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Heat and Mass Transfer of a Non-Newtonian Fluid Flow in an 
Anisotropic Porous Channel with Chemical Surface Reaction 
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Abstract: A numerical study of heat and mass transfer in a non-Newtonian fluid in a 
parallel-plate channel partly filled with an anisotropic porous medium and subjected to an 
exothermic chemical reaction on its walls has been conducted. The flow field in the 
porous region has been modeled by the modified Brinkman-Forchheimer extended Darcy 
model for power-law fluids and a finite volume method has been used to solve the 
governing equations. The influence played by a variation of the anisotropic ratio on 
thermal conductivity, power-law index, Darcy number, and chemical reaction 
characteristics has been examined. We show that the anisotropy of a porous medium can 
lead to significant improvements in terms of heat and mass transfer with respect to the 
isotropic case. The shear-thickening fluids exhibit the highest values of mean Nusselt and 
Sherwood numbers at large Darcy number. Finally, we show that an increase in the 
chemical reaction parameters leads to a reduction of the heat and mass transfer rates. 

Keywords: Heat and mass transfer, non-Newtonian fluid, anisotropic porous medium, 
chemical reaction. 

Nomenclature 

c Concentration (mol.m-3) 
C  Inertial coefficient 
C* Modified inertial coefficient                                                                                                                      
Cp Specific heat at constant pressure (J.kg-1. K-1) 
D Mass diffusivity (m2. s-1)  
Da Darcy number 
Dm Modified Damköhler number  
ep Porous medium thickness (m) 
E Activation energy (J.mol-1) 
FKm Modified Frank- Kamenetskii number  
H Channel width (m) 
k Thermal conductivity (W.m-1. K-1) 
k0 Pre-exponential factor of Arrhenius (s-1) 
K  Intrinsic permeability of the porous medium (m2) 
K* Modified permeability of the porous medium (mn+1) 
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ℓ Channel length (m) 
Le Lewis number 
n Power-law index 
Nu Nusselt number  
p Pression (Pa) 
Pr Prandtl number  
Q Heat of reaction (J.mol-1) 
R Universal gas constant (J.mol-1. K-1) 
Re Reynolds number 
Rk Thermal conductivity ratio 
Rµ Viscosity ratio 

 Sh Sherwood number 
T Temperature (K) 
u Axial velocity (m.s-1) 
v Transverse velocity (m.s-1) 
x Axial coordinate (m) 
y Transverse coordinate (m) 

Greek symbols 

γ Activation energy parameter 
ε Porosity 
η Apparent viscosity (Pa.s) 
θ Dimensionless temperature 
λ Anisotropic thermal conductivity ratio 
µ∗ Consistency factor (Pa.sn) 
ρ Density (kg.m-3) 
τ Shear stress (Pa) 

Subscripts 

e Effective 
i Inlet 
m Mean 
w Wall 

1 Introduction 
In most of the work carried out over the past years, the porous medium was considered 
to be homogeneous and isotropic, but in many practical applications these materials are 
anisotropic in their mechanical and thermal properties. Anisotropy, which is generally a 
result of preferential orientation of the grains or fibers, is encountered in many natural 
and industrial systems such as fibrous materials, sedimentary soils, rock formation, 
drying of food grains, rod bundles in a nuclear reactor core, thermal insulation, heat 
exchanger tubes, etc. Chang et al. [Chang and Hsiao (1993); Jingzhou and Ranqia 
(1996)] by studying the problem of natural convection in enclosures filled with 
anisotropic porous media, found that permeability and thermal conductivity ratios have 
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opposing effects on the heat transfer rate. Using a semi-implicit procedure and the 
Galerkin finite element method, Nithiarasu et al. [Nithiarasu, Sujatha, Ravindran et al. 
(2000)] examined the effect of a hydrodynamically and thermally anisotropic porous 
medium on non-Darcy natural convection. Govender [Govender (2006)] investigated 
analytically the problem of natural convection in a rotating anisotropic porous layer. He 
found that the convection is stabilized when the thermal anisotropy ratio, which depends 
on both thermal and mechanical anisotropy parameters, increases. The influence of 
viscous dissipation on forced convection heat transfer in an anisotropic porous channel 
with oblique principal axes was analyzed analytically by Mobedi et al. [Mobedi, Cekmer 
and Pop (2010)]. A directional permeability parameter A* was introduced to combine 
both the effect of the permeability ratio and angle orientation. Simulation of two-phase 
flows in anisotropic porous media was conducted by Negara et al. [Negara, Salama and 
Sun (2015)] using multipoint flux approximation.  
In several industries which contain porous media, the fluids involved may exhibit non-
Newtonian flow behavior. Examples of engineering applications are enhanced oil 
recovery, food technology, materials processing, filtration processing, packed bed 
reactors, geothermal engineering, insulation system, and many others. Thus, a growing 
number of researchers have been attracted by this topic. An analysis of non-Darcy forced 
convection in a parallel-plate channel filled with a porous medium saturated by a non-
Newtonian inelastic fluid was investigated by Nakayama et al. [Nakayama and Shenoy 
(1993)] in order to obtain an explicit formula for the fully developed Nusselt number. 
Chen et al. [Chen and Hadim (1998)] performed a numerical study of forced convection 
flow in a porous channel saturated by a power-law fluid. In the non-Darcy regime, they 
obtained an augmentation of heat transfer rate and a reduction of pressure drop with the 
decrease of the power-law index. The impact of macroscopic inertial term on transient 
flow of a non-Newtonian fluid in parallel-plate channels completely filled with porous 
medium was considered by Al-Nimr et al. [Al-Nimr and Aldoss (2004)]. Nebbali et al. 
[Nebbali and Bouhadef (2006)] analyzed numerically the forced convective flow of a 
power-law fluid in a 3D square duct partially filled with a porous medium. It was 
demonstrated that shear-thickening fluids exhibit the highest rates of heat transfer and 
pressure drop. A gray lattice Boltzmann model was used by Chen et al. [Chen, Cao and 
Zhu (2009)] to study the flow of a power-law fluid through a parallel plate channel partly 
filled with a porous substrate. The results show that the slip velocity at porous interface 
increases with power-law index and porosity of the porous media. Chen et al. [Chen and 
Tso (2011)] considered the forced convective heat transfer in a channel embedded in a 
power-law fluid saturated porous medium and made comparisons with Newtonian fluid 
concerning the effects of viscous dissipation for various values of Darcy number. 
Alsabery et al. [Alsabery, Chamkha, Hussain et al. (2015)] used the heatline technique to 
visualize the natural convection in an inclined trapezoidal cavity partly filled with a 
nanofluid porous layer and partly with a non-Newtonian fluid. 
Considerable attention has also been given to the topic of simultaneous heat and mass 
transfer in reactive porous media due to their wide applications in nature and engineering 
practice such as catalytic and nuclear reactors, geothermal and petroleum reservoirs, oil 
delivery and so on. In these processes the chemical reaction may either occur uniformly 
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throughout a given phase (homogeneous reaction) or in a restricted region (boundary) of 
the phase (heterogeneous reaction). Minto et al. [Minto, Ingham and Pop (1998)] 
considered a theoretical analysis of steady free convection along a vertical surface 
embedded in a fluid-saturated porous medium, where the flow is driven by a catalytic 
surface heating. Li et al. [Li, Wu, Tian et al. (2007)] developed a non-thermal equilibrium 
model to study the coupled heat and mass transfer in a porous medium undergoing a 
strong endothermic chemical reaction. The onset of convection in a horizontal porous 
layer with an exothermic surface reaction, described by the Arrhenius kinetics, on lower 
wall has been considered by Postelnicu [Postelnicu (2009)]. Bousri et al. [Bousri, 
Bouhadef, Langlat et al. (2011)] carried out a numerical analysis of coupled heat and 
mass transfer in a cylindrical duct filled with a reactive porous medium by considering 
the existence of a non thermal equilibrium between the solid and fluid phases. In their 
paper, Matin et al. [Matin and Pop (2013)] presented an exact solution for the problem of 
fully developed forced convection in a porous channel filled with a nanofluid and 
subjected to constant heat flux and first order catalytic reaction on the walls. An 
analytical solution has been obtained by Moshizi [Moshizi (2015)] for convective heat 
and mass transfer characteristics of Cu-water nanofluid inside a porous microchannel in 
the presence of a uniform magnetic field and chemical reaction on the walls. Recently, 
Amini et al. [Amini, Kafrudi, Habibi et al. (2017)] used a magnetite nanofluid (Fe3O4-
water) in a stagnation flow influenced by chemical reaction and magnetic field. 
The aim of this paper is to simulate heat and mass transfer of non-Newtonian power-law 
fluid flow in a channel partly filled with an anisotropic porous medium when an 
exothermic and non-isothermal chemical reaction, governed by Arrhenius kinetics, takes 
place on its walls. A parametric study is conducted to examine the effects of the 
anisotropic thermal conductivity ratio, power-law index, Darcy number, as well as the 
characteristics of chemical reaction.  

2 Mathematical formulation 
The physical model, shown in Fig. 1, consists of a two-dimensional parallel-plate channel 
partly filled with an anisotropic porous medium of thickness ep and porosity ε. The non-
Newtonian fluid enters the channel with a constant velocity Ui and uniform temperatute 
Ti and species concentration Ci. An exothermic surface reaction is taking place on the 
walls, and can be represented by a single first-order, non-isothermal and one-step reaction 
governed by Arrhenius kinetics. 
The forced convection flow is assumed to be steady, two-dimensional, laminar and 
incompressible with no heat generation and neglecting viscous dissipation. The 
thermophysical properties of the fluid are assumed to be constant except for the viscosity 
of the power-law fluid which depends on the shear rate. The porous medium is 
considered homogeneous, anisotropic in thermal conductivity and saturated with single 
phase non-Newtonian fluid which is in local equilibrium with the solid matrix. 
The fluid flow in the porous medium is described by the modofied Brinkman-
Forchheimer extended Darcy model for power-law fluids to incorporate the viscous and 
inertia effects as reported by Shenoy [Shenoy (1994)]. The continuity, momentum, 
energy and concentration governing equations are written as follows: 
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Figure 1: Physical domain 
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 , K* the modified permeability of the power-law fluid, kex and key 
the effective thermal conductivity of the porous medium in the axial direction and 
transverse direction respectively and De=εD. 
The components of the shear stress tensor are: 
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For a power-law fluid, the expression of the apparent viscosity is given by: 
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where µ* is the consistency factor of the power-law fluid. In the non porous region: ε = 1, 
ke=k, De=D, K→ ∞, and K*→ ∞. 
The associated boundary conditions are: 
x=0: u=Ui, v=0, T=Ti, c=Ci                                                                                              (8) 
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At porous-fluid interface: continuity of pressure, velocity components, stresses, temperature, 
concentration and heat and mass fluxes. To ensure these conditions, the harmonic mean 
formulation suggested by Patankar [Patankar (1980)] is used to handle the abrupt changes 
in the thermophysical properties between clear fluid and porous media.  
Using the dimensionless quantities: 
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the governing Eqs. (1-5) and boundary conditions (8-11) become: 
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The dimensionless parameters appearing in the governing equations and boundary 
conditions are defined as follows: 
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The local Nusselt and Sherwood numbers along the upper wall of the channel are 
evaluated as:  
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Where the mean temperature θm and mean concentration Cm are calculated as follows:  
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The average Nusselt and Sherwood numbers are defined as:  
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3 Numerical procedure 
The finite volume method is used to solve the governing equations using a pressure-
velocity formulation. A staggered grid is considered such that velocity components are 
located at the control volume faces, whereas pressure, temperature and concentration are 
located at the centers as suggested by Patankar [Patankar (1980)]. The power law scheme 
is employed in the discretizing procedure to treat the convection and diffusion terms. In 
the momentum equations, the source terms related to the porous medium was linearized 
as suggested by Patankar [Patankar (1980)]. For the terms associated to the non-
Newtonien behavior of the fluid, first order forward difference and second order central 
finite difference were used. The obtained algebraic equations are solved using the line by 
line technique, combining between the tridiagonal matrix algorithm and the Gauss-Seidel 
method. A non-uniform grid is employed in the transverse direction by locating the finer 
meshes near the axis of symmetry, the porous-fluid interface and the lower wall of the 
channel. To analyze the effect of the grid size on the numerical solution, several grid 
systems are tested for various combinations of the controlling parameters. A typical test 
is shown in Tab. 1 and a grid system of 250×50 (in X and Y directions, respectively) is 
adopted since the relative errors on the mean Nusselt and Sherwood numbers are less 
than 0.1%. For the convergence criteria of the iterative process, the relative variations of 
velocity components, temperature and concentration between two successive iterations 
are required to be smaller than 10-6. As the simulation time and the error evolve in 
opposite directions; so trial calculations were necessary to optimize the computation time 
and accuracy. The elaborated computational code is validated by comparing the 
developed velocity profile at the channel exit for different values of the power-law index 
with two limiting cases available in the literature. The first comparison is made with the 
analytical solution (Eq. (24)) given by Nebbali et al. [Nebbali and Bouhadef (2011)], 
whereas the second one concerns the numerical solution obtained by Chen et al. [Chen 
and Tso (2011)] in a porous channel using the Brinkman extended Darcy’s law. Fig. 2a 
and Fig. 2b show a very good agreement.  

  ( ) 



 −−

+
+

=
+
n

n
Y

n
nYU

1
11

1
12)(

                
                                                                        (24) 

 

 



 
 
 
Heat and Mass Transfer of a Non-Newtonian Fluid Flow                                                47 

 
 

Table 1: Grid sensitivity analysis for for n=1.5, Da=10-2, λ=10, FKm=1 and Dm=5 

Grid number (X×Y) 100×10 150×20 200×30 250×50 300×60 
Num 20.962 20.030 19.898 19.814 19.806 
Relative error (%) - 4.45 0.66 0.42 0.04 
Shm 2.031 1.940 1.927 1.918 1.917 
Relative error (%) - 4.48 0.67  0.47 0.05 
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Figure 2a: Developed velocity profiles for 
various values of n, Da→∞ and ε=1 
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4 Results 
Due to the great number of parameters, few of them are kept constant. The numerical 
calculations are performed for a thickness Ep=0.4, a porosity ε=0.95, an inertia coefficient 
C*=0.1, a Prandtl number Pr=10, a Reynolds number Re=100, a Lewis number Le=1, a 
viscosity ratio Rµ=1 and a thermal conductivity ratio Rk=1. The results obtained by varying 
the activation energy parameter γ from 0.01 to 100 showed that its effect is negligible. So, its 
value is set to 0.1. The results concerning the thermal and mass fields will be decomposed 
principally into two parts. At first, will be discussed the effect of the porous medium 
anisotropy described by the anisotropic thermal conductivity ratio (λ=0.1, 1 and 10) for 
different values of Darcy number (10-6≤Da≤1) and power-law index characterizing the non-
Newtonian behavior of the fluid (n=0.5, 1 and 1.5). The second part will be devoted to the 
study of the influence of chemical reaction characteristics (0.1≤FKm≤20 and 5≤Dm≤80). 
The results will be presented in terms of velocity, temperature and concentration 
distributions, and in terms of heat and mass transfer coefficients described by the Nusselt 
and Sherwood numbers respectively.  
The streamwise velocity profiles at the channel exit for different values of the power-law 
index n at Da=10-3 are depicted in Fig. 3 where it appears that the presence of a porous 
layer of finite thickness tends to slowdown the fluid motion which escapes to the 
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nonporous region offering less resistance to the flow. The rheological properties of the 
fluid seem to affect slightly the velocity in the porous layer with however the highest 
resistance to the flow obtained with the shear-thinning fluid (n=0.5). This behavior, 
reversed by moving away from the porous-fluid interface, is found again by approaching 
the symmetry axis where the velocity is maximum whatever the value of the power-index 
law and is the largest for the shear-thickening fluid (n=1.5).  
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Figure 3: Velocity profiles at the channel exit for various values of n and Da=10-3  

Fig. 4a, depicting the temperature and concentration profiles at the channel exit for 
various non-Newtonian fluids, reveals opposing trends for θ and C where the highest 
temperatures are localized near the walls seat of an exothermic chemical reaction whose 
effect decreases by going towards the channel center where the temperature approaches 
that of the fluid at the channel inlet, and vice versa for the concentration. The rheological 
properties of the fluid influence slightly the temperature and concentration, with however 
moderately higher and lower values respectively when the fluid is shear-thinning (n=0.5). 
For a thermally anisotropic porous medium (Fig. 4b), values of λ lower than unity 
correspond to an effective thermal conductivity in the transverse direction key lower than 
that in the axial direction kex which is constant since Rk=kex/k=1. This will reduce heat 
transfer since the heat generated by the chemical reaction will not be evacuated and large 
values of temperature are obtained which will accelerates the reaction and allow the 
consumption of reagents.  
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Figure 4: Temperature and concentration profiles at the channel exit for various values 
of n and λ: Da=10-3, FKm=1 and Dm=5 

The evolutions of the mean Nusselt and Sherwood numbers with λ and n are presented in 
Fig. 5. The heat transfer is enhanced by the increase of the effective thermal conductivity 
in the transverse direction Y (λ = key/kex with kex fixed because Rk=1). This situation will 
lead to a decrease of the fluid temperature and an increase of its concentration in the 
vicinity of the channel walls (Fig. 4b), causing a reduction of mass transfer and then a 
diminution of Shm with λ. Concerning the influence of the power-law index, it appears 
that the heat and mass transfers are improved with the augmentation of the value of n 
with the reduction of the difference between the various types of fluids for highly 
thermally anisotropic porous media.  
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Figure 5: Variation of Num and Shm with λ: Da=10-3, FKm=1 and Dm=5 

Whether the porous medium is isotropic or anisotropic and the fluid Newtonian or non-
Newtonian, it appears from Fig. 6 that there is an increase of heat and mass transfer with 
the Darcy number. This result for the partly porous channel has been widely found in the 
literature [Chikh, Boumedien, Bouhadef et al. (1995); Nebbali and Bouhadef (2006)]. For 
porous media with low anisotropic ratio (λ=0.1), the type of fluid seems to have almost 
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no effect on the values of Num and Shm until Da ≈ 10-4 beyond which the shear-thickening 
fluid (n=1.5) leads to the higher performances of the system. However, this result is not 
reproduced for all the anisotropy situations of the porous medium where the transfer rates 
achieved with the shear thickening fluid exceed those obtained with shear-thinning fluid 
(n=0.5) only from a given permeability whose value is strongly related to λ (Da≈6×10-4 
for λ=1 and Da≈3×10-3 for λ=10).  
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Figure 6: Variation of Num and Shm with Da: FKm=1 and Dm=5 

To highlight the effect of the porous medium anisotropy on heat and mass transfer, we 
illustrate on Fig. 7 the evolution of the ratios RNum and RShm, normalized by the values of 
Num and Shm of the isotropic case (λ=1), with the Darcy number. RNum and RShm 
increase for λ=0.1, decrease for λ=10 and finally reach constants values at large 
permeabilities. Gains on heat and mass transfer are obtained for λ=10 and λ=0.1 
respectively, with maximum values around 620% for Num at Da=10-6 and about 120% for 
Shm at Da=1. The situation is reversed for heat and mass losses with (RNum)min≈0.16 and 
(RShm)min≈0.50. The shear-thinning fluid leads to the highest heat transfer gains and 
losses, while the lowest values are reached with the shear-thickening fluid, and vice versa 
for the mass transfer.  



 
 
 
Heat and Mass Transfer of a Non-Newtonian Fluid Flow                                                51 

 
 

1E-6 1E-5 1E-4 1E-3 0,01 0,1 1

0,16

0,18

0,20

0,22

0,24
5,0

5,5

6,0

6,5

7,0

7,5

n = 0.5, 1, 1.5

λ = 0.1

λ = 10

R
N

u m

Da
1E-6 1E-5 1E-4 1E-3 0,01 0,1 1

0,50

0,55

0,60

0,65

0,70

1,5
1,6
1,7
1,8
1,9
2,0
2,1
2,2
2,3
2,4

λ = 0.1

λ = 10 n = 0.5, 1, 1.5

R
S

h
m

Da  
Figure 7: Variation of RNum and RShm with Da: FKm=1 and Dm=5 

To study the impact of the parameters characterizing the chemical reaction on heat and 
mass transfer, an isotropic porous medium (λ=1) will be considered thereafter, knowing 
that similar results were found when anisotropy was taken into account.  
The influence of the modified Frank-Kamenetskii number on the parietal and mean 
temperatures and concentrations for different values of the power-law index is illustrated 
on Fig. 8. It appears from this figure that the shape of the parietal temperature curves is 
initially growing along the channel before it reaches a constant value. This behavior is 
due to the exothermic nature of the chemical reaction that increases the temperature until 
a maximum value corresponding to the most predominant effect of this reaction. Beyond 
this peak, the temperature is controlled by the transport. As the reaction occurs on the 
surface of the channel walls and give rise to heat generation, its temperature increases 
significantly with the Frank-Kamenetskii number. Indeed, this parameter translates 
directly the influence of the reaction on the heat exchange; more FKm is important more 
the heat release by the exothermic reaction is higher, thereby causing an increase of θw. In 
contrast to the wall temperature, the curves of the parietal concentration present a rather 
decreasing shape from the channel entrance to tend towards the establishment of the 
regime also. The effect of FKm is nevertheless similar insofar as for the temperature, its 
increase reduces Cw and accelerates the establishment. Indeed, at high values of Frank-
Kamenetskii number the majority of the reactants are transformed into products and so 
concentration decreases towards zero. The same behavior is found for the mean 
temperature θm and mean concentration Cm with however a widely lower magnitude and 
disappearance of the establishment. The impact of the power-law index is only apparent 
in the region near the channel entrance and at low values of FKm with however a similar 
behavior.  
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Figure 8: Variation of (θw, Cw) and (θm, Cm) with FKm: Da=10-3, λ=1 and Dm=5 

The evolution of the mean Nusselt and Sherwood numbers with FKm are presented on Fig. 
9 which shows that the shear-thickening fluid exhibits the highest values of transfer rates, 
and that the exothermic nature of the chemical reaction becomes detrimental to heat and 
mass transfer only for a Frank-Kamenetskii number around 10 where Num and Shm start 
to decrease.  
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Figure 9: Variation of Num and Shm with FKm: Da=10-3, λ=1 and Dm=5 
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The effect of the chemical reactivity, expressed by the modefied Damköhler number, on 
the axial evolution of the temperature and concentration is illustrated on Fig. 10. As the 
Damköhler number represents the ratio between the time scales of diffusion and reaction, 
at high values of Dm the reaction gets faster and diffusion becomes dominant resulting in 
a reduction of θm and Cm as well as the parietal values θw and Cw where the effect of this 
parameter is more apparent since the reaction occurs on the channel walls. This situation 
leads to a decrease of heat and mass transfer rates with the modified Damköhler number 
as it appears in Fig. 11 where the highest values of Num and Shm are obtained for a shear-
thickening fluid.  
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Figure 10: Variation of (θw, Cw) and (θm, Cm) with Dm: Da=10-3, λ=1 and FKm=1 
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5 Conclusion 
Heat and Mass transfer of a power-law fluid with surface chemical reaction in a channel 
partly filled with an anisotropic porous medium are studied numerically. The effect of 
various parameters related to the porous medium (anisotropic ratio for thermal 
conductivity λ, and Darcy number Da), the non-Newtonian fluid (power-law index n), 
and the chemical reaction (modified Frank-Kamenetsii FKm and modified Damköhler 
number Dm) on velocity, temperature and concentration distributions, as well as mean 
Nusselt and Sherwood numbers is analyzed. The parametric study allowed to highlights 
the following points: 
- The augmentation of the anisotropic thermal conductivity ratio improves the heat 
transfer but decreases the mass transfer. 
- At small Darcy number, the shear-thinning fluid exhibits the highest heat and mass 
transfer rates, and from a certain value of Da, which is strongly related to λ, it is the 
shear-thickening fluid which enhances the transfers. 
- The comparison to the case of an isotropic porous medium reveals that thermal 
anisotropy affects strongly the exchanges. The highest gains on heat and mass transfer are 
obtained for λ=10 and λ =0.1 respectively. The maximum losses are achieved with λ=0.1 
for heat transfer and with λ=10 for mass transfer. These values depend strongly on Da 
and n. 
- The mean and wall temperatures and concentrations are strongly affected by the 
exothermic nature of the chemical reaction leading to a decrease of the heat and mass 
transfer rates with the augmentation of the modified Frank-Kamenetskii and Damköhler 
numbers.  
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