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Abstract: Coxiella burnetii is an obligate intracellular pathogen and the causative agent of Q fever. In this brief review, 
we describe how recently described mechanisms help our understanding of C. burnetii invasion and its survival in 
the host cell by the formation of a replicative niche: the Coxiella-containing vacuole. We describe the actin-associated 
proteins involved in the internalization of C. burnetii, and we discuss the contribution of diverse degradation pathways 
of the cell during the formation and stabilization of the Coxiella-containing vacuole.
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Introduction

Coxiella burnetii is a Gram-negative bacterium belonging 
to  the  Gamma subdiv is ion of  the  Proteobacter ia . 
Morphologically, it is a highly pleomorphic coccobacillus 
(0.2-0.4 μm wide and 0.4-1 μm long) (Maurin and Raoult, 
1999). It shows a biphasic developmental cycle in which goes 
through a small-cell variant (SCV) and a large-cell variant 
(LCV) (Wiebe et al., 1972; Howe and Mallavia, 2000; Sandoz 
et al., 2014). SCVs are the infectious form because they are 
more stable to environmental conditions than LCVs, and 
are also highly resistant to physical and chemical stresses 
(McCaul and Williams, 1981; Bielawska-Drózd et al., 2014).

After Vero cell infection, the change from the SCV 
towards the LCV begins in early stages (2 h post-infection), 
being the LCV the prevailing form after the first day post-
infection (Coleman et al., 2004; Howe and Mallavia, 2000). 
The LCV is metabolically active and has an active type 4B 
secretion system (T4BSS) that is essential for the formation 
of the intracellular niche of the bacteria. The LCV transforms 
back to the SCV during the stationary phase of intracellular 
growth that starts approximately 6 days post-infection 
(Coleman et al., 2004). Homogeneous populations of SCVs 
are observed in infected Vero cells and in axenic acidified 
citrate cysteine medium 2 (ACCM2) after a prolonged 
incubation period (21-28 days) (Sandoz et al., 2014). As 
different species of the genus Brucella, C. burnetii can 
undergo a transition of its lipopolysaccharide (LPS) from 
“smooth” to “rough” with loss of its virulence (Rittig et al., 
2003; Mancilla, 2016). In the particular case of C. burnetii,  

*Address correspondence to: Rodolfo Matias Ortiz Flores,
rortiz@fodonto.uncu.edu.ar

the virulent strain called Nine Mile I (NMI), after several 
passages of cell lines, loses part of its LPS and becomes 
avirulent for immunocompetent animals (Nine Mile II or 
NMII) (Moos and Hackstadt, 1987; Hoover et al., 2002).

Q fever

In 1937, Derrick described a febrile illness in workers from 
Brisbane, Australia (Derrick, 1983). When he inoculated 
guinea pigs with blood from patients, they developed a disease 
similar to that seen in humans. After that, Burnet observed 
Rickettsia-like microorganisms in the liver of infected guinea 
pigs (Burnet and Freeman, 1983) and Cox could culture 
these microorganisms in embryonated eggs (Cox and Bell, 
1939). The causative agent of this febrile disease was named 
Coxiella burnetii in honor of the discoverers, Cox and Burnet. 
Initially, this disease was called “fever of the slaughterers” and 
“Queensland rickettsial fever”, but now it is known as “Q fever” 
in humans and “coxiellosis” in animals.

This disease is a zoonosis spread throughout the 
world (Poppe, 1950), but because it does not abruptly affect 
human health or the production of domestic animals, the 
geographical distribution has not been well established. 
Cases of Q fever have been reported in at least 50 countries in 
different parts of the world (Woldehiwet, 2004). Several cases 
have been reported in New Zealand (Greenslade et al., 2003), 
a country considered free of this disease (Hilbink et al., 
1993). C. burnetii R. rickettsii, R. massiliae and R. parkeri have 
been detected in Argentina using serological assays (Cicuttin 
et al., 2015). More recently, a case of C. burnetii infection has 
been found in the region of Chile (Weitzel et al., 2016), and 
four cases in the Brazilian region (Siciliano et al., 2015).

Q fever is considered a respiratory disease, which is 
mainly acquired inhaling aerosols or contaminated dust. The 
incidence is high in people who are in contact with animals, 
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such as veterinarians and slaughterers, because the infected 
animals spread the causative agent through their fecal matter, 
urine, milk, and birth products. Especially, the amniotic fluid 
and the placenta have a large amount of microorganisms that 
can be aerosolized or dried and thus contaminate the soil 
(Hellenbrand et al., 2001; Tissot-Dupont et al., 1999).

Due to its high resistance, C. burnetii can remain 
virulent for several months in dried products and, under 
certain circumstances, it can spread by the wind, so a direct 
contact with infected animals is not an essential condition 
for infection (Tissot-Dupont et al., 2004). Because of these 
and other characteristics, C. burnetii has been classified as a 
potential bioterrorist agent (Oyston and Davies, 2011).

In animals, the most important route for pathogen entry 
is the inhalation of contaminated aerosols; nevertheless, 
the infection can also be transmitted by pets that have been 
bitten by an infected tick (Duron et al., 2015). Infected ticks 
are probably the most important animals in maintaining the 
natural infective cycle; however, a cycle can involve mice, cats, 
and humans, besides ticks (Kazar, 2005). Also, infection with 
C. burnetii is usually asymptomatic; in the acute phase, the 
presence of the bacteria can be demonstrated in the blood, 
lungs, spleen, and liver. C. burnetii infection often becomes 
chronic, with persistent shedding of C. burnetii in feces and 
urine. However, animals do not develop chronic endocarditis 
as that observed in humans. In females, the uterus and 
mammary glands are the primary sites of infection (Maurin 
and Raoult, 1999). The only pathological manifestations that 
have associated with chronic C. burnetii infection in animals 
is abortion, mainly in sheep and goats, and lower birth weight 
and infertility in cattle (Aitken, 1989).

In humans, infection with C. burnetii causes clinical 
manifestations that are highly variable, ranging from an 
acute syndrome to a fatal chronic infection. The most 
common form of chronic Q fever is endocarditis. Typically, 
it is a disseminated disease often associated with multi-
organ involvement including chronic hepatitis. Less 
frequently, there have been described chronic infections of 
vascular aneurysms or prosthesis chronic osteomyelitis and 
osteoarthritis, lung tumors, pulmonary fibrosis, and chronic 
hepatitis, with no accompanying endocarditis (Fergusson 
et al., 1985). The incubation period of the disease ranges 
from 1 to 3 weeks and after that 50-60% of the patients are 
asymptomatic. There have been described nearly 30 different 
clinical syndromes in patients that present symptoms. The 
disease is like flu, manifested by fever, sweat, coughs, myalgia 
and arthralgia. Without treatment, the fever persists for 1-3 
weeks or, in some cases, longer. A high percentage of patients 
have also pneumonia and hepatitis. Pneumonia is frequently 
moderate, but progression to acute respiratory distress 
syndrome can also occur. In the case of presenting hepatitis, 
the patients can show a moderate increase in the level of 
transaminases (Hartzell et al., 2008).

Entry of C. burnetii into the host cells
C. burnetii is an obligate intracellular pathogen that presents 
tropism by monocytes and alveolar macrophages (Fernandes 
et al., 2016); however, it can infect different cell types such 
as epithelial cells (Sobotta et al., 2017). Sobotta et al. (2017) 
postulated that the epithelial tissues could form a secondary 

site of infection used as a niche to avoid the host immune 
system. Initial studies indicated that C. burnetii NMII is 
internalized more efficiently than its virulent variant NMI by 
human monocytes (Capo et al., 1999). However, Shannon and 
Heinzen (2008) showed that both strains infect and replicate 
in macrophages derived from human monocytes with similar 
extent and kinetics. In support of these observations, a recent 
report demonstrates that the two forms of C. burnetii invade 
with the same efficiency human alveolar macrophages, but 
some differences were observed in macrophages derived from 
bovine monocytes (Sobotta et al., 2016).

FIGURE 1. Description of the internalization process of Coxiella 
burnetii and the biogenesis of the Coxiella-containing vacuole. C. 
burnetii adheres to the host cell through αvβ3 integrin receptors and 
induces its uptake by an actin-dependent mechanism that involves 
actin-interacting proteins like cortactin, RhoA, Rac1, ROCK, and 
mDia1. Once internalized in the host cell, the bacterium resides in 
a compartment called “Coxiella-containing vacuole (CCV)”. During 
the intracellular trafficking, C. burnetii interacts with different 
endosomal-autophagosomal compartments. In the first stage of 
the process, the CCV acquires Rab5 and the autophagosomal 
marker LC3 (microtubule-associated protein light-chain 3). The 
nascent CCV progressively matures losing Rab5 and obtaining 
Rab7, LAMP1 (lysosome-associated membrane glycoprotein 1) 
and lysosomal enzymes, such as CatD (cathepsin D). During the 
development of the CCV, the bacterium changes from the SCV 
towards the LCV allowing the beginning of its replication. Then, 
the CCV increases its size to occupy most of the cellular cytoplasm. 
The acquisition of additional membranes from other intracellular 
compartments could also contribute to create this spacious CCV.

The entry of C. burnetii to the host cell is a passive, 
actin-dependent phagocytosis (Tujulin et al., 1998). It has 
been observed that live or dead bacteria are internalized with 
similar efficiency in fibroblasts and macrophages (Baca et al., 
1993; Tujulin et al., 1998). Bacteria with a deficient secretion 
system are capable of invading different cell types (Beare et 
al., 2011). Martinez et al. (2014) determined the presence of 
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an invasion in the outer membrane of C. burnetii, namely 
OmpA (outer membrane protein A), that increases the 
internalization levels in non-phagocytic cells. The genome 
sequencing of the NMI (Seshadri et al., 2003) and NMII 
(Millar et al., 2017) strains allowed to postulate other possible 
bacterial molecules potentially involved in their adherence 
and internalization. These include proteins with RGD 
domains, repeated ankyrin motifs and molecules similar to 
EnhA/B/C of Legionella pneumophila that enhance its entry 
to host cells (Seshadri et al., 2003).

Different components of the host cell play a key role in 
the adhesion and internalization of C. burnetii. Interestingly, 
alveolar macrophages can produce C-type lectin surfactant 
protein D, which binds to C. burnetii and reduces the 
attachment and phagocytosis of the bacteria (Soltysiak et al., 
2015). The adhesion of the bacteria requires molecules that 
must be present in the host membrane since it decreases due 
to the treatment of the cell with different proteases (Baca 
et al., 1993). The receptors involved in the internalization 
of C. burnetii in monocytes/macrophages are the αvβ3 and 
αMβ2 integrins (Capo et al., 1999). Different works show 
the participation of host cell membrane cholesterol in 
the C. burnetii entry by αvβ3 receptors and postulate the 
possible importance of “lipid rafts” in the process (Howe 
and Heinzen, 2006; Gilk et al., 2013). The αMβ2 integrins 
are excluded from the plasma membrane that contacts the 
virulent C. burnetii. Interestingly, this interaction induces 
large cell membrane protrusions (Capo et al., 1999). Similar 
membrane rearrangements have been observed during 
the interaction of Toll-like receptor 4 with C burnetii NMI 
through its LPS (Meconi et al., 2001). Nevertheless, the 
internalization of the avirulent strain NMII is highly efficient 
with discrete modification of the host cell membrane and the 
microfilaments (Capo et al., 1999).

Membrane modifications of the host cell depend on 
rearrangements of the actin cytoskeleton (Zamboni et al., 
2004; Conti et al., 2014). Microfilaments play an essential 
role in the infection of both strains of C. burnetii (Baca et al., 
1993). In our laboratory, we have demonstrated that GTPases 
of the Rho family regulate the initial stage of the C. burnetii 
internalization of RhoA acting through their effectors mDia1 
and ROCK (Salinas et al., 2015). Interestingly, cortactin, 
an actin regulatory protein, together with the Src kinase 
signaling pathway, participate in the internalization of the 
NMII strain by epithelial cells (Rosales et al., 2012).

Intracellular traffic of C. burnetii
After being internalized, C. burnetii resides into vacuoles 
that transit along the phagocytic pathway to fuse with the 
lysosomal compartment. Through time, these vacuoles fuse 
with each other and with other intracellular compartments 
to form a large vacuole called “Coxiella-containing vacuole 
(CCV)”. The intracellular itinerary of C. burnetii was 
established by the sequential acquisition of Rab5 and Rab7 
(Berón et al., 2002; Romano et al., 2007; Ghigo et al., 2009), 
early and late endocytic markers, respectively, and the 
lysosomal enzymes phosphatase and cathepsin D (Howe and 
Mallavia, 2000). The interaction of CCVs with lysosomes is 
significantly slower than that observed in typical phagosome 
maturation (Li et al., 2008; Vieira et al., 2002). Interestingly, 

the newly formed CCVs recruit the autophagosomal marker 
LC3, which also suggests the interaction with the autophagy 
pathway at a very early stage of infection (Gutierrez et al., 
2005; Romano et al., 2007). This interaction persists at later 
post-infection times. The delay to arrive to lysosomes and 
the interaction with the autophagy pathway, which provides 
membrane, nutrients, and metabolites, for the intracellular 
life of C. burnetii as it increases its replication (Gutierrez et 
al., 2005; Romano et al., 2007; Howe and Mallavia, 2000). 
It has been speculated that delaying maturation favors 
bacterium differentiation from the metabolically inactive 
SCV to the metabolically active LCV and thus resists the 
deleterious effects when receiving the degradative lysosomal 
machinery (Larson et al., 2016).

The active role of C. burnetii during its intracellular 
journey is closely related to bacterial proteins secreted by 
its Type 4 secretion system (Voth and Heinzen, 2009). In a 
final stage, the CCV acquires a large size using endosomes, 
lysosomes, autophagosomes, and other intracellular 
compartments as membrane sources (Campoy et al., 2011; 
Campoy et al., 2013). The CCV contains flotillin 1 and 2 
(Howe and Heinzen, 2006) and the autophagosomal markers 
LC3 (Berón et al., 2002; Romano et al., 2007) and Rab 24 
(Gutierrez et al., 2005), Rab 7 (Romano et al., 2007; Berón 
et al., 2002; Ghigo et al., 2009), the lysosomal glycoproteins 
LAMP-1, LAMP-2 and LAMP-3 (Voth and Heinzen, 2007), 
and the H+-ATPase. One of the outstanding characteristics 
of the CCV is its high fusogenicity. The CCV can fuse with 
endosomes loaded with dextran (Maurin et al., 1992; Heinzen 
et al., 1996), with phagosomes loaded with zymosan particles, 
and with latex beads (Veras et al., 1994). Surprisingly, the 
CCV fuses with vacuoles containing other pathogens such 
as Mycobacterium avium (De Chastellier et al., 1999; Gomes 
et al., 1999), M. tuberculosis (Gomes et al., 1999), Salmonella 
enterica (Drecktrah et al., 2007), Leishmania amazonensis 
(Veras et al., 1994) or Trypanosoma cruzi (Andreoli et al., 
2006). Obviously, there is no doubt about the sociability of C. 
burnetii in the “intracellular world”.

The characterization of the molecular machinery involved 
in the interplay between the host cell and C. burnetii could 
provide knowledge to understand the mechanisms of infectious 
diseases and contribute to the design of adequate therapeutic 
strategies to attenuate the virulence of this pathogen.
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