the microstruc-
ture of off-eutectic alloys. Fine dendritic microstructures
in castings, characterized by the dendrite arm spacing,
are recognized to yield superior mechanical properties to
coarser ones, particularly when considering the tensile
strength and ductility. The improvement in mechanical
properties are generally attributed through the variations
of the morphology and size of the eutectic silicon phase
particles .It is worth noting, however, that at the same
time when eutectic silicon particles changes from acicu-
lar to fiber, the amount, morphology and size of dendritic
α-Al phase are varying too. The contribution of these
to the improvement of the mechanical properties has not
been paid more attention.

Much research has been devoted to the definition of the
factors affecting microstructures and the fineness of the
dendritic structures [Chen and Wu (2003), Ai and Xu
(2003)]. It is well known that grain refining is benefi-
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cial to mechanical properties. However, no final con-
clusion has yet been reached on whether the transition
of dendritic α-Al phase from longer column morphol-
ogy to a fine equated one results in improved mechani-
cal properties in near eutectic Aluminium silicon alloy.
From the point of view of microstructure control, it is
necessary to investigate the correlation between mechan-
ical properties and dendritic α in near eutectic Al-Si al-
loy. The main theme of present study is to evaluate the
effect of cooling rate, solidification velocity, size and
shape of sodium modified aluminium silicon alloy on
secondary dendritic arm spacing, dendritic fraction and
Brinell hardness value and to simulate these variables us-
ing neural networks. Methodology for present investiga-
tion is explained with a flow process diagram shown in
Fig. 1.
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Figure 1 : Flow process diagram for experimental and
simulation studies.

Directional solidification of commercially available LM6
(Al-12%Si) alloy modified with 0.015 % sodium is per-
formed with cylindrical dies. The cooling direction is
made opposite to the direction of gravitational force by
using an appropriate die with insulated lateral surfaces
and water circulating jacket at its bottom face. Temper-
ature history for a fixed time interval is recorded using a
data acquisition system (Agilent Bench Link Data Log-
ger) with thermocouples (K-type) placed at different lo-

cations in the die. Cooling curves thus obtained are used
to evaluate cooling rate and growth rate. Metallurgical
specimens for different locations of solidified casting are
prepared and micrographs are obtained using scanning
electron microscope. Micrographs obtained from opti-
cal microscopic studies are processed using MATLAB to
find out fraction of α-Al phase solidified. Data obtained
from the above analysis are used to train a feed forward
back propagation artificial neural network in which train-
ing input variables are cooling rate, solidification veloc-
ity & position from chill and output values are dendritic
alpha-aluminium fraction, secondary dendritic arm spac-
ing & Brinell hardness number.

2.1 Generation and Collection of Experimental Data

The results of experimental thermal analysis have been
used to determine the velocity of the liquidus isotherm
and the cooling rate. The dendritic morphology is de-
pendent on solidification thermal parameters such as the
liquidus isotherm velocity and cooling rate, all of which
vary with time and position during solidification. It
would be difficult to measure accurately these parameters
at each desired positions using thermocouples. In order
to determine parameters more accurately, the raw data
are fitted numerically in order to provide interpolations
that are more accurate. The thermocouples readings have
been used to generate a plot of position from the solid
liquid metal interface as a function of time correspond-
ing to the liquidus front passing by each thermocouple.
A curve fitting technique on these experimental points
has generated a power function of positions a function of
time. The derivative of this function with respect to time
has yielded values for tip growth rate or solidification ve-
locity. The cooling rate was determined by considering
the thermal data recorded immediately after the passing
of the liquidus front by each thermocouple.

The dendrite arm spacings were sufficiently distinct to
make reasonably accurate measurements along the cast-
ing length. Fig.2. shows RGB image and binary image of
micrographs used to find out alpha dendritic aluminium
fraction and secondary dendritic arm spacing with MAT-
LAB image processing technique.

The RGB Micrograph is converted to grey scale and after
adjusting the intensity uniformly, a binary image is cre-
ated from grey scale image. Now binary matrix can be
obtained and secondary dendritic arm spacing is evalu-
ated using Euclidian distance method by considering the
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(a) (b)

Figure 2 : (a) Micrograph (RGB image) obtained using
optical microscope. (b) Binary image of micrograph after
image processing.

pixels of known coordinates, at the centers of a dendritic
arms. Counting the number of ones ( f ) in the binary im-
age matrix and total number of ones and zeros (µ) the
matrix, the dendritic fraction is given by f /µ. After the
microscopic studies, metallurgical specimens of different
locations in solidified casting were used for macro hard-
ness (BHN) evaluation. Data collected from a set of ex-
perimental studies for ANN simulation studies is shown
in Appendix -A.

3 ANN simulation studies

Over the last few decades, important advances have
been made in our fundamental understanding of artifi-
cial neural networks and its application in various fields
of science and engineering [Zurada (1997), Kartalopou-
los (2000), Uhrig (2003), and Haykin (2004)]. Artificial
neural networks (ANN) have been widely used for many
areas, such as control, data compression, forecasting, op-
timization, pattern recognition, classification, speech, vi-
sion, etc. The use of the ANN for modeling and pre-
diction purposes is increasingly becoming popular in the
last decades [Victorbabu, Joseph and Sudarsan (2005),
Zupan (1994), Cherian, Smith and Midha (2000)]. ANN
has been trained to overcome the limitations of the con-
ventional approaches to solve complex problems that are
difficult to model analytically.

3.1 The ANN Model

The following matters are important in the design and
training of neural networks: (i) architecture of the neural
network; (ii) training algorithm; and (iii) transfer func-
tion. The term “architecture of the neural network” refers
to the number of the layers in the neural network and the

number of the neurons in each layer [Chester (1990), Vil-
liers and Barnard (1992)]. The structure of ANN model
used for the present work is shown in Fig. 3.This multi
layer feed forward network consist of four layers. One
input layer two hidden layers and one output layer. Input
layer has three neurons and the two successive hidden
layers have three and eight neurons respectively. Out-
put from the networks is given by three neurons each
give secondary dendritic arm spacing, dendritic fraction
and Brinell hardness values respectively. Considering the
input neurons as inactive, active layers of neurons are
named as input layer, hidden layer and output layer. The
input layer and the output layer are determined by the
numbers of input and output parameters respectively. In
order to find the optimal architecture, the number of neu-
rons and hidden layers are selected on the basis of trial
and error method.

There are many different training algorithms. In order
to achieve the best result, different training algorithms
were developed by various researchers [Math Works Inc.
(2002)], which includes Batch Gradient Descent, Batch
Gradient Descent with Momentum, One-step-secant,
Scaled Conjugate Gradient, Resilient Back propagation,
Polak-Ribiere Conjugate Gradient, Fletcher-Powell Con-
jugate Gradient, Powell-Beale Conjugate Gradient, Vari-
able Learning Rate and Levenberg–Marquardt. From
which the Levenberg–Marquardt training algorithm is
used in this study. The transfer function transforms the
neuron input value into the output value. For this sim-
ulation studies, neural network linear transfer function
was used in the output layers. In the input layer and
hidden layer tangent sigmoidal transfer function was em-
ployed. Network configuration for training Levenberg-
Marquardt algorithm is furnished in Tab.1.

3.2 Levenberg Marquardt Algorithm

There are essentially two types of ANN learning models-
supervised learning and unsupervised learning. With su-
pervised one, input is presented to the network along
with the desired output and the weights are adjusted so
that the network attempts to produce the desired output.
The weights, after training, contain meaningful informa-
tion whereas before training they are random and have
no meaning. Neural networks that do not rely on the use
of target data are trained using unsupervised learning. As
mentioned earlier, there are different learning algorithms.
A popular algorithm is the back-propagation algorithm,
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Figure 3 : Architecture of the artificial neural network model used in the present study.

1 Type of architecture Multi layer feed forward 

2 No of hidden layers 2 

3 No of  Neurons 17     (3-3-8-3)

4 Training Function Levenberg  Marquardt  

5 Activation Function Tan -sigmoidal and linear 

6 No of training sets 10 

7 No of Testing sets 5 

8 Maximum Epochs 1395 

9 Error Goal 0.0000001 

Table 1 : Network configuration for training Levenberg-
Marquardt Algorithm.

which have different variants. Back-propagation training
algorithms gradient descent and gradient descent with
momentum are often too slow for practical problems be-
cause they require small learning rates for stable learning.
In addition, success in the algorithms depends on the user
dependent parameters such as learning rate and momen-
tum. Several high performance algorithms that can con-
verge from ten to one hundred times faster than above al-
gorithms were developed. These algorithms use heuristic
or standard numerical optimization techniques. Faster al-
gorithms such as conjugate gradient, quasi-Newton, and
Levenberg–Marquardt use standard numerical optimiza-
tion techniques.

A mathematical description of the LM neural network-
training algorithm was presented by Hagan and Menhaj
[Hagan and Menhaj (1994)]. The LM algorithm was
originally designed and to serve as an intermediate op-
timization algorithm between the Gauss–Newton (GN)

method and gradient descent algorithm, and address the
limitations of each of those techniques. The GN algo-
rithm has quadratic convergence properties that make it
very fast. However, the convergence of this method de-
pends, highly, on the choice of the initial weight values.
Since, in real-world problems, the prediction of an ap-
propriate set of initial values is not always possible, the
GN method is impractical for many applications. Un-
like the GN algorithm, the performance of the gradient
descent algorithm is less dependent on the initial choice
of weights. However, since the gradient-descent an al-
gorithm approach the minimum in a linear manner, its
speed of convergence is normally low and, thus, does not
always possess adequate convergence properties.

The LM algorithm, which combines the positive at-
tributes of GN and gradient descent algorithms, is suit-
able for many real-world applications [Bulsari and Saxen
(1992)]. The LM algorithm possesses quadratic conver-
gence (approximates the GN method) when it is in the
vicinity of (but not too close to) a minimum. LM uses
gradient descent to improve on an initial guess for its
parameters and transforms to the GN method as it ap-
proaches the minimum value of the cost function. Once
it approaches the minimum, it transforms back to the gra-
dient descent algorithm to improve the accuracy. Since
its creation, researchers have used the LM algorithm for
curve fitting. Due to its desirable convergence capabili-
ties, in many optimization applications, the LM method
is usually preferred over many other optimization tech-
niques.

4 Results and Discussions

Temperature history for a fixed time interval of 0.01 sec-
onds is recorded using a data acquisition system (Agilent
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Bench Link Data Logger) with K-type thermocouples
(measuring range of 300-1000 degree centigrade) placed
at 10 different locations in the die. Cooling curves thus
obtained at these locations are used to evaluate cooling
rate and growth rate. Logarithmic relationship was es-
tablished between cooling rate (dT/dt) and position (x)
as well as between position (x) and time (t) as shown in
equation (1) and (2). Metallurgical specimens for differ-
ent locations of solidified casting are prepared and mi-
crographs are obtained using scanning electron micro-
scope. Micrographs obtained from optical microscopic
studies are processed using MATLAB to find out frac-
tion of α-Al phase solidified and secondary dendritic arm
spacings (SDAS). The average value of dendritic frac-
tion and SDAS obtained are 0.31 and 0.139 respectively.
For each specimen Brinell Hardness Number (BHN) was
evaluated. BHN ranging from 29 to 42 varied accord-
ing to the solidification velocity along the vertical axis of
castings. Data obtained from image processing analysis
are used to train a feed forward back propagation artifi-
cial neural network in which training input variables are
cooling rate, solidification velocity & position from chill
and output values are dendritic alpha-aluminium frac-
tion, secondary dendritic arm spacing & Brinell hardness
number.

log(dT/dt) = −0.26log(x)+0.65 (1)

log(x) = 2.2log(t)−0.33 (2)

Multi layer feed forward neural network with Levenberg
Marquardt learning algorithm was developed for predict-
ing α-Al dendritic parameters and macro hardness vari-
ations in casting. Neural network toolbox available in
MATLAB was used to construct afore mentioned model.
A MATLAB script was written which loaded the data
file, trained and validated the networks and saved the
model architecture and performance in a file ready for
use in Microsoft Excel. A major portion of the data set
obtained through experimentation was used for training
the network and the rest was utilized for validation of the
model. From the fifteen data set shown in table 1, five
were selected randomly for test purpose. The neural net-
work model was tested by: (i) linear regression between
NN predictions and new experimental data; (ii) statistical
analysis of the error of NN predictions; and (iii) direct
comparison of NN predicted and experimental data.

Learning or training involves modifying the connection
weights until the network is capable of reproducing the
target output within some specified error margin. The
connection weights are adjusted such that a mean squared
error is minimized. This is done by continually changing
the values of the weights in the direction of the steepest
descent with respect to the error. Training takes place in
an iterative fashion. Each iteration cycle involves a for-
ward step followed by a back-propagation step to update
the connection weights. Bias values, which controls the
activation function while learning process and helps neu-
rons to be flexible and adaptable. Hence final bias plots
for three layers are shown in Fig. 4.

Fig. 5 & Fig. 6 show the comparison between experi-
mental and ANN predicted results with present network
model. From the above comparative study, overlapping
of data points indicated a very good performance of the
model used. Also, it can be observed that Brinell hard-
ness number has a direct relation with solidification ve-
locity and secondary dendritic arm spacing has an in-
verse relation with solidification velocity. Inference can
be made that, Brinell hardness values have an inverse re-
lation with secondary dendritic arm spacing and direct
relation with dendritic fraction.

Absolute error v/s sample number (Fig. 7.) also indi-
cates the efficiency of the model, which can be used for
further simulations and predictions of different correla-
tions and phenomena during Aluminium –Silicon alloy
casting process.

5 Conclusions

From neural networks simulation studies using experi-
mental data, it was observed that secondary dendritic arm
spacing has inverse relation with cooling rate and solidi-
fication velocity. Also, Brinell hardness values indicated
an inverse relation with secondary dendritic arm spac-
ing and direct relation with dendritic fraction. ANN pre-
dicted results were found to be in good agreement with
experimental data. Hence, the ANN approach used in
this study is appropriate to predict the α-Al dendritic pa-
rameters and Brinell hardness variation across the cast-
ing length with available input data like solidification ve-
locity, cooling rate and position from the chill. Thus,
ANN can be used as a good tool for microstructure and
mechanical property simulation, which can be employed
successfully by using the MATLAB Neural Network
Toolbox. In this work, one-dimensional solidification
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Figure 4 : Bias plot of ANN model: (a) Input layer (b) Hidden Layer (c) Output Layer.
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Figure 5 : Variation of Brinell hardness number with solidification velocity for experimental and ANN simulation
study.
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Figure 6 : Variation of secondary dendritic arm spacing with solidification velocity for experimental and ANN
simulation study.

with, only a few parameters affecting the microstructure
were considered. Thus, simulation studies may be ex-
tended to predict the influence of other parameters such
as composition, casting modulus (V/A ratios) and other

thermo-mechanical properties.
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Appendix A: A set of Training Data Obtained From
Experimental Studies.

Sl.No. 
Position 

cm

Solidification 
velocity 
(cm/sec) 

Cooling 
rate 

(cm/sec) 

Dendritic 
fraction 

Dendritic 
arm spacing 

(mm) 

Brinell 
hardness 

(250kg Ball) 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1.3000 

2.6000 

3.9000 

5.2000 

6.5000 

7.8000 

9.1000 

10.4000 

11.7000 

13.0000 

14.3000 

15.6000 

16.9000 

18.2000 

19.5000 

53.8564 

41.7599 

35.9860 

32.3803 

29.8343 

27.9033 

26.3686 

25.1075 

24.0453 

23.1333 

22.3381 

21.6360 

21.0097 

20.4460 

19.9348 

4.1099 

3.4321 

3.0887 

2.8661 

2.7046 

2.5793 

2.4780 

2.3934 

2.3213 

2.2585 

2.2033 

2.1540 

2.1096 

2.0694 

2.0326 

0.2890 

0.3050 

0.3160 

0.3200 

0.3170 

0.2970 

0.3010 

0.3140 

0.3450 

0.3390 

0.3220 

0.3030 

0.3090 

0.3270 

0.3370 

0.1140 

0.1088 

0.1255 

0.1241 

0.1081 

0.1100 

0.1249 

0.1180 

0.1384 

0.1613 

0.1365 

0.1384 

0.1723 

0.1724 

0.1557 

36.8748 

40.9078 

39.5230 

41.7037 

38.6967 

37.6293 

39.0576 

37.1085 

35.3389 

37.7947 

38.4227 

29.9594 

32.7234 

31.1962 

32.6801 


