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Rotational Motion of Micropolar Fluid Spheroid in Concentric
Spheroidal Container

M. Krishna Prasad! and G. Manpreet Kaur?

Abstract: The slow steady rotation of a micropolar fluid spheroid whose shape deviates
slightly from that of a sphere in concentric spheroidal container filled with Newtonian
viscous fluid is studied analytically. The boundary conditions used are the continuity of
velocity and stress components, and spin vorticity relation. The torque and wall
correction factor exerted on the micropolar fluid spheroid is obtained. The dependence of
wall correction factor on the micropolarity parameter, spin parameter, viscosity ratio and
deformation parameter is studied numerically and its variation is presented graphically. In
the limiting cases, the torque acting on solid spheroid in spheroidal container and on the
solid spheroid in unbounded medium are obtained from the present analysis.
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1 Introduction

Studies on rotating fluid systems have received considerable attention among researchers
due to its applications in engineering and science. The problem of flow of an
incompressible viscous fluid contained between two concentric rotating spheres is of
special interest to researchers because of its wide applications in various fields like fluid
gyroscopes, colloidal science and centrifuges. Jeffery (1915) was the first who discussed
the slow rotation of spheroids in an infinite fluid using curvilinear coordinates. The
Stokesian flow of a viscous liquid generated by the slow steady rotation of an
axisymmetric body placed in an incompressible viscous liquid was studied by Kanwal
(1961). Kanwal (1961) also derived an expression for the couple experienced by the
rotating body in terms of the toroidal velocity component. Munson and Joseph (1971)
investigated the rotationally symmetric flow of an incompressible viscous fluid contained
between two concentric spheres that rotate about a common axis with fixed angular
velocities and obtained high-order analytic perturbation solution for low Reynolds
number. The axisymmetric problem of viscous compressible heat-conducting fluid
motion between two concentric spheres which can rotate at different angular velocities
around a common axis is considered by Astafeva, Brailovskaya and Yavorskaya (1972).
Munson (1974) solved the problem of motion of a viscous fluid contained between two
eccentric rotating spheres using perturbation technique. Cooley (1971) studied the
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creeping flow problem of fluid motion generated by a rotating sphere. A general method
for deriving exact solutions to the Stokes equations is suggested by Shankar (2009). This
method can be applied to the flow problems in and around a sphere or between concentric
spheres. The problem of concentric pervious spheres carrying a fluid sink at their centre
and rotating slowly with different uniform angular velocities is studied by Srivastava
(2013). Srivastava, Yadav and Yadav (2013) investigated the problem of rotating
concentric pervious spheres with different angular velocities. The translational and
rotational motion of a porous spherical shell located at the center of a spherical cavity
containing incompressible Newtonian fluid was investigated analytically by Keh and Lu
(2005). Saad (2010) studied the steady translation and rotation of a porous spheroid in
concentric spheroidal container. The problem of rotational motion of a porous sphere
situated at the centre of a spherical container containing an incompressible Newtonian
viscous fluid has been tackled by Srinivasacharya and Prasad (2012). Ashmawy (2015)
used a combined analytical numerical technique to study the steady rotational motion of
an axially symmetric porous particle about its axis of symmetry in a viscous fluid.

The classical Navier-Stokes theory has proved to be inadequate to describe the behavior
of fluids with microstructure such as animal blood, polymeric suspensions, muddy water
and lubricants. In the past few years there has been increasing interest in developing
theories that can accurately describe the behavior of such fluids. The theory of micropolar
fluids introduced by Eringen (1966, 2001) is one of the best theories of fluids to describe
the structured fluids. The micropolar fluids consist of rigid particles which can rotate with
their own spins and microrotations. Micropolar fluids exhibit some microscopic effects
arising from the local structure and micromotion of the fluid elements and they can
sustain couple stresses. In the theory of micropolar fluids, there are two vectors
describing the motion of the fluid; the classical velocity vector and the microrotation
(spin) vector. The applications of these fluids are in blood flow, lubrication problem,
liquid crystals, colloidal suspensions, polymeric additives, occurrence of turbulence, etc.
The review article by Ariman, Turk and Sylvester (1974) and the book written by
Lukaszewicz (1999) provide a useful account of the applications and theory of
micropolar fluids.

In the past few years the study of non-Newtonian fluids has received special attention.
Rao, Ramacharyulu and Rao (1969) studied the slow steady rotation of a sphere in a
micropolar fluid. The problem of stokes flow of an axially symmetric body rotating in a
micropolar fluid is analysed by Ramkisson (1977). Dennis, Ingham and Singh (1981)
numerically studied the flow generated by a sphere rotating with constant angular
velocity and calculated the couple for a wide range of Reynolds number. The problem of
slow steady rotation of a spheroid (prolate and oblate) in an incompressible micropolar
fluid is investigated by Rao and lyengar (1981). Kamel and Fong (1993) studied the
steady flow of an incompressible micropolar fluid between two rotating eccentric spheres.
The slow steady rotation of an approximate sphere in an incompressible micropolar fluid
is studied by lyengar and Srinivasacharya (1995). The problem of slow steady rotation of
a micropolar fluid sphere in concentric spherical container filled with viscous fluid is
studied by Prasad and Gurdatta (2015). Saad (2016) studied the Stokesian flow of a
spherical shaped droplet which is halfway immersed in a semi-infinite phase of a
micropolar fluid. He investigated the problem in two different settings, when the
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movement of the droplet perpendicular to the free flat surface of the micropolar fluid and
the parallel motion. Srinivas and Murthy (2016) investigated the flow of two immiscible
incompressible couple stress fluids between two permeable beds flowing in axial
direction under the influence of a constant pressure gradient. Recently, Prasad and Kaur
(2017a,b) examined the steady, axisymmetric Stokes flow past a viscous fluid spheroid
whose shape deviates slightly from that of a sphere in a micropolar fluid spheroidal
cavity and the axisymmetric rotary oscillation of a micropolar fluid sphere in concentric
spherical cavity filled with Newtonian viscous fluid.

The motion of a single liquid drop in another immiscible liquid, e.g., a Newtonian fluid
drop in another Newtonian fluid medium, non-Newtonian fluid drop in a Newtonian
liquid, etc., may well represent an idealization of various natural, industrial and biological
processes, such as raindrop formation, study of blood flow, liquid-liquid extraction,
prediction of atmospheric conditions and sedimentation phenomena. Many authors have
studied the slow steady rotation of solid spherical or spheroidal particles in different
geometries for different fluids. But very few authors have attempted to study the problem
of rotation of droplets of one fluid dispersed in another immiscible fluid. There are cases
where the geometry is not perfectly spherical. This motivated us to investigate the present
problem.

In this paper, we study the flow generated by the slow steady rotation of a micropolar
fluid spheroid in a spheroidal container containing viscous fluid by applying non zero
boundary condition for microrotation vector. The boundary conditions used at the liquid-
liquid interface are the continuity of velocity components, continuity of stress
components and spin vorticity relation. The flow examined is axially symmetric in nature.
An exact solution of the problem is obtained. The expression for torque and wall
correction factor acting on the micropolar fluid spheroid is also obtained and its variation
with various fluid parameters is studied.

2 Formulation of the problem

Let (r, 8, ¢) denote a spherical polar co-ordinate system with the origin at the center of
the spheroid and with (€,,€,,€,) unit base vectors. Let the equation of the
axisymmetric rotating micropolar fluid spheroid be of the form r =a[1+ f(8)]. The
orthogonality relations of Legendre functions P, ({) , £ =cos@ permit us, under

general circumstances, to assume the expansion f (<) = Z P, () . Therefore, we

mlrn

take the surface of the micropolar fluid spheroid to be

- a[1+ o F)m (é,)] =r,, (1)

and the surface of the Newtonian viscous fluid spheroid to be

=b[l+a, P, ({)]=t,. )
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If all the «r, are zero, the spheroids reduces to spheres of radii @ and b, respectively.

Consider the slow steady rotation of an incompressible micropolar fluid spheroid of
radius r, fixed at the center of a spheroidal cavity of radius r,. The gap between the

micopolar fluid spheroid and the cavity is filled with Newtonian viscous fluid. Assuming
that the angular velocity of the micropolar fluid spheroid is € about the axis of
symmetry € =0 and the fluid particle is at rest. The angular velocity of the spheroidal
cavity is same as that of the fluid particle in the opposite direction. The regions outside
and inside the fluid spheroidal particle are denoted by regions | and II, respectively (See
Figure 1).

r=b[l+a,Pn(] r e a(1-e/2) — r = b[l +a, P, (]

l‘_‘.ﬁn "Ebn < P
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Figure 1: The physical situation and the coordinate system.
The equations of motion for region | are

v-g¥ =0, @)
VpW + 1, VxVxG® =0, (4)
where G is the velocity vector, p® is the pressure and g4 is the coefficient of

viscosity.

The equations of motion for the region Il are the equations governing the steady flow of
an incompressible micropolar fluid under Stokesian assumption with the absence of body
force and body couple and are given by

V.q'(Z):O’ (5)
VP + (4 + K)Vx VG =V XV =0, (6)
Kqu’(Z)—ZKV—]/OVXVx17+(aO+IBO+7/O)VV.{):0, )
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where G, v and p® are velocity vector, microrotation vector and pressure, , is the
viscosity coefficient of the classical viscous fluid and ', a,, S, and y, are the new
viscosity coefficients for the micropolar fluids.

The equations for the stress tensor t;; and the couple stress tensor m;; are

= —P6i;+ 4 (0 j+09;,) + K05 —&ijm Vi) (®)
M = AV mOij + BoVij + 7oV 9)

where the comma denotes the partial differentiation, J;; and &;;

jm

are the Kronecker
delta and the alternating tensor, respectively.

Since the rotation is assumed to be slow, the velocity ( has its only component along the
vector €; and the microrotation vector v lies in the meridian plane. The flow is time
independent and all the quantities are independent of ¢. Thus, we choose the velocity
and microrotation vectors as

q¥ =qf(r,0),.i=12, (10)
v=v.(r,0)8 +v,(r,0),. (11)
The field equations in this case reduce to:

In the viscous fluid region r, <r <r,

(63} (@)
PP, (12)

ar 00
L’ =0, (13)

and for the micropolar fluid region r <r,

LL-17)? =0. (14)

Assume that div v = F(r,6), curlv = G(r,0)€, = —N"*Lg{”€,, we have

(V2 —CZ)F =0, (15)
where
_ 0> 20 1 0* cotd 8 1
=ttt 5
or2 ror rlod: 1 80 risin’g

(16)

2 2
IZZaK(Z—l'Z) and C2: 2ka x:ﬁ N:—Z ,

7o(1+ %) ay+ By +7, Hy 1+ y
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a (2)
vo= L7 LIO0 ot + 1| ek gPcota |, (17)
"t or 2k r\ o6 00
1( 6q®@ @
v, = 110F yo[@JrGj A L% | (18)
cr8921c6rr28r r

3 Solution of the problem

The solution of Egs. (13)-(15) are given respectively

0l =[ar+br i)+ Yl + B RQ), (19

q’ = {C r+ \;1— |3/2(|r)}P (§)+Z[C '+ 5— 1 (lr)}Pl(é) (20)

F(r,0)= \/— I3, (CF)P(§)+Z |1 (CP)PL (£) (21)

The expression for G(r,6) is obtamed as

G(r,0) =N -{“2 0RO+ X5 (Ir)Pl(;)} @2
\/_ 3/2 \/_ n+1/2

Thus, using the expressions for F, G and q(z’ in the equations (17) and (18), the

expressions for v, and v, are obtained as

{c FoNT L 3,2 Lo, (Ir)— 12 2}2 (21,,(cr)— crll,z(cr))}P(g)Jr

i{”(””)c )N )

3/2 n+1/2
n=2

12 |':/2 (n+D)1,4p(cr)—crl, (CI’))}P (9} (23)

cr

‘: Cl 3/2 (|3/2 (Ir) 1/2 (Ir)) 2 l}z 3/2 (Cr):|Pl(§)+

i[ (n +1) C r _1 3/2 (n I n+1/2 (I r) n -1/2 (I r))

n=2
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1H
_?rg,_/g In+1/2 (Cr)}Pnl (é/) (24)

4 Boundary conditions

To determine the flow velocity components outside the fluid spheroid and velocity
components and microrotation inside the fluid spheroid, we assume the continuity of
velocity components. Also, we assume as in the classical case Happel and Brenner (1965),
that the equilibrium theory of interfacial tension is applicable to our problem. This means
that the presence of interfacial tension only produces a discontinuity in the normal
stresses and does not in any way affect the tangential stresses. The latter is therefore
continuous across the surface of the fluid spheroid. Hence, continuity of tangential stresses
is applied at the interface. These conditions are physically realistic and mathematically

consistent. Therefore, the boundary conditions on the surface r = a[1+«,, P, (&)] are:

qy’ =05, (25)
5 + ot Pa (&) =12 + et Ph(Q), (26)
S oql
=—| cotdq{” + — |, 27
V, o |: q¢ 20 27)
W &
s{qg;  0q,
Vo=—2| T | 28
¢ 2{ roor } (28)
On the cell surface r = '[1+a, P, (£)], we assume
g5’ =-QrP (). (29)

5 Application to spheroid

As a particular example of the above analysis, we now consider the rotation of a prolate
or an oblate spheroid in a spheroidal container. The surface of the spheroidal particle is
represented in the Cartesian frame (X, Y, Z ) by the equation,

X2+y2 ZZ

2 T 2 2 =1
& a (l+8)
a’l1-=
( ZJ

For & <0 the spheroid is an oblate and for 0 < & <1 it is a prolate. To O(¢), Eq. (30)

in polar form becomes r =1+¢P, (&) . Here, we must take m=2 , &, = . Therefore,
the velocity and microrotation components are given by

o) = [a,+ A)r+ (o, + B RO A+ B RO, D

(30)
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@ — (f.+F) 1 3 i 1
) {(C +C)r+ I |3/z(|r)}|31(§)+{(33r +\/F|7/z(|r)}P3(§), (32)

_1(f+F)

| @ropean BBy n- L O

D @1, (cr) - Crlm(cr))}P(CH

[60 12N (1) - 5 T (Al o) - crl5,2(cr))}P(§) (33)
|-y n B g -inam)- S AL L en o)

26N B 0 Iy ()= 5 R o) ). 4

6 Torque on the body

The torque experienced by micropolar fluid spheroid in presence of a spheroidal
container is

T, = jsrx(ﬁ-t<l>)-12 ds, (35)
where F =a[l+&P, ()., A=§ +%gsin 208, , dS = 27a’[1+2&P,(¢)]sin 6d6 |

K is the unit vector in the direction of the axis of rotation and taking the integral over the
surface of the boundary, we get

T, =270 [0 + ggtg;} $iN 20) 21,15, ) sin” 00, (36)

T, =-87za’ 1, Q(b, +B), (37)
where b, and B, are given in Appendix A.

The couple exerting on the spheroid in an unbounded medium is

T, =-87a’ 1, Q(5, +3,), (38)
where 9, and &, are given in Appendix A.



Rotational Motion of Micropolar Fluid Spheroid 115

6.1 Special cases

1. When ¢ - 0, we get the expression for the hydrodynamic couple acting on the
micropolar fluid sphere in spherical container which is given by

T, =-87a’ 1, Qb,, (39)
This result is previously obtained by Prasad and Gurdatta (2015).

2. If s —> 0 i.e., there is no microrotation at the boundary and o — O i.e., rotation of a
solid spheroid in viscous fluid, we get the expression for the hydrodynamic couple acting
on the solid spheroid in a cell model which is given by

T, = “8rm0a’ (1- 3—‘9j (40)
1-n 5)

In the case of a perfect sphere & = 0, we get the expression for the couple exerted by the

fluid on a rotating sphere which was given by Happel and Brenner(1965).

3. When 17 — 0 in (40), we get the torque acting on the solid spheroid

T,= _872'1%933(1_3?8} (41)

The wall correction factor W, is defined as the ratio of the actual couple experienced by

the particle in the container and the couple on a particle in an infinite expanse of fluid.

With the aid of Egs. (37) and (38) this becomes

w =1 =BtB (42)
T, o6,+6,

o0

7 Results and discussion

The wall correction factor W, acting on the spheroid is numerically computed for
different values of spin parameter s, micropolarity parameter y , separation parameter
n , deformation parameter & and classical ratio of viscosities between internal and
external fluid o . In all numerical computation of the wall correction factor, we assumed
the value of LZ =0.4 and M"j%) =0.3. The results are shown in Figure 2-
Ha Hp8

Figure 7 and Tabel 1-Tabel 3.

Figure 2 and Figure 3 illustrate the variation of the wall correction factor W, for the
rotational motion of a micropolar fluid spheroid with the separation parameter 7 for
various values of the micropolarity parameter y for prolate (£ =0.1) and oblate
(&=-0.1) spheroids, respectively. For any specified finite value of y , the wall
correction factor W, increases monotonically with an increase in separation parameter 77 .

It is observed that the wall correction factor of prolate and oblate spheroid increases with
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increasing micropolarity parameter for fixed values of s and o . If the micropolarity
parameter y — 0, both the internal and external fluids are Newtonian and the problem
reduces to the slow steady rotation of a Newtonian fluid spheroid in concentric spheroidal
container filled with another Newtonian viscous fluid.

The effect of spin parameter on wall correction factor is presented in Figure 4 and Figure
5 for prolate (¢ = 0.1) and oblate (& = —0.1) spheroids, respectively. The spin parameter
ranges over the interval 0<s<1. If s=0, there is no rotation of microelements near
the boundary and if s =1, the microrotation is equal to the fluid vorticity at the boundary.
It can perceived from the figure that there is a decrease in wall correction factor
compared to the case of no spin condition on microrotation vector. As expected,
increasing the spin parameter decreases the wall correction factor because spin causes
less motion between the fluid and the particle. This physically shows that the wall
correction factor is greater in the case of zero microrotation vector than in the case of
non-zero microrotation vector.

Figure 6 and Figure 7 depicts the variation of W, with 7 for different values of viscosity

ratio o for prolate (¢ =0.1) and oblate (& =—0.1) spheroids, respectively. The case
o =0 corresponds to the rotational motion of a solid spheroid in viscous fluid. It is clear
that the wall correction factor decreases with increasing values of viscosity ratio except
for o = 0. Thus, we conclude that fluid spheroid experiences less torque as compared to
the solid spheroid embedded in the viscous fluid spheroid.

Tables 1- 3 show the numerical results of wall correction factor for different values of
deformation parameter and separation parameter for the case of 0 =0, o0 =1, and
o =3 keeping the values of s and y as fixed. The numerical result shows that the wall
correction factor is an increasing or a decreasing function of deformation parameter &
depending on the value of o .

Table 1: Wall correction factor W, for different values of separation parameter 7 with
x=5,8=0.2and 0 =0

WC
n c=-0.3 e=-0.1 =0 =01 =03
0.01 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 1.00080 1.00080 1.00080 1.00079 1.00079
0.3 1.02213 1.02208 1.02197 1.02185 1.02178
0.5 1.11140 1.11113 1.11055 1.10988 1.10952
0.7 1.37936 1.37824 1.37579 1.37299 1.37145

0.9 2.40678 2.39964 2.38398 2.36614 2.35625
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Table 2: Wall correction factor W, for different values of separation parameter 7 with
y=5,8=02and o =1

WC
n e=-0.3 e=-0.1 =0 =01 =03
0.01 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 1.00032 1.00033 1.00034 1.00035 1.00036
0.3 1.00876 1.00891 1.00922 1.00955 1.00972
0.5 1.04187 1.04261 1.04416 1.04579 1.04663
0.7 1.12389 1.12630 1.13128 1.13653 1.13926
0.9 1.30577 1.31280 1.32739 1.34274 1.35073

Table 3: Wall correction factor W, for different values of separation parameter 7 with
y=5,8=0.2and 0 =3

WC
n e=-0.3 e=-0.1 =0 =01 =03
0.01 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 1.00015 1.00015 1.00016 1.00017 1.00017
0.3 1.00395 1.00405 1.00427 1.00448 1.00459
0.5 1.01855 1.01905 1.02006 1.02110 1.02162
0.7 1.05259 1.05406 1.05705 1.06009 1.06164
0.9 1.11874 1.12231 1.12956 1.13696 1.14071

Figure 2: Variations of the Wall correction factor W versus 7 for different values of
the micropolarity parameter ¥ with s=0.2, 0 =0.3 and ¢ =-0.1.
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Figure 3: Variations of the Wall correction factor W_ versus 7 for different values of
the micropolarity parameter y with s=0.2, 0 =0.3 and ¢ =0.1.

35

3.0+

T T T T T T T

0.2 0.4 0.6 0.8 1.0

Figure 4: Variations of the Wall correction factor W, versus 7 for different values of
the spin parameter s with y =5, 0 =0.3 and ¢ =-0.1.
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0.2 0.4 0.6 0.8 1.0

Figure 5: Variations of the Wall correction factor W versus 7 for different values of
the spin parameter s with y =5, 0 =0.3 and ¢ =0.1.
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Figure 6: Variations of the Wall correction factor W versus 7 for different values of
the parameter o with y =5, s=0.2 and ¢ = -0.1.
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0.5 . . . r ; | : ;

Figure 7: Variations of the Wall correction factor W_ versus 7 for different values of
the parameter o with y =5, s=0.2 and £ =0.1.

8 Conclusion

In this paper, an analytic solution for the slow steady rotation of a micropolar fluid
spheroid in a concentric spheroidal container is presented. Various useful results are
obtained from the solution, particularly the closed form expression for the torque and the
dependence of the wall correction factor on the various fluid parameters. It has been
found that the wall correction factor is an increasing function of the separation parameter
and micropolarity parameter. The effect of spin parameter on wall correction factor is
also studied and it is found that the wall correction factor is a decreasing function of the
spin parameter.
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Appendix A

Applying the boundary conditions (25)-(29), we obtain the following system of algebraic
equations
[al + bl —C - fsz ]Pll (é/) +a, [a1 - 2b1 —C + fl(ZTz - ITl )]P11 (é’) Pm (é’)
+ Z[An + Bn - Cn - FnTG]Pnl(é,) = Ov

n=2
ON h
{2 el —3/1b1}|311(§)

2N
+0{m‘:—2 f1(3T2 _ITl)__—NClZ

(A1)

(3T, —cT, )+ 91@}?(4’) P. (<)
(A2)

AN b o :
+aml:2flT2 2 N C2 (2T4 CT3):|P1(§)Pm(§)

+i[—(n—1)cn FOF T 42 BT, 20 -1)A, —ﬂ(n+2)Bn}P:(c) =0,

n=2 CZ
|:C1 +% fiT _Ciz h].(2T4 - CTS)_ sa, — Sb1:|Pl(§) +
am[—ﬁ (3T, -1+ (60T, —2cT3)+3sb1}P1(4) Pa(€)

& n(n+1) n(n+1) 1
+§i > C,+ N FnTG—C—Z((n+1)T8—cT7)Hn

—%n(n-i-l)An _%n(n+1)Bn:|Pn(§) =0,

(A3)
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1 1 S 1
|:_Cl +W fl(TZ _ITl)_C_z h1T4 +58 _Ebl:lpl (4/)
+am[—i £(3+1)T, -|Tl)+ci2m(3T4 —cT3)+gsbl}F11(§)Pm(é)

(A.4)
= (n +1) iy L
+Z;[ v F(nT6 IT,) > H.T,
S S 100\ —
+§(n+1)An—§an}Pn &) =0,
a7t +b? + 7 RHO) + o™ — 202 + 7 PHOP, ()
(A.5)

+Y A"+ B i) =0,

On solving the leading terms of equations (A.1)-(A.5), we will get the values of a,, b, ,
c,, f, and h,. Since the expressions are lengthy we are not presenting it here. To obtain

the remaining arbitrary constants A,, B,, C,, F, and H_, we require the following
identities

Pl(é/)P (é/) = m+1(§) T A A —l(é/) (A6)
PRI = S PhA() + DR (6), (A7)
R (C) P (é/) T A A m+1 (é/) m 1(4’) (A8)

Using these in (A.1)-(A.5), and taking all the coefficient A , B,, C., F, and H, are
zeroexceptat n=m-1or n=m+1, we get

516” + A‘. + Bn _Cn - FnTG :O' (A,9)

- I 2/v HI'] —
§2cn+§3dn+2f§17g+2_/v L+ Mn—-1A4 — An+2)B =0,

2°8
C

(A.10)

£ én+n(n+1)c +n(n+1)
) 2 " N

FT, —iz((n +1)T, —cT, )H, —%n(n 1A
C
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- n(n+1)B, =0 (A11)
&.Cn— (n+1) C o+t F.(nT, —|T5)—i2 H.T,+>(n+1)A —>nB, =0, (A12)
N C 2 2
ECn+AnT"+B ™ =0, (A.13)
where
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The expressions for b, B;, J, and &, appearing in eg. (37) and eq. (38) are
b, = (2N (s —1)(T,(IT, +3T,(N —3) —cT,T,(N — 2)))5, (A.14)
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