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Abstract: To deal with the problems encountered in the large scale numerical simulation 
of three dimensional (3D) elastic solids with fluid-filled pores, a novel computational 
model with the corresponding iterative solution procedure is developed, by introducing 
Eshelby’s idea of eigenstrain and equivalent inclusion into the boundary integral 
equations (BIE). Moreover, by partitioning all the fluid-filled pores in the computing 
domain into the near- and the far-field groups according to the distances to the current 
pore and constructing the local Eshelby matrix over the near-field group, the convergence 
of iterative procedure is guaranteed so that the problem can be solved effectively and 
efficiently in the numerical simulation of solids with large numbers of fluid-filled pores. 
The feasibility and correctness of the proposed computational model are verified in the 
numerical examples in comparison with the results of the analytical solution in the case 
of a single spherical fluid-filled pore under uniform pressure in full space and with the 
results of the subdomain BIE in a number of other cases. The overall mechanical 
properties of solids are simulated using a representative volume element (RVE) with a 
single or multiple fluid-filled pores, up to one thousand in number, with the proposed 
computational model, showing the feasibility and high efficiency of the model. The effect 
of random distribution of fluid-filled on overall properties is also discussed. Through 
some examples, it is observed that the effective elastic properties of solids with a large 
number of fluid-filled pores in random distributions could be studied to some extent by 
those of solids with regular distributions. 
 
Keywords: Fluid-filled pores, boundary integral equation, eigenstrain, near-filed group, 
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1 Introduction 
The determination of the elastic states and effective elastic properties in elastic solids 
containing many inclusions is of considerable interest in the research of solid mechanics 
and engineering. In previous investigations, researchers paid more attention to the 
problem of composites with solid inclusions. Some composites such as wet soils, porous 
rocks, fault gouges as well as biological tissues, however, are often filled with fluids in 
their pores which can be described as porous skeletons. Due to the effect of the property 
of fluid and the initial fluid pressure in pores, the mechanical behaviors of such materials 
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containing fluid inclusions are different with those with solid inclusions. These materials 
with fluid-filled pores are not only existing widely in nature but also applied broadly to 
the geophysics, hydrogeology, petroleum science, petrophysics, etc. Especially, during 
exploiting energy in the deep earth, the prediction of the elastic properties of deep-seated 
rocks, which usually contain a large number of fluid-filled pores, is of great significance 
for energy exploitation.  
Therefore, there has been a growing interest in studying the various properties of solids 
with fluid-filled pores in recent decades. Robert et al. [Robert, Conoir and Franklin 
(2006)] considered the propagation of elastic waves through two-dimensional lattices of 
water-filled inclusions in an aluminum matrix. Markov et al. [Markov, Kazatchenko, 
Mousatov et al. (2010)] studied the permeability of the fluid-filled inclusions in porous 
media. Markov et al. [Markov, Kazatchenko, Mousatov et al. (2012)] analyzed the 
dielectric properties of fluid-saturated bone. A variety of different techniques also has 
been developed and used by investigators to interpret and characterize the effective 
mechanical properties for such materials. The effective moduli and related problems of 
solids with many cracks and cavities were addressed by Kachanov et al. [Kachanov 
(1993); Kachanov, Tsukrov and Shafiro (1994)]. Subsequently, Kachanov et al. 
[Kachanov, Tsukrov and Shafiro (1995)] analyzed the fluid pressure polarization and 
effective elastic response to materials with fluid-saturated cracks and cavities. In 
particular, Shafiro et al. [Shafiro and Kachanov (1997)] also extend this method to 
materials with fluid-filled pores of various shapes. In addition, Levin and Markov [Levin 
and Markov (2005)] presented the elastic characteristics estimation for rocks containing 
isolated saturated pores without fluid overflow. James [James (2013)] applied the 
poroelasticity theory to granular composites having orthotropic porous grains and fluid-
filled pores. Style et al. [Style, Boltyanskiy, Allen et al. (2015)] showed experimentally 
and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft 
solid. Song et al. [Song, Hua and Rudnicki (2016)] studied the shear properties of 
heterogeneous fluid-filled porous media with spherical inclusions. Ma et al. [Ma and 
Yang (2018)] applied the micromechanics theory to determine the local elastic fields of 
the porous media with fluid-filled pores. 
Although numerous researches have been done for solids with fluid-filled pores, however, 
most of them are analytical solutions under some specific assumptions, which are only 
suitable for analysis of solids with few fluid-filled pores. As for the analysis of solids 
with multiple solid inclusions and cracks, numerical methods including the finite element 
methods (FEM), a well-established numerical method, and boundary element methods 
(BEM) have been used [Shen and Yi (2001); Qin and Mai (2002); Dong and Lee (2005); 
Kakavas and Kontoni (2006)]. An advantage of the BEM exists obviously over the FEM, 
in that the discretization is required only on surfaces such as boundaries, interfaces and 
cracks in the BEM instead of discretizing the whole domain in the FEM for elastic 
problems containing cracks or inclusions. However, for large-scale problems of 
inhomogeneity using the BEM, special techniques of fast multipole expansions have to 
be employed [Greengard and Rokhlin (1987); Liu, Nishimura, Tanahashi et al. (2005)], 
which leads to complexity of the algorithm. The limitation in the use of the FEM and the 
BEM, however, would be the efficiency in dealing with the large scale problems, coming 
primarily from the huge quantity of meshes in the FEM and the full system matrix in the 
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BEM when the number of inclusions or cracks increases since the interface unknowns 
needs to be solved simultaneously. Recently, by introducing Eshelby’s idea of the 
eigenstrain and equivalent inclusion into the BEM, Ma et al. proposed the eigenstrain 
formulation of the BIE for numerical analysis of solids with multiple particles [Ma, Yan 
and Qin (2009); Ma, Fang and Qin (2011)] and with multiple cracks [Ma, Guo, 
Dhanasekar et al. (2013)] and with both multiple particles and cracks [Tang, Ma and Yan 
(2016)]. In this way, the difficulty encountered in the large scale numerical simulation of 
solids with solid inclusions and cracks was solved effectively. However, for studies of 
solids with large numbers of fluid-filled pores, it is still a challenge task, considering the 
cases of random distributions in position, shape and property of fluid-filled pores as well 
as the interactions among them, especially for the three dimensional solids. Zhang et al. 
[Zhang, Lv and Zheng (2010); Wang and Henann (2016)] applied the finite element 
method to solids with liquid inclusions. The limitation of these methods is that the 
solution scale would be large since both the matrix and every fluid-filled pore should be 
discretized, which is not suitable for solving the large scale numerical simulation. In 
addition, a boundary element method was developed by Huang et al. [Huang, Zheng and 
Yao (2011)] for solving the problems of 2D solids with fluid-filled pores. This method, as 
practice confirms, is inefficient in solving solids with large numbers fluid-filled pores, 
especially for the three dimensional solids. Most contributions in the literatures are 
concerned with 2D solids and with few fluid-filled pores. The simulation of 3D solids 
with large numbers of fluid-filled pores has been seldom reported.  
In the present work, a novel computational model of the eigenstrain BIE with iteration 
procedure is developed further and extended to the numerical simulation of the three-
dimensional solids with large numbers of fluid-filled pores. Furthermore, with the aid of 
the discrete form of eigenstrain BIE in full space, the local Eshelby matrix are suggested 
and constructed on the group of near field fluid-filled pores defined by distances to the 
current fluid-filled pore. In this way the strong interaction among fluid-filled pores can be 
taken into full consideration in the algorithm so that the convergence of iteration can be 
guaranteed in the numerical simulation of solids with large numbers fluid-filled pores 
using the eigenstrain formulation of the BIE. As the unknowns appear only on the 
boundary of the solution domain, the solution scale of the solids with multiple fluid-filled 
pores with the present model can be greatly reduced, a significant feature because such a 
traditionally time-consuming problem with multiple fluid-filled pores can be solved 
efficiently compared with the existing numerical models of the FEM or the BEM. 
The paper is organized as follows: The computational model for solids with fluid-filled 
pores is introduced in details in Section 2, including the eigenstrain boundary integral 
equations, the Eshelby tensor and the replacement of equivalent inclusions. The Eshelby 
matrix is defined and constructed after grouping of the fluid-filled pores. The solution 
procedures of iteration are also described. The numerical examples are presented in 
Section 3, in which computed results are compared with the analytical solution in the 
case of a single spherical fluid-filled pore in full space and with those of the subdomain 
BIE in other cases. The overall mechanical properties of solids are computed using a 
representative volume element (RVE) with a single or multiple fluid-filled pores 
distributed either regularly or randomly with the proposed computational model. The 
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efficiency is compared for the two computational models, the proposed model and the 
subdomain BIE. The conclusions are summarized in the last section. 

2 Computational models 
2.1 Formulation of eigenstrain boundary integral equations 
In the present model, a 3D solid containing NI pores filled with fluids is considered as 
shown in Fig. 1, where the solid is assumed to be isotropic material denoted as Ω with the 
outer boundary Γ, representing the solution domain of elastic medium or the base matrix. 
The fluid filled in pores is assumed to be linear nonviscous and compressible. The 
domain of the filled-pores is denoted by ΩI (I=1,2,…, NI) with the boundary ΓI (ΓI=ΩI∩Ω) 
or the interface. For the solution domain Ω considered, the displacement and stress fields 
of the problem can be described by the eigenstrain formulations of the BIE respectively 
as follows [Ma, Yan and Qin (2009)]: 
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stands for the free term resulted from the domain integral of Eq. (2). p and q in Eqs. (1), 
(2) and (3) denote the source and field point, respectively. iu , ijσ  and iτ  stand for the 
displacements, stresses and tractions, respectively. 0

ijε  represents the eigenstrain in ΩI 
after the fluid-filled pores being replaced by the equivalent inclusions. Ωε in Eq. (3) is an 
infinitesimal region in ΩI with the boundary Γε around the source point p located inside 
ΩI and ( ) ( )l l lx x q x p= − . In Eqs. (1) and (2), *

iju , *
ijτ  and *

ijkσ  stand for the Kelvin’s 

fundamental solutions for displacements, tractions and stresses, respectively. 
*
ijku , *

ijkτ and *
ijklσ  are correspondingly the derived fundamental solutions. In the boundary 

integral equations above, the eigenstrains or the states of pores filled with fluids are all 
unknowns to be determined step by step in the solution procedures. It needs to be pointed 
out, however, that these eigenstrain BIEs can only describe, as a matter of fact, the 
displacement and stress fields of homogeneous linear elastic media. In order to obtain the 
solutions of solids with fluid-filled pores via the eigenstrain BIEs, the replacement of 
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pores by equivalent inclusions has to be carried out beforehand with the aid of Eshelby 
tensors, which will be described in what follows. 
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Figure 1: Model of 3D solid with multiple fluid-filled pores 

2.2 Eshelby tensor and equivalent inclusion 
The following relation holds true according to Eshelby’s original work [Eshelby (1957); 
Eshelby (1959)]. 

0c
ij ijkl klε S ε=                                                                                                                       (4) 

where 0
ijε  stands for the eigenstrain or a stress-free strain of a single inclusion ΩI of 

elastic media without constrain. c
ijε  denotes the constrained strain of the inclusion in full 

space, and Sijkl represents Eshelby tensor. In general, Eshelby tensor depends on the 
geometry of ΩI. For the simple geometries such as sphere and ellipsoid, Eshelby tensor 
can be found in literature [Eshelby (1957); Li, Sauer and Wang (2007); Li, Wang and 
Sauer (2007); Li and Wang (2008)] or can be expressed in integral form [Ma, Fang and 
Qin (2011)] for numerical computation by 
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where ν and μ are the Poisson’s ratio and shear modulus of the elastic media, respectively. 
δij is the Kronecker symbol. It needs to be pointed out that Eq. (5) is exact only for the 
uniform distribution of eigenstrain in ΩI.  
It is noticed that the fluid can bear only pressure and correspondingly the compressive 
‘stresses’ and ‘strains’ with minus sign. As mentioned previously, the fluid in the pore is 
assumed to be linear nonviscous and compressible, therefore the constitutive relation for 
fluids confined in the pores in the present work can be expressed as: 

= I
kk

V Kp
V

ε∆
=                                                                                                                    (6) 

where V, ΔV, I
kkε , K and p, denote the volume, the volume variation of the pores, the 

scalar component of strain, the compressibility and pressure of the fluid, respectively. 
According to Hooke’s law, if a fluid-filled pore under the far-field applied uniform strain 
εij is replaced by an equivalent inclusion with the same material of the elastic media 
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without altering the original state of the fluid-filled pore, the following conditions should 
be satisfied as follows in 3D elasticity, respectively, for the scalar and the deviatoric 
components of strains 
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where the deviatoric components of the applied and the constrained strains as well as the 

eigenstrains are defined as 
1
3ij ij ij kke ε d ε= − , 

1
3

C C C
ij ij ij kke ε d ε= − , 0 0 01

3ij ij ij kke ε d ε= − , 

respectively. Eq. (8) reflects the fact that there is no shear component either for stress or 
for strain in the pore filled with fluid. Eqs. (7) and (8) can be rewritten in explicit form as 
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By substituting (4) into (9), the eigenstrain in the equivalent inclusion can be obtained via 
the applied strains for the single fluid-filled pore using the following equations 
( ) 0 0 0 0 0 0
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 (11a,b,c,d,e,f) 
which can be written concisely in a matrix form as 

0 = −Sε ε                                                                                                                          (12) 
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It is seen from the property of static fluid that although the scalar component of strains, 
I
kkε , of fluids in Eq. (7) are uniformly constant and position independent within each 

fluid-filled pore. However, the constrained strains so as to the eigenstrains are, in general 
case, position-dependent within the pore because of the geometry dependence of Eshelby 
tensor. This is also true for the deviatoric components. As the pores with spherical and 
ellipsoidal shapes are considered in the present work, the uniform distribution of constant 
eigenstrain is true for a single fluid-filled pore in full space under the uniform far-field 
loading, which suggests that the constrained strains C

ijε  are uniformly constant in Eq. (9) 
for a single fluid-filled pore. 

2.3 Grouping of pores and local Eshelby matrix 
For solids with multiple fluid-filled pores, it is obvious that the applied strains or the 
applied stress at each fluid-filled pore will be disturbed by other fluid-filled pores. That is, 
the interactions exist among pores, especially for those in the local zone surrounding the 
current pore in concern. The gratitude of the interactions depends on the distances among 
fluid-filled pores, coming obviously from the self-evident physical effect among the 
pores and being seen readily from the distance dependence of fundamental solutions in 
the BIE formulations. In this regard, when computing the applied strains for the current 
pore via applied stresses, in addition to the far-field loading, all of the other pores 
surrounding the current pore as well as those in the domain of concern should be taken 
into consideration. More precisely, the interactions give rise to two effects to be taken 
into consideration adequately. The first effect lies apparently in that the applied strains 
owing to loading are no longer constant within the pores, so as to the eigenstrains. 
However, the constant assumption of eigenstrain would be accurate enough provided that 
the distance conditions are satisfied [Tang, Ma and Yan (2016)], which has been verified 
previously in the computational practices [Ma, Yan and Qin (2009); Ma, Fang and Qin 
(2011)]. In the present work, the eigenstrain and the applied strain are computed at the 
geometrical center of each pore. The second effect is considered to be the principal factor 
that the convergence of iteration procedures will be interfered by the interactions. The 
gratitude of the interactions depends on the distances of pores to the current pore in 
concern. The shorter the distance it is, the stronger the interactions among them, and vice 
versa. In the present work, in order to deal with the strong interactions of fluid-filled 
pores with short distances in the local region on the current pore in consideration, all the 
pores in the computing domain are divided into two groups as shown in Fig. 2. The near-
field group for the current pore I in full space is defined as those placed within the circle 
of dashed line centered at the current pore, neglecting tentatively the effect of the far-field 
group of pores, consisting of those placed outside the circle. With such definitions, the 
near-field pores belong to the short distance group with relatively strong effect of 
interactions on the current pore while the far-field pores belong to the long distance group 
with relatively weak effect of interactions on the current pore. 
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I

 
Figure 2: Definition of the near-field group for the current pore I in full space 

Suppose that the number of pores in the near-field group is N in the full space and neglect 
tentatively the pores in the far-field group, the stresses in the pores of the near-field group 
can be expressed as follows, using the stress Eq. (2) of the eigenstrain BIE: 
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where the following integral identity [Ma, Fang and Qin (2011)] has been employed: 
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After interfaces being discretized and following the derivation procedures of pore 
replacement by equivalent inclusions with the aid of Eshelby tensor similar to those 
carried out and described in Subsection 2.2, a matrix form of the discretized eigenstrain 
BIE for the near-field group can be derived as 
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the applied strain vector of the pores in the near-field group, and the matrix [S] is written 
as follows, which correlates the eigenstrains and applied strains of the pores in the near-
field group: 
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where the submatrix of each diagonal term Skk in [S] reflects the relation between the 
eigenstrain and the applied strain for each fluid-filled pore itself, having similar structure 
to that of S in Eq. (12). The explicit expression of S please refers to Eq. (11). In contrast, 
the submatrix of each off diagonal term Sjk (j≠k) in [S] correlates the relations between 
the eigenstrain and the applied strain for different fluid-filled pores in the near-field group, 
reflecting the mutual effects of interactions among pores. It needs to be pointed out that 
every near-field group for each fluid-filled pore is generally unique in the solution 
domain, especially in the case of random distributions of pores. Suppose the current 
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fluid-filled pore is numbered by I in global series, the eigenstrain vector 0
Iε  for each 

fluid-filled pore can be computed by the applied strains vector, { } { }1 2, , , T
N=ε ε ε ε of 

the fluid-filled pores in its own near-field group by the following matrix expression 

{ }0
I I I= −ε T ε                                                                                                                    (17) 

where IT  is obtained from [S] by inversion then contraction of it, named as the local 
Eshelby matrix in the present work. From the derivation process of the local Eshelby 
matrix obtained from the BIE with the aid of Eshelby’s idea for the near-field group of 
pores irrespective of those in the far-field group, it can be seen that the computed 
eigenstrains in the current pore can be considered accurate in the numerical sense because 
the BIE itself is an analytical expression. The errors will come partly from the 
discretization and partly from the assumption of the constant eigenstrain inside fluid-
filled pores so that the strong interactions can be coped with thoroughly and successfully 
among the fluid-filled pores in the near-field group. 
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Figure 3: Flow chart of the solution procedure 

2.4 Solution procedure of iteration 
After replacing all the fluid-filled pores by the equivalent inclusions following Eshelby’s 
idea, the solution domain becomes formally homogeneous with eigenstrains distributed in 
it, which can be solved by the BIE. Eq. (1) can be rewritten in matrix form as 

0Ax = b + Bε                                                                                                                  (18) 
where A, B represent the system matrix and the coefficient matrix formed from the 
domain integrals Eq. (1), respectively. b stands for the right vector formed by known 
boundary quantities with the corresponding integral coefficients, and x denotes the 
boundary unknowns. 0ε  represents the total eigenstrain vector to be solved. It is noticed 
that A, B and b are coefficients which just need to be computed once. At the initiation 
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stage, the local Eshelby matrices are computed firstly for each pore one by one, and the 
eigenstrain vector 0ε  is assigned an initial value by neglecting tentatively the effect of 
the fluid-filled pores (i.e., the whole solution domain only contains the homogeneous 
matrix without pores). Then the boundary unknowns x can be computed by the following 
iterative formula: 
( )1 -1 0( )k k+   x = A b + Bε                                                                                                (19) 

where k stands for the iteration count. The maximum differences of the eigenstrain 
components between two consecutive iterations are defined as 

{ }0( ) 0( 1)
max max k kε −= −ε ε                                                                                      (20) 

The convergence criterion is checked at each iteration step as follows 
3

max 10Eε −≤                                                                                                                   (21) 
where E denotes the Young’s modulus of the solids. If the criterion does not meet, the 
boundary unknowns are renewed using Eq. (19). The flow chart of the iterative 
procedures is shown in Fig. 3. The crucial steps can be summarized as follows: 
(a) Prepare the coefficients A, B, b in Eq. (18) and the local Eshelby matrix for all the 
near-field groups. 
(b) Compute the outer boundary unknowns via Eq. (18) without eigenstrains. 

(c) Assign an initial value for eigenstrain vector 0ε . 
(d) Renew the boundary unknowns. 
(e) Compute the eigenstrain with applied strains in the near-field and the far-field groups. 
(f) Check the convergence criterion (21). 
(g) If the convergence criterion (21) is not met, return to Step (e). Otherwise, go to next 
Step (h). 
(h) Compute the stresses in solid and the pressures of fluids in pores as well as the overall 
properties of solid. 
In the present work, when the distances between the source and the field points, p and q, 
are relatively small, the following boundary type integrals are used instead of the domain 
integrals [Ma, Fang and Qin (2011)], which corresponds to the case for the near-field 
group 

( ) ( ) ( ) ( ) ( )* *, , ,
I I

ijk k ijp q d q x p q p q d qσ τ
Ω Γ

Ω = Γ∫ ∫                                                                   (22)  

( ) ( ) ( ) ( ) ( ) ( )* *, , , ,   
I I

ijkl l ijk Ip q d q x p q p q d q pσ τ
Ω Γ

Ω = Γ ∉Ω∫ ∫                                                 (23) 

respectively for the domain integrals in Eqs. (1) and (2). Notice the difference between 
Eqs. (23) and (14) because the domain integral in (2) or (23) is strong singular. The free 
term O*

ijkl exists or not depending on if the field and source points, p and q, are coincide 
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in ΩI or not. Whereas when the distances between the source and field points are 
relatively large, the one-point computing [Ma, Fang and Qin (2011)] is employed to 
approximate these domain integrals as follows: 

( ) ( ) ( )* *, ,
I

ijk ijk Ip q d q p q Vσ σ
Ω

Ω ≈∫                                                                                       (24) 

( ) ( ) ( )* *, ,
I

ijkl ijkl Ip q d q p q Vσ σ
Ω

Ω ≈∫                                                                            (25) 

where VI represents the volume of the pore, which corresponds to the case for the far-
field group. 
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Figure 4: (a) The axes of ellipsoid; (b) Meshes of the outer surface; (c) Meshes of the 
interface of a pore in one octant 

3 Numerical examples 
In this section, some numerical examples are presented to demonstrate the accuracy and 
efficiency of the eigenstrain formulation of BIE and the corresponding iterative solution 
procedure for the 3D solids with fluid-filled pores. As very few analytical solutions exist, 
all the results are obtained at least by two procedures for the purpose of comparison, the 
proposed eigenstrain BIE computational model in the present paper and the subdomain 
BIE proposed by Huang et al. [Huang, Zheng and Yao (2011)], where the solids with 
fluid-filled pores were analyzed using 2D model. For the pores with spherical shape, the 
radius of the pore is denoted as r0, while for the pores with elliptical shape, the definition 
of the axes of the ellipsoid is shown in Fig. 4(a), where a, b and c are three half radii of 
the ellipsoidal pore. In the following analysis, a=b is used and the aspect ratio is defined 
as the ratio of c and a (i.e. the shape of the elliptical pore is chosen as either oblate 
(a=b>c) or prolate (a=b<c)). The meshes used for the outer boundary of the 
representative volume element (RVE) are shown in Fig. 4(b). The interface element in 
one octant of elliptical fluid-filled pore is shown in Fig. 4(c), which is used for computing 
Eshelby tensors in the eigenstrain BIE and used also in the subdomain BIE. It should be 
pointed out that the interface discretization makes no contribution to the degrees of 
freedom of the problem in the present computational model. In the computations, the 
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Poisson’s ratio and Young’s modulus of solid media are taken to be ν=0.3 and E=1, 
respectively. 

a

p

p0

x1

x2

x3

 
Figure 5: A thick-wall spherical shell containing compressible fluid under uniform outer 
pressure 

3.1 Verification of the proposed method 
In order to verify the correctness and accuracy of the proposed computational model, a 
simple example of a spherical fluid-filled pore in full space is presented first. The analytical 
solution of it can be obtained from a thick-wall spherical shell filled with compressible fluid 
subjected to a uniform pressure, p0, on its outer boundary as shown in Fig. 5. The inner 
pressure in the pore, p, is induced by p0. As mentioned at the beginning of Section 2, the 
pore with linear compressible fluid is assumed in the present model. The analytical solution 
of the radical stress and displacement can be written as follows for the shell 

3 3 3 3 3 3

03 3 3 3 3 3

( ) ( )
( ) ( )r

a r b b a rp p
r b a r b a

σ − −
= +

− −
                                                                            (26) 

3 3 3 3
0 03 3 2

1 1(1 2 )( ) ( )
( ) 2r

vu v a p b p r a b p p
E b a r

+ = − − + − −         
                        (27) 

where a and b denote the inner and outer radius of the spherical shell, respectively. E and 
ν represent the elastic modulus and Poisson’s ratio of the shell. Similar to the deriving 
process in the literature [Huang, Zheng and Yao (2011)], the inner pressure, p, as shown 
in Fig. 5, can be obtained as 

3

03 3 3 3

9 (1 )
2 ( ) 6(1 2 ) 3(1 )

b vp p
EK b a v a v b

−
=

− + − + +
                                                          (28) 

where K is the compressibility of the fluid. When the outer radius, b, approaches to 
infinite, Eq. (28) becomes 

0
9(1 )

2 +3(1+ )
vp p

EK v
−

=                                                                                                      (29) 

which is the analytical solution of the inner pressure with a spherical fluid-filled pore in 
full space, under a uniform pressure. 
The problem of a single spherical fluid-filled pore in full space is computed by the two 
numerical procedures, the subdomain BIE and the eigenstrain BIE. The numerical results of 
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the inner pressures, the radial displacements and the radial stresses of solid media at point 
(x1=2r0, x2=0, x3=0) with different compressibility of the fluid are listed in Tabs. 1, 2 and 3 
in comparison with the analytical solutions. The minus values in the table indicate 
compression. It can be seen that the results of both the two numerical procedures are in 
good agreement with those of the analytical ones. Moreover, the results of eigenstrain BIE 
perform even better than that of the subdomain BIE, showing the correctness and feasibility 
of the proposed computational model. From Tab. 1 through 3, it also can be observed that 
whether for the inner pressures or the radial displacements and stresses of solid media, the 
results will decrease with the increasing of the compressibility of the fluid. 
In the case of elliptical fluid-filled pores and all the following examples, as there is no 
analytical solution found, the comparison is carried out between the two numerical 
procedures, the subdomain BIE and the eigenstrain BIE. The inner pressures in a single 
elliptical fluid-filled pore as a function of aspect ratio are compared in Figs. 6(a) and 6(b) 
under different far-filed loading modes and different compressibility of fluid, respectively. 
In the computation, the fluid-filled pore is loaded with unit load in far-field. It can be seen 
from Fig. 6 that the results of both the two numerical procedures are in good agreement 
with each other. Moreover, it also indicates that the inner pressures are greatly affected by 
the shape of the pores and compressibility of fluid as well as the external loading modes. 

Table 1: Comparison of inner pressures in a single spherical fluid-filled pore 

K 
Inner pressures (p/p0)  Absolute errors 

Analytical Eigenstrain Subdomain  Eigenstrain Subdomain 
1×10-9 -1.6154 -1.6154 -1.6162  0.1243E-13 0.8012E-03 
2×10-2 -1.5990 -1.5990 -1.5997  0.1221E-13 0.7586E-03 
1×100 -1.0678 -1.0678 -1.0676  0.6661E-15 0.2372E-03 
7×100 -0.3520 -0.3520 -0.3515  0.2720E-14 0.4080E-03 
1×101 -0.2636 -0.2636 -0.2633  0.2165E-14 0.3361E-03 

 

Table 2: Comparison of radial displacements at the point (x1=2r0, x2=0, x3=0) in solid media 

K 
Radial displacements (ur/(p0/E))  Absolute errors 

Analytical Eigenstrain Subdomain  Eigenstrain Subdomain 
1×10-9 -3.5000 -3.5004 -3.5004  0.4124E-03 0.3817E-03 
2×10-2 -3.5133 -3.5137 -3.5137  0.4014E-03 0.3920E-03 
1×100 -3.9449 -3.9450 -3.9453  0.4543E-04 0.4173E-03 
7×100 -4.5265 -4.5261 -4.5260  0.4343E-03 0.4984E-03 

1×101 -4.5983 -4.5978 -4.5976  0.4935E-03 0.6869E-03 
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Table 3: Comparison of radial stresses at the point (x1=2r0, x2=0, x3=0) in solid media 

K 
Radial stresses (σr/E)  Absolute errors 

Analytical Eigenstrain Subdomain  Eigenstrain Subdomain 

1×10-9 -1.0769 -1.0769 -1.0769  0.6463E-04 0.6989E-04 

2×10-2 -1.0749 -1.0748 -1.0748  0.6291E-04 0.7132E-04 

1×100 -1.0085 -1.0085 -1.0084  0.7121E-05 0.6976E-04 

7×100 -0.9190 -0.9191 -0.9191  0.6806E-04 0.7846E-04 

1×101 -0.9079 -0.9080 -0.9081  0.7734E-04 0.1084E-03 

 

 
(a)                                                               (b) 

Figure 6: Inner pressures in a single elliptical pore as a function of aspect ratio, c/a, 
under different load modes (a) and different compressibility of fluid (b) 

In addition, the stresses at solid media adjacent to the single elliptical fluid-filled pore under 
far-field single compression in x3 direction is also compared and presented in Fig. 7. Further, 
the stresses at solid media adjacent to two and four spherical fluid-filled pores under far-
field uniform triaxial compression are compared and presented in Figs. 8(a) and 8(b), 
respectively. It can be seen from Figs. 7 and 8 that the results of both the two numerical 
procedures, the eigenstrain BIE and the subdomain BIE, are in good agreement with each 
other. It also can be seen from Fig. 8 that the assumption of constant eigenstrain in pores is 
appropriate and feasible for at the present computational conditions, if the non-dimensional 
distances between pores are not too small in the case of multiple pores. 
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Figure 7: Dimensionless stresses at solid media adjacent to the pore under single 
compression in x3 

 
(a)                                                                  (b) 

Figure 8: Dimensionless stresses at solid media adjacent to the two spherical fluid-filled 
pores (a) and to the four spherical fluid-filled pores (b) under far-field uniform triaxial 
compression. 
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Figure 9: The RVE with a single fluid-filled pore (a) and with triply periodically spaced 
fluid-filled pores (b) 
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3.2 The overall properties of the RVE 
In this subsection, the effective elastic properties of a cube RVE, the 3D solid with fluid-
filled pores as shown in Fig. 9, are solved, containing either a single or triply periodically 
spaced spherical fluid-filled pores, respectively. The size of the RVE is set as H=W=20. The 
outer boundary of the RVE and each of the interfaces are discretized by using 164 and 290 
nodes, respectively, as shown in Figs. 4(b) and 4(c). In the computation, the RVE is loaded 
with unit load in either single compression or uniform triaxial compression. The volume 
fraction is defined as the ratio of the total volume of pores and the volume of the RVE. In the 
present work, the range of volume fraction varies from 0 to 0.2. 

3.2.1 Overall properties of RVE with a single fluid-filled pore 
In order to further verify the correctness and feasibility of the proposed algorithm in present 
work, the effective elastic properties of RVE with a single fluid-filled pore (NI=1) is solved 
using the proposed computational model and compared with the subdomain BIE. The 
overall bulk modulus, κ , of RVE with an ellipsoidal pore is shown in Fig. 10 as a function 
of volume fraction under uniform triaxial unit compression. The numerical results show that 
the overall bulk modulus will increase with the increase of volume fraction, and that the 
lower the aspect ratio of the ellipsoid is, the lower the overall bulk modulus will be. 
The various non-dimensional overall properties, including elastic modulus, /E E , Poisson’s 
ratio, ν , shear modulus, / Em , bulk modulus, κ , of RVEs with a single fluid-filled pore as a 
function of aspect ratio, c/a, are shown in Fig. 11 under uniaxial compression or uniform 
triaxial compression. The anisotropic phenomenon can be observed in the case of elliptical 
fluid-filled pores. From the intersection point of the dashed lines in Figs. 11(b) and 11(c), it 
can be observed that if c/a=1 then the fluid-filled pore is spherical, and the overall properties 
become isotropic, consistent with the physical facts. 
 

 
Figure 10: Overall bulk modulus of RVE with a single fluid-filled pore as a function of 
volume fraction 
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                                        (a)                                                                     (b) 

 
(c)                                                                     (d)      

Figure 11: Overall properties of RVE with a single fluid-filled pore as a function of 
aspect ratio: Overall elastic modulus (a), overall Poisson’s ratio (b), overall shear 
modulus (c) and overall bulk modulus (d) 

It can be seen also from Figs. 10 and 11 that the results of both the two numerical 
procedures, the eigenstrain and the subdomain, are in good agreement with each other, 
showing further the correctness and feasibility of the proposed computational model in 
the present work. 

3.2.2 Overall properties of RVE with multiple fluid-filled pores 
In this subsection, the situation of regular distribution of multiple pores is considered. 
The RVE with triply periodically spaced multiple fluid-filled pores is shown 
schematically in Fig. 9(b). As the degree of freedom increases very fast with the increase 
of the number of fluid-filled pores, the computing program using the subdomain BIE will 
not work on the desktop computer (Intel i7-4770 CPU, 3.40 GHz). Therefore, the 
comparison between the two numerical procedures, the eigenstrain BIE and subdomain 
BIE, cannot be performed for the RVE containing more fluid-filled pores. However, there 
is no such limitation for the computational model proposed in the present work. 
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(a)                                                                  (b) 

Figure 12: Overall properties of RVE with multiple fluid-filled pores as a function of 
pore number, NI: Elastic modulus (a) and Poisson’s ratio (b) 

The results for the overall properties of the RVE with triply periodically spaced 
spheroidal fluid-filled pores as a function of the total fluid-filled pore number, NI, are 
shown in Fig. 12, using the eigenstrain BIE, while the volume fraction of pores is kept 
constant. It can be seen that the values of computed overall elastic modulus and Poisson’s 
ratio become stable gradually when the pore number grows large enough, that is, greater 
approximately than 216. Therefore, 216 fluid-filled pores in the RVE are employed in the 
following numerical examples in the present work. 
The overall bulk modulus κ  of the RVE with multiple ellipsoidal pores is presented in 
Fig. 13 as a function of fluid compressibility, K, under uniform triaxial compression. It is 
seen from Fig. 13 that the values of computed bulk modulus vary fairly steadily when the 
ranges of compressibility K are less than 10-2 or greater than 10+2. In contrast, however, 
the values of computed bulk modulus fall quickly when the values of compressibility 
vary within the range between 10-2 and 10+2. It is interesting to see from the intersection 
point of the two dot lines in Fig. 13 that when the value of compressibility is set to that of 
the solid media, K=3(1-2v)/E, the vertical dot line, then the computed bulk modulus is 
equal to that of the solid media, κ =E/3(1-2v), the horizontal dot line. 
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Figure 13: Overall bulk modulus of RVE with multiple fluid-filled pores as a function of 
fluid compressibility, K 

 
(a)                                                                     (b) 

Figure 14: Overall elastic modulus (a) and Poisson’s ratio (b) of RVE with multiple 
fluid-filled pores as a function of volume fraction 

The overall properties of the RVE with multiple spherical pores under uniaxial 
compression are presented in Figs. 14(a) and 14(b), respectively, as a function of volume 
fraction. It is seen from Fig. 14() that the overall elastic modulus decrease monotonically 
as expected with the increase of fluid volume fraction. The higher the compressibility of 
fluid is, the lower the overall elastic modulus will be. However, the overall Poisson’s 
ratio behaves more complicated with volume fraction as shown in Fig. 14(b). 
The overall Poisson’s ratio and shear modulus of the RVE with multiple pores are 
presented in Figs. 15(a) and 15(b), respectively, as a function of aspect ratio under 
uniaxial compression at different fluid compressibility. The isotropic phenomenon is also 
observed in the case of multiple spherical fluid-filled pores (i.e., a=b, c/a=1) from the 
intersection point of the two dashed lines in Fig. 15. The values of Poisson’s ratio again 
behave in a more complex fashion with the increase of the aspect ratio, c/a. 
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(a)                                                                (b) 

Figure 15: (a) Overall Poisson’s ratio and (b) shear modulus of RVE with multiple fluid-
filled pores as a function of aspect ratio, c/a 
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Figure 16: Schematics of the RVE with multiple fluid-filled pores in random distribution 
by position, size and angle (a) and the definition of tilting angle, θ, of elliptical pore (b) 

3.3. Effect of random distribution on overall properties 
It is more often in reality that the fluid-filled pores are randomly distributed in solids by 
positions, shapes, sizes and properties, etc. In the present work, the pseudo random function 
in computer program written in Fortran language is employed to generate random 
distributions. The random distributions of pores by position and size as well as angle is shown 
schematically in Fig. 16(a) in the RVE with multiple fluid-filled pores, and the tilting angle, θ, 
of elliptical pore is shown in Fig. 16(b), where the angle, β, is kept constant. The definitions 
of the near-field group are similar to those correspondingly in regular distributions except that 
the number of pores may be different in the near-field group in random distributions. 
The non-dimensional overall properties, including elastic modulus, /E E , Poisson’s ratio, 
ν , shear modulus, / Em , of RVEs with multiple fluid-filled pores as a function of volume 
fraction, are shown in Figs. 17(a) and 17(b) for both the regular and random distributions, 
respectively, under uniaxial compression, and the random distribution is consisted of the 
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random variation of positions of elliptical pores combined with the random variation of 
tilting angles, θ, of ellipsoid as shown in Fig. 16(b). It can be seen from Fig. 17 that both 
the overall elastic modulus and shear modulus decrease with the increase of volume 
fraction as expected, and the differences of the various overall properties are negligibly 
small between the regular and random distributions. 
The bulk modulus of the RVE with two kind of randomly distributed fluid-filled pores are 
also computed and compared with those of solids with regularly distributed fluid-filled pores. 
The first kind of distribution is composed of the random variation of compressibility of pores 
in the range K=10-9-100 combined with the random variation of positions of elliptical pores. 
The second kind includes, in addition to those of compressibility and position being the 
same with that of the first kind, the random variation of tilting angles, θ, of ellipsoid as 
shown in Fig. 16(b) as well as the sizes of pores with a fixed aspect ratio, c/a, of 0.7. The 
computed results, the overall bulk modulus of the RVE with multiple pores as a function of 
volume fraction under uniformly triaxial compression, are summarized in Fig. 18, showing 
that the overall bulk modulus of the two random distributions correspond to those of the 
regular distributions with the compressibility K=4.95×10-2 and K=2.25×10-1, respectively, 
which implies that when the number of randomly distributed fluid-filled pores becomes 
large enough in the solid media of finite size, the effect of fortuitous cancellation can be 
observed for the fluid-filled pores in random distributions. The effective elastic properties of 
solids with the fluid-filled pores in random distributions could be studied to some extent by 
those of solids with regular distributions. However, as the correlation between the two seems 
of intricacy, further researches need to be carried out carefully and systematically for this 
issue in future work. 

 
                                      (a)                                                               (b) 

Figure 17: Comparison of overall elastic modulus (a) and overall Poisson’s ratio and 
shear modulus (b) of RVE with multiple pores between random and regular distributions 
as a function of volume fraction 
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Figure 18: Comparison of overall bulk modulus of RVE with multiple pores between 
random and regular distributions as a function of volume fraction 

3.4 Comparison of efficiencies 
As mentioned previously, when the number of fluid-filled pores becomes larger, the 
program of the subdomain BIE method will not work in the present desktop computer 
(Intel i7-4770CPU, 3.40 GHz). Therefore, using a few fluid-filled pores, the degree of 
freedom and CPU time of two computational models, the eigenstrain BIE and subdomain 
BIE, are compared in Tab. 4 as well as in Fig. 19 under uniform triaxial compression, 
showing that the efficiency of the proposed eigenstrain computational model is much 
higher than that of the subdomain procedure when the total number of pores grows larger. 

Table 4: Comparison of the degrees of freedom and CPU times for the two algorithms 

NI Degree of freedom   CPU time (s) 

Subdomain Eigenstrain    Subdomain Eigenstrain 
1 1362 492    11.6 3.6 

2 2232 492    64.5 4.1 

4 3972 492    273.1 5.3 

8 7452 492    6044.7 10.7  
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Figure 19: Comparison of CPU times for the two computing procedures, the eigenstrain 
and the subdomain, as a function of total pore numbers, NI 

This is because the size of the system matrix of the subdomain procedure will increase 
with the total pore number, while the size of the system matrix of the proposed 
eigenstrain BIE model remain unchanged as the unknowns appear only on the outer 
boundary of solution domain, while the interface unknowns do not appear in the system 
equations. It is known that the implementation of the conventional BEM results in a full 
system matrix. The cost to solve such a matrix will grow exponentially with the increase 
of its size so that special techniques of fast multipole expansions [Greengard and Rokhlin 
(1987); Liu, Nishimura, Tanahashi et al. (2005)] have to be employed for large scale 
problems. In the proposed computational model, as a matter of fact, the solution of local 
Eshelby matrices does pay cost as the number of local Eshelby matrices, which needs to 
be solved also, will increase with the growing of pore number. However, from the 
computational point of view, the workload of solving a problem with many small 
matrices, corresponding to the case of the proposed model, would be much efficient than 
that of solving a single huge matrix, which is just the case of the subdomain procedure. 
More the number of pores involved, much greater the difference of efficiencies between 
the two approaches will be, as shown in Tab. 4 and Fig. 19, especially for the 3D problem. 
In the present work, it is observed from the computational practice that the convergence 
can usually be achieved by 2-6 iterations. The maximum iteration time is no more than 9 
so that the convergence can be guaranteed, indicating that the strong interactions among 
the pores in the near-field group are overcome by introducing the corresponding local 
Eshelby matrix. 

4 Conclusions 
In this paper, a novel computational model of eigenstrain BIE with the corresponding 
iterative solution procedure is developed for analysis of 3D solids with fluid-filled pores 
in great numbers. All the fluid-filled pores in the computing domain are divided into the 
near-field groups and far-field groups according to the distances to the current pore. The 
concept of local Eshelby matrix, defined on pores in the near-field group having strong 
effects of interaction on the current pore, has been introduced into the computational 
model to resolve the problem of interactions among fluid-filled pores. Moreover, the 
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construction of local Eshelby matrix is considered as a key step of the present method to 
guarantee the convergence of iteration. The feasibility and correctness of the proposed 
computational model are verified in comparison with the results of the analytical solution 
in the case of a single spherical fluid-filled pore in full space and of the subdomain BIE 
in all other cases. The results for the overall mechanical properties are simulated and 
presented using a cube RVE with single or multiple fluid-filled pores, up to one thousand 
in number, with the proposed computational model. As the unknowns appear only on the 
boundary of the solution domain, the solution scale of solids with multiple fluid-filled 
pores with the present model can be remained fairly small, a significant feature because 
such a traditionally time-consuming problem with multiple fluid-filled pores can be 
solved efficiently compared with the existing numerical models of the FEM or the BEM. 
In addition, the effect of random distribution of fluid-filled on overall properties is also 
discussed in the present work. 
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