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ABSTRACT

In this manuscript, we analyze the solution for class of linear and nonlinear Caputo fractional Volterra Fredholm
integro-differential equations with nonlinear time varying delay. Also, we demonstrate the stability analysis for
these equations. Our paper provides a convergence of semi-analytical approximate method for these equations.
It would be desirable to point out approximate results.
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1 Introduction

Nowadays, the study of differential equations with nonlinear time varying delay has attracted a wide-
ranging interest [1–4]. Meanwhile, few research texts have been based on the theoretical aspects. It is
worth to construct an accurate strategy that will facilitate the task of many scholars, followers and experts
later. In mathematics, stability of the system is a mathematical property which deals with the behavior of
the dynamic systems and corresponds to the convergence of solutions of differential, integro differential
and fractional equations [5–12].

It considers as a suitable central role in the study of fractional system [13–15]. This work is perhaps the
best straightforward technique to generalize the related papers [16–21].

In [21], Soliman et al. carried out a detailed and comprehensive analysis of fractional Volterra Fred-holm
integro-differential equation with constant delay. Likewise, our present study motivated, constructed,
continuously developed thus far parallels and properly cited (inspired) by the results of the above work
[22–26]. It also includes analysis extensively, but differs significantly about the aforementioned work. It
is an attempt to generalize different precedent works and in order to achieve a notable contribution with
its counterparts. For more details, this context relied on the appropriate analysis of some linear and
nonlinear problems described by fractional integro-differential equations with variable delays. More
precisely, we receive a noticeable attention to the nonlinear integro-differential equations with nonlinear
time varying delay as in [17]. So far, the strategy of the current research contains four beneficial items.
At the first, existence and uniqueness of the solution of the proposed problem will be examined.
Secondly, we will provide the readers with the stability and the convergence of this solution. At the end,
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we shall suggest a method and its convergence therein. This literature consists of five sections. Some basic
definitions and theorems are introduced in the first section. Indeed, the suggested problem is discussed and
analytical explanation of the proposed problem is detailed in section two. Some Important properties of the
solution is mentioned in section three. A modified method is explained in section four. Finally, An
experimental example is illustrated in section five.

1.1 Mathematical Tools and Theoretical Background
The most commonly notations, definitions and theorems are mentioned. The presented preliminaries are

related to our paper.

Definition 1.1. The Banach space U =C([a, b], ℝ4) is the space of all real-valued continuous functions
from :[a, b]→ℝ4, let U(t) = {u(t):u(t)∈C([a, b], ℝ4 and Dsu∈C([a, b], ℝ4, s∈ (0, 1]} endowed with the
norm ‖ . ‖; ‖ u ‖ =max{|u(t)| + |Dsu(t)|:t∈ [a, b]}, Dsu denotes the Caputo derivative of fractional order s
[27,28].

Definition 1.2. Let σ:U→U be a mapping on a Banach space (U, ‖ . ‖). The point u∈U is called a fixed
point of σ with σu = u.

Definition 1.3. The mapping σ on a Banach space (U, ‖ . ‖) is called contractive if there exists C∈ (0, 1),
such that

kru� rvk � Cku� vk; 8 u; v 2 U : (1)

Definition 1.4. For w∈C([a, b], ℝ4), the q−th Caputo fractional derivative of a function is defined by

DawðtÞ ¼ 1

�ðn� aÞ
Z t

0

ðt � sÞ1þa�n d
nw

dsn
ds; (2)

where n = [q] + 1, m∈ℕ, [q] is Euler Gamma function for q and [q] denotes the integer part of the real
number q.

Definition 1.5. The Mittag-Leffler type is defined as

Ea;bðtÞ ¼
X1
k¼1

tk

�ðak þ bÞ; (3)

at b = 1, a > 0 the previous equation becomes the classical Mittag-Leffler.

Definition 1.6. [27] The fractional equation

DauðtÞ ¼ f ðuðtÞÞ (4)

is Ulam-Hyers stable if there exists Cf such that for each ε > 0 and v∈C([a, b], ℝ4)

kDavðtÞ � f ðvðtÞÞk � e; 8t 2 ½a; b�; (5)

9 a solution v∈C([a, b], ℝ4) of Eq. (1.7) with

kvðtÞ � uðtÞk � Cf e; t 2 ½a; b�; (6)

t is the independent variable.
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Definition 1.7. [27] The fractional integro-equation

DauðtÞ ¼ f ðuðtÞÞ þ
Zb

a

Gðt; s; uðsÞÞds (7)

is Ulam-Hyers stable Rassias stable with respect to ν if there exists a positive constant

L > 0 with the following property: For each u(t) satisfying

DauðtÞ � f ðuðtÞÞ �
Zb

a

Gðt; s; uðsÞÞds
������

������ � mðtÞ (8)

then 9 some solution u0(t) of the above equation such that

kuðtÞ � u0ðtÞk � L mðtÞ: (9)

Definition 1.8. The sequence un1n¼1 of functions converges uniformly on a set D if there exists

ε, N > 0 such that 8t 2 D; n 2 N ; kunðtÞ � uðtÞk � e.

Lemma 1.9. [26] (Gronwall’lemma)

Let u and v be nonnegative continuous functions on some interval t∈ [a, b]. Also, let the function f(t) be
positive, continuous and monotonically non-decreasing on [a, b] and u satisfies the inequality

uðtÞ � f ðtÞ þ
Zb

a

uðsÞvðsÞds; (10)

Then, there holds the inequality

uðtÞ � f ðtÞ expð
Zb

a

vðsÞdsÞ: (11)

Lemma 1.10. [26] (Pachpatte’inequality) Let u, v and w be nonnegative continuous functions onℝ+ and
f(t) be a positive and non-decreasing continuous function, the inequality

uðtÞ � f ðtÞ þ
Z t

0

vðsÞ uðsÞ þ
Zb

a

wðpÞuðpÞdp
2
4

3
5ds; (12)

holds, then

uðtÞ � f ðtÞ 1þ
Z t

0

vðsÞ exp
Zs

0

ðvðsÞþwðpÞÞdp
0
@

1
A

2
4

3
5: (13)

Theorem 1.11. [26] (Banach contraction mapping theorem)

Let (U, ‖ . ‖) be a Banach space, σ:U→U is an operator. If σ is contraction (contractive) mapping. Then
σ has exactly one fixed point.

Theorem 1.12. [27] (Schauder fixed point theorem)
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Let (U, ‖ . ‖) be a closed, convex and nonempty subset of a Banach space C[a, b], suppose that σ:U→U
is a continuous mapping such that σ(U) is a relatively compact subset of C[a, b]. Then σ has at least one fixed
point in U.

2 Analytic Explanation of the Problem

Throughout this paper, we will consider Caputo fractional integro-differential equation of the form:

DauðtÞ ¼ f t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A; (14)

through the initial condition:

uðaÞ ¼ vðuÞ (15)

where Da refers to the α− th fractional derivative of the anonymous function u(t)∈U =C([a, b], ℝ4) which
characterized by the Caputo operator, τ(t) is the time varying delay (continuous delay function),

0 < α < 1, 0 < τ < b, f:[a, b] ×U ×U ×U→U is a continuous function, G, H:[a, b]2 ×U→U→U are
nonlinear Lipschitz continuous functions of u(t) and χ:U→ℝ4 is a continuous function.

Let us assume the following conditions:

(1)There exists a constant Cf > 0, for each u1, u2, v1, v2, w1, w2∈U

jf ðt; u1; v1; w1Þ � f ðt; u2; v2; w2Þj � Cf ½ju1 � u2j þ jv1 � v2j þ jw1 � w2j� (16)

(2)There exists a constant CG > 0

Z t

a

Gðt; x; uðxÞÞdx�
Z t

a

Gðt; x; vðxÞÞdx
������

������ � CGju� vj (17)

(3)There exists a constant CH > 0

Zb

a

Hðt; x; uðxÞÞdx�
Zb

a

Hðt; x; vðxÞÞdx
������

������ � CH ju� vj (18)

(4)There exists a constant Cs. 0

juðt � sÞ � vðt � sÞj � Csju� vj (19)

(5)There exists a constant Cv. 0

jvðuÞ � vðvÞj � Cvju� vj (20)

Theorem 2.1. The Eq. (14) is equivalent to

uðtÞ ¼ Iaf t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
Aþ vðuÞ (21)
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Proof. Integrating two both sides of Eq. (14), we get

I DauðtÞ ¼ I f t; uðt � sðtÞÞ
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A:

This leads to

I1�auðtÞ � # ¼ I f t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A;

Operate with Ia, we have

I uðtÞ ¼ Iaþ1f t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
Aþ #

�ðaÞ
Z t

0

ds

ðt � sÞ1�a : (22)

Then,

I uðtÞ ¼ Iaþ1f t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
Aþ #ta

�ðaþ 1Þ : (23)

Differentiating we obtain

uðtÞ ¼ Iaf t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
Aþ #t

a�1

�ðaÞ :

where # is a constant, then at t = a we deduce that (14) is equivalent to (21).

Let σ:U→U, for any u∈U. Now, we establish the following theorem for the fixed point σ.

Theorem 2.2. The operator σ maps U into itself and it is also continuous on [a, b].

Proof.

k ruðtÞk ¼ vðuÞ þ 1

�ðaÞ
Z t

0

ðt � sÞa�1 f t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A

2
4

3
5ds

������
������

� ckuk þ CGCH
fmax

�ðaþ 1Þ t
akuðs� sðsÞÞkkuk2

� dkuk
� C

(24)

That is, σ maps U into itself. Also, A becomes uniformly bounded. Suppose a sufficiently small number
n > 0,
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k ruðt þ nÞ � ruðtÞk ¼
1

�ðaÞ
Rt
a
ðt � sÞa�1 f s; uððsþ nÞ � sðsþ nÞÞ; Rt

a
Gðsþ n; x; uðxÞÞdx; Rb

a
Hðsþ n; x; uðxÞÞdx

� �� �
ds

����
����

2
4

3
5

� c

�ðaÞ
Z t

a

ðt � sÞa�1 f s; uððsÞ � sðsþ nÞÞ;
Z t

a

Gðs; x; uðxÞÞdx;
Zb

a

Hðs; x; uðxÞÞdx
0
@

1
A

2
4

3
5ds

������
������

2
4

3
5

(25)

In short,

k ruðt þ nÞ � ruðtÞk � 1

�ðaÞ
Z t

a

ðt � sÞa�1kuððsþ nÞ � sðsþ nÞÞ � uððsÞ � sðsÞÞk

þ
Zs

a

ðGðsþ n; x; uðxÞÞ � Gðs; x; uðxÞÞÞdx
������

������ds

þ
Zb

a

ðHðsþ n; x; uðxÞÞ � Hðs; x; uðxÞÞÞdx
������

������ds

� Cf ta

�ðaþ 1Þ kuððsþ nÞ � sðsþ nÞÞ � uððsÞ � sðsÞÞk

þ CGkuðsþ nÞ � uðsÞk þ CHkuðsþ nÞ � uðsÞk:

(26)

Consequently, we thus conclude that

k ruðt þ nÞ � ruðtÞk � Cf ta

�ðaþ 1Þ ½Cs þ CG þ CH �kuðsþ nÞ � uðsÞk

� Fkuðsþ nÞ � uðsÞk (27)

where t∈ [a, b], F ¼ max Cf ta

�ðaþ1Þ ½Cs þ CG þ CH �
n o

, 0 < F < 1. It follows that, ‖ σu(t + n)− σu(t)‖→ 0 as
n→∞.

Then, σu(t) is continuous on [a, b]. Our approach for proving that σ is continuous, we suppose that un
converge to u, 8n 2 N : Then

k runðtÞ � ruðtÞk � kvðunÞ � vðuÞk þ Iaf t; unðt � sðtÞÞ;
Z t

a

Gðt; x; unðxÞÞdx;
Zb

a

Hðt; x; unðxÞÞdx
0
@

1
A

� Iaf t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A;
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If we follow the conditions Eqs. (16)–(20), we reach

k runðtÞ � ruðtÞk � Cvkun � uk þ Cf

�ðaÞ ðCskun � uk þ CGkun � uk þ CHkun � ukÞ

This is equivalent to

k runðtÞ � ruðtÞk � Cv þ Cf

�ðaÞ ðCs þ CG þ CHÞ
� �

kun � uk

This shows that σun→ σu.

2.1 Existence and uniqueness of the solution for Eq. (14)
In what follows, we will investigate the existence and uniqueness of solution for the fractional integro-

differential equation with time-varying delay (variable delay).

Theorem 2.3. Suppose that the conditions Eqs. (16)–(20) hold, then the non-linear fractional integro-
differential Eq. (14) has at least a unique solution u∈U.

Proof. By analogous proof to the continuity of σ operator.

k ruðtÞ � rvðtÞk � kvðuÞ � vðvÞk þ Iaf t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A

� Iaf t; vðt � sðtÞÞ;
Z t

a

Gðt; x; vðxÞÞdx;
Zb

a

Hðt; x; vðxÞÞdx
0
@

1
A;

For brevity,

k ruðtÞ � rvðtÞk � kvðuÞ � vðvÞk þ 1

�ðaÞ
Z t

0

ðt � sÞa�1½kuðs� sðsÞÞ � vðt � sðsÞÞk

;þ
Zs

a

ðGðt; x; uðxÞÞ � Gðt; x; uðxÞÞÞdx
������

������þ
Zb

a

ðHðt; x; uðxÞÞ � Hðt; x; uðxÞÞÞdx
������

�������ds

� Cvku� vk þ Cf ta

�ðaþ 1Þ ½kuðs� sðsÞÞ � vðt � sðsÞÞk þ CGkuðsÞ � vðtÞk þ CHkuðsÞ � vðtÞk:

(28)

In consequent, we have ‖ σu(t)− σv(t)‖≤ Y‖u(s)− v(t)‖, where t∈ [a,b], Y ¼
max Cf ta

�ðaþ1Þ ½Cs þ CG þ CH � þ Cv

n o
, 0 < Y < 1.

We conclude that σ is Lipschitz onUwith Lipschitz constant Y. It is well known that σ is a fixed point as a
consequence of Theorem 1.11., i.e., σ is a contractive mapping. Eq. (14) has immediately at least a unique
solution u∈U.
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Lemma 2.1. Assume that {u(t)} is a continuous function on [a, b], it satisfies

DauðtÞ ¼ f t; uðt � sðtÞÞ; Rt
a
Gðt; x; uðxÞÞdx; Rb

a
Hðt; x; uðxÞÞdx

� �
; a 2 ð0; 1Þ;

uðaÞ ¼ vðuÞ

8<
:

Further, ‖u(t1)− u(t2)‖ ≤ q. Then {u(t)} is equicontinuous on [a, b].

Proof. Without loss of generality, for t1, t2∈ [a, b] such that t1 < t2, we get

kruðt1Þ� ruðt2Þk�kvðuðt1ÞÞ�vðuðt2ÞÞk

þ 1

�ðaÞ
Zt1
0

ðt1�sÞa�1 f ðs; uðs�sðsÞÞ;
Zs

a

ðGðx; w; uðwÞÞdw;
Zb

a

ðHðx; w; uðwÞÞdw
������

������
2
4

3
5ds

� 1

�ðaÞ
Zt2
0

ðt2�sÞa�1 f ðs; uðs�sðsÞÞ;
Zs

a

ðGðx; w; uðwÞÞdw;
Zb

a

ðHðx; w; uðwÞÞdw
������

������
2
4

3
5ds

� 1

�ðaÞ
Zt1
0

½ðt1�sÞa�1�ðt2�sÞa�1� f ðs; uðs�sðsÞÞ;
Zs

a

ðGðx; w; uðwÞÞdw;
Zb

a

ðHðx; w; uðwÞÞdw
������

������
2
4

3
5ds

þ 1

�ðaÞ
Zt2
t1

ðt2�sÞa�1 f ðs; uðs�sðsÞÞ;
Zs

a

ðGðx; w; uðwÞÞdw;
Zb

a

ðHðx; w; uðwÞÞdw
������

������
2
4

3
5dsþCvku�vk

�qCvþ kf k1
�ðaþ1Þ½t

a
1� ta2þ2ðt2� t1Þa�

!0:

(29)

whenever t1→ t2, q > 0, where kf k1¼ sup
t2½a;b�

jf ðt; . . .Þj: Thus, σu(t) is equicontinuous function in U. This

means that σ is relatively compact. Hence, σ is compact. In view of Theorem 1.12, σ has at least one
fixed point (solution of (14)) in U.

Lemma 2.2. If the conditions Eqs. (16)–(20) satisfied, then the non-linear Eq. (14) has a unique solution
provided

max
Cf ba

�ðaþ 1Þ ½Cs þ CG þ CH � þ Cv

� 	
, 1: (30)

Our following attention is focused on checking the stability of the solution u(t) for Eq. (14) in the frame
of Ulam-Hyers and Ulam-Hyers-Rassias.

2.2 Stability Analysis of the Solution for Eq. (14)
Theorem 2.4. Assume that the conditions Eqs. (16)–(20) hold. Then the non-linear fractional integro-

differential Eq. (14) is Ulam-Hyers stable.
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Proof. Let u∈U be a solution of Eq. (14), D(s) is a continuous and non negative function such that

sup

Z t

0

ðt� sÞa�1½RðsÞ�ds
8<
:

9=
;,1; DauðtÞ� f t; uðt�sðtÞÞ;

Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A

������
������� e:

Now, we are going to apply the integral operator Ia to both sides of above equation, we arrive at

uðtÞ � vðuÞ � 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; uðs� sðsÞÞ;
Zs

a

Gðs; p; uðpÞÞdp;
Zb

a

Hðs; p; uðpÞÞdpÞ
0
@

1
Ads

������
������

� e
�ðaÞ t

a
Z t

0

ðt � sÞa�1ds:

Equivalently

uðtÞ � vðuÞ � 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; uðs� sðsÞÞ;
Zs

a

Gðs; p; uðpÞÞdp;
Zb

a

Hðs; p; uðpÞÞdpÞ
0
@

1
Ads

������
������

� eta

�ðaþ 1Þ
� eE1;1ðtÞ:

(31)

for v(t)∈U, it can be written as

vðtÞ ¼ vðuÞ þ 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; vðs� sðsÞÞ;
Zs

a

Gðs; p; vðpÞÞdp;
Zb

a

Hðs; p; vðpÞÞdpÞ
0
@

1
Ads;

The difference |u(t) − v(t)| is given as

juðtÞ � vðtÞj ¼ juðtÞ � uðtÞ þ uðtÞ � vðtÞj

� uðtÞ � vðuÞ � 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; uðs� sðsÞÞ;
Zs

a

Gðs; p; uðpÞÞdp;
Zb

a

Hðs; p; uðpÞÞdpÞ
0
@

1
Ads

������
������

þ uðtÞ � vðvÞ � 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; vðs� sðsÞÞ;
Zs

a

Gðs; p; vðpÞÞdp;
Zb

a

Hðs; p; vðpÞÞdpÞ
0
@

1
Ads

������
������

or equivalent to
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juðtÞ � vðtÞj � eba

�ðaþ 1Þ þ jvðuÞ � vðvÞj

þ 1

�ðaÞ
Z t

0

ðt � sÞa�1
Zs

a

Gðs; p; uðpÞÞdp�
Zs

a

Gðs; p; vðpÞÞdp
0
@

1
Ads

������
������

þ 1

�ðaÞ
Z t

0

ðt � sÞa�1
Zb

a

Hðs; p; uðpÞÞdp�
Zb

a

Hðs; p; vðpÞÞdp
0
@

1
Ads

juðtÞ � vðtÞj � eba

�ðaþ 1Þ þ
Cf

�ðaÞ
Z t

0

ðt � sÞa�1ðCG þ CH Þju� vj dsþ Cvju� vj

� eba

�ðaþ 1Þ þ
R

�ðaÞ
Z t

0

ðt � sÞa�1ju� vj dsþ Cvju� vj

From Gronwall’s lemma Eqs. (10), (11) yields

juðtÞ � vðtÞj � eba

�ðaþ 1Þ þ
R

�ðaÞ
Z t

0

ðt � sÞa�1ju� vj dsþ Cvju� vj

� eba

�ðaþ 1Þ expð R

�ðaÞ
Z t

0

ðt � sÞa�1ju� vj dsÞ þ Cvju� vj

� eK:

(32)

where K > 0, R =Cf(CG +CH) (CG + CH) such that

juðtÞ � vðtÞj � eK: (33)

In consequence, the problem (14) is stable in the sense of Ulam-Hyers. This completes the proof.

Theorem 2.5. Suppose that the conditions Eqs. (16)–(20) satisfied, P(t)∈U is an increasing function and
9Cp . 0 such that Ia � CpPðtÞ for any t∈ [a, b]. Then the non-linear fractional Eq. (14) is Ulam-Hyers-
Rassias stable.

Proof. Let w∈U be a solution of the following inequality

DauðtÞ ¼ f t; uðt � sðtÞÞ;
Z t

a

Gðt; x; uðxÞÞdx;
Zb

a

Hðt; x; uðxÞÞdx
0
@

1
A

������
������ � ePðtÞ: (34)
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Further, for any t∈ [a, b], ε > 0. Assume that u∈U is the solution of (14). Now, integrate (14), that is

wðtÞ � vðwÞ � 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; wðs� sðsÞÞ;
Zs

a

Gðs; p; wðpÞÞdp;
Zb

a

Hðs; p; wðpÞÞdpÞ
0
@

1
Ads

������
������

� e
�ðaÞ

Z t

0

ðt � sÞa�1PðtÞds

� e
�ðaÞ I

aPðtÞ

� eCpPðtÞ:
It can be easily noticed that

jwðtÞ � uðtÞj ¼ jwðtÞ � wðtÞ þ wðtÞ � uðtÞj

� wðtÞ � vðwÞ � 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; wðs� sðsÞÞ;
Zs

a

Gðs; p; wðpÞÞdp;
Zb

a

Hðs; p; wðpÞÞdpÞ
0
@

1
Ads

������
������

þ wðtÞ � vðuÞ � 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; uðs� sðsÞÞ;
Zs

a

Gðs; p; uðpÞÞdp;
Zb

a

Hðs; p; uðpÞÞdpÞ
0
@

1
Ads

������
������

Hence,

kwðtÞ � uðtÞk � eCpPðtÞ þ 1

�ðaÞ
Z t

0

ðt � sÞa�1EðsÞjw� ujds:

It directly follows from Pachpatte’s lemma Eqs. (12)–(13) that

kwðtÞ � uðtÞk � eCPðtÞ; (35)

for C > 0 which ends the proof.

Let us extend our results to asymptotically stable solution. For that, we shall perform the absolute value
for the solution of (14)

juðtÞj � vðuÞ þ 1

�ðaÞ
Z t

0

ðt � sÞa�1 f ðs; uðs� sðsÞÞ;
Zs

a

Gðs; p; uðpÞÞdp;
Zb

a

Hðs; p; uðpÞÞdpÞ
0
@

1
Ads

������
������

In fact, by means of Cauchy Schwartz inequality, we deduce

juðtÞj � jvðuÞj þ
ffiffiffiffiffiffiffi
TV

p

�ðaÞ :
where

T ¼ 1

�ðaÞ
Z t

0

ðt � sÞ2a�2ds; T
1
2 ¼ ta�0:5

�ð1� 2aÞ ;
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V ¼
Z t

0

f ðs; uðs� sðsÞÞ;
Zs

a

Gðs; p; uðpÞÞdp;
Zb

a

Hðs; p; uðpÞÞdpÞ
������

������
2

ds

Now, we observe that |u(t)|→ 0 whenever t→∞. Therefore, the zero solution of (14) is said to be
asymptotically stable.

3 Some Important Properties of the Solution

There is no doubt that there are various properties that characterize solutions. So, we will look at two
features, namely continuous dependence of solution and estimates on the solution.

Theorem 3.1. For the two solutions u1(t), u2(t) of Eq. (14).

ju1ðtÞ � u2ðtÞj �
Rt
0
AðtÞdsþ jv1ðuÞ � v2ðuÞj , where A(t) = |u1(t) − u2(t)| R(t − s)α−1|. Then Eq. (14)

depends continuously on the solution.

Proof. See proof of Theorem 4.1.

Theorem 3.2.Assume that the function f in Eq. (14) is Lipschitz function. If u(t) is a solution of Eq. (14),
then

juðtÞj � Rt
0
BðtÞdsþ jvðuÞj where B(t) = |u(t)| R(t − s)α−1.

Proof. Also, the proof is similar to the proof of Theorem 4.1.

4 Modified Variational Iteration Method with Adomain Decomposition Method

The ongoing method is distinct and the results improve quickly. We will create the correct functional in
the following form:

unþ1ðtÞ¼ unðtÞþ
Z t

0

kðsÞ DauðsÞ� f s; Eðuðs� sðsÞÞ;
Zs

a

Gðs; x; uðxÞÞdx;
Zb

a

Hðs; x; uðxÞÞdx
0
@

1
A

2
4

3
5ds; (36)

where λ is a Lagrange multiplier. The solution is defined by the infinite series

uðtÞ¼
X1
i¼1

uðiÞðtÞ: (37)

The nonlinear function can be written as [16,24]

AjðtÞ ¼ 1

�ðk þ 1Þ
dk

dkk
Eð

X1
j¼1

kjujÞ; (38)

BjðtÞ ¼ 1

�ðk þ 1Þ
dk

dkk
Gð

X1
j¼1

kjujÞ; (39)

CjðtÞ ¼ 1

�ðk þ 1Þ
dk

dkk
Hð

X1
j¼1

kjujÞ; (40)
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Since An, Bn and Cn are the Adomain polynomials of u0, u1,…, un. Substitute (37)–(40) in (36), we have

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

kðsÞ DaunðsÞ � f s;
X1
n¼0

An;

Zs

a

X1
n¼0

Bndx;

Zb

a

X1
n¼0

Cndx

0
@

1
A

2
4

3
5ds; (41)

For λ = −1, with another formula

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

kðsÞ IaDaunðsÞ � Iaf s;
X1
n¼0

An;

Zs

a

X1
n¼0

Bndx;

Zb

a

X1
n¼0

Cndx

0
@

1
A

2
4

3
5ds; (42)

5 Experimental and Numerical Examples

Here, we give examples (application situations for the applied fractional equation) which clarifying the
gained results.

5.1 Illustrative Examples
In this subsection, we shall present the numerical results gained by employing iterative methods namely

modified variational iteration method with Adomain decomposition method

Example 1

DauðtÞ ¼ u2ðt � sðtÞÞ þ 2t2�a

�ð3� aÞ �
1

4

Z t

1

ðuðsÞÞ2�ads�
Z1

�1

ðuðsÞÞads;

uð0Þ ¼ 0; sðtÞ ¼ 0:5 t:

8>><
>>:

(43)

Solution

unþ1ðtÞ ¼ Iau2ðt � sðtÞÞ þ Ia
2t2�a

�ð3� aÞ �
1

4
Ia
Z t

1

ðuðsÞÞ2�ads� Ia
Z1

�1

ðuðsÞÞads (44)

unþ1ðtÞ ¼ Ia
X1
n¼0

An þ Ia
2t2�a

�ð3� aÞ �
1

4
Ia
Z t

1

X1
n¼0

Bnds� Ia
Z1

�1

X1
n¼0

Cnds (45)

For n = 0

u1ðtÞ ¼ IaA0 þ Ia
2t2�a

�ð3� aÞ �
1

4
Ia
Z t

1

B0ds� Ia
Z1

�1

C0ds: (46)

By Adomain decomposition method, α = 0.5, we get A0 = B0 =C0 = 0. Hence u1 = t2 is also the exact
(analytical) solution. Exactly, u0 = u2 =… = 0.

Example 2

DauðtÞ ¼ uðt � sðtÞÞ þ t1�a

�ð2� aÞ �
Z t

0

uðsÞ
t

ds�
Z1

�1

uðsÞds
4

;

uð0Þ ¼ 0; sðtÞ ¼ 0:5 t:

8>><
>>:

(47)

SV, 2022, vol.56, no.2 159



Solution

unþ1ðtÞ ¼ Iauðt � sðtÞÞ þ Ia
t1�a

�ð2� aÞ � Ia
Z t

0

uðsÞ
t

ds� Ia
Z1

�1

uðsÞds
4

(48)

By the same procedures of the previous example, we have u1 = t.

5.2 Graphical Representation of Solution for Eq. (43)
Firstly, let α approach to 0.5 and n = 1, the obtained solution for this case represent graphically in Fig. 1.

Finally, let α approach to 1 and n = 1, 2, 3. Approximate solutions for this case is obtained in Fig. 2.

Figure 1: Approximate solution at α = 0.5

Figure 2: Approximate solutions at α = 1
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Table 1 shows the analysis results for Eq. (43).

Figs. 1–2 indicate the difference to uapp at different values of n.

Fig. 1 is the relationship between t and the approximate solution uapp at α = 0.5, n = 1 only, otherwise, at
other values of n we find that the approximate solution approaches zero.

Fig. 2 is the relationship between t and the approximate solution uapp at α = 1, n = 1, 2, 3.

6 Conclusion

We emphasize that the analysis of fractional integro-differential equations with delay attracts
considerable attention by many scientists [29,30]. The beneficial contribution of this work was the
discovery much of the tools in the analysis process for many equations. It should be noted that the choice
of α plays a vital role in the results of the suggested problem and this was evident in the examples that
were listed in our research. We find that when the approximate solution and the exact solution apply
when a value of α is at a certain value of n, and other than this value of n, the approximate solution is 0.
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