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ABSTRACT

This is the first paper on symmetry classification for ordinary differential equations (ODEs) based on Wu’s method.
We carry out symmetry classification of two ODEs, named the generalizations of the Kummer-Schwarz equations
which involving arbitrary function. First, Lie algorithm is used to give the determining equations of symmetry for
the given equations, which involving arbitrary functions. Next, differential form Wu’s method is used to decompose
determining equations into a union of a series of zero sets of differential characteristic sets, which are easy to be
solved relatively. Each branch of the decomposition yields a class of symmetries and associated parameters. The
algorithm makes the classification become direct and systematic. Yuri Dimitrov Bozhkov, and Pammela Ramos
da Conceição have used the Lie algorithm to give the symmetry classifications of the equations talked in this paper
in 2020. From this paper, we can find that the differential form Wu’s method for symmetry classification of ODEs
with arbitrary function (parameter) is effective, and is an alternative method.

KEYWORDS

Kummer-Schwarz equation; ordinary differential equations (ODEs); differential form Wu’s method

1 Introduction

In the past decades, a wealth of methods have been developed to deal with exact solutions of differential
equations (DEs), which include partial differential equations (PDEs) and ordinary differential equations
(ODEs). Some of the most important methods are the homotopy perturbation method [1–3], variational
iteration method [4–6], Taylor series method [7], and the exp-function method [8–10], etc. At present,
symmetries of PDEs are widely used in mechanics, mathematics and physics fields, from symmetries of a
PDEs, one can obtain more important information on solving PDEs, such as exact solutions, conservation
laws, and integral factors, etc. Hence the topics finding symmetries of a PDEs have being brought about
the interest of more and more people. We have done some work on symmetries of PDEs, in reference
[11] the Wu’s method is used to complete symmetry classification of PDEs, in reference [12] the
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traditional Lie algorithm is used to complete symmetry classification of the diffusion-convection equation, in
reference [13] the Wu’s method is used to simplify the symmetry computation of PDEs and a special
symmetry reduction approach is used for a class of wave equations.

In my memory, researchers always pay attention to PDEs, well there are not enough research results on
ODEs, especially on the symmetries of DEs in literature. In this paper, we mainly consider a class of ODEs
appeared in the fields of physics and engineering, named the generalizations of the Kummer-Schwarz
equations [14]:

y000

y0
þ n

y00

y0

� �2

¼ f ðyÞðy0Þ2; (1)

and

y000

y0
þ n

y00

y0

� �2

¼ f ðyÞ; (2)

where n∈ R is a constant, not necessarily integer.

In symmetry analysis of DEs, the first step is determining symmetries of the given equations, this
process can be come down to solving a determining equations, which is however sometimes large and
not easy to solve directly, in this paper, differential form Wu’s method [11,15] is used to decompose the
determining equations into a series of equations, which are easy to be solved relatively.

The Wu’s method (also named characteristic set algorithm) [16] established by the Chinese
mathematician Wu Wen Tsun in the 1970s. It also has become a fundamental algorithmic theory in
algebraic geometry together with the Gröbner base algorithm [17]. The method has been applied in a
wide range of science fields, such as mechanical theorem proving [18], optimization problems, surface-
fitting problems in CAGD, Bar Linkage Design, ⋅⋅⋅ , etc. [16]. The differential analogue of Wu’s method
was proposed in the 1980s [19]. The method is more especially on target to deal with the zero set of a
differential polynomial system (dps) and efficient differential elimination without directly involving the
concept of an algebra ideal. As far as i know, this is the first paper on symmetry classification of ODEs
based on Wu’s method.

2 Lie Point Symmetries of Eq. (1)

To begin with, we note that Eq. (1) can be written as

y000y0 þ nðy00Þ2 � f ðyÞðy0Þ4 ¼ 0; (3)

The point symmetry

x� ¼ xþ enðx; yÞ þ Oðe2Þ;
y� ¼ yþ egðx; yÞ þ Oðe2Þ; (4)

is admitted by Eq. (3) if and only if it satisfies the determining equation

X ð3Þðy000y0 þ nðy00Þ2 � f ðyÞðy0Þ4Þ ¼ 0; (5)

for any y that solves Eq. (3).

X ¼ nðx; yÞ @

@x
þ gðx; yÞ @

@y
; (6)

is the infinitesimal generator of the point symmetry (4).
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X ð3Þ ¼ X þ gð1Þ
@

@y0
þ gð2Þ

@

@y00
þ gð3Þ

@

@y000
; (7)

with

gðiÞ ¼ Dxg
ði�1Þ � yðiÞDxn; i ¼ 1; 2; 3; gð0Þ ¼ g ; (8)

is the three-order extension (prolongation) of X.

Dx ¼ @x þ y0@y þ y00@y0 þ � � � þ yðkÞ@yðk�1Þ � � � (9)

is the total derivative operator.

The determining Eq. (5) simplify to

DTE ¼
gx ¼ 0; �3ny � nny ¼ 0; �6nyy � 2nnyy ¼ 0; �f ðyÞny � nyyy ¼ 0;
�3nxx � 2nnxx ¼ 0; �3nxxy ¼ 0; �nxxx ¼ 0;
�9nxy � 4nnxy þ 3gyy þ 2ngyy ¼ 0;
�3nxyy � 2f ðyÞgy þ gyyy � gf 0ðyÞ ¼ 0;

8>><
>>:

(10)

taking left hand side for each equation, we have following corresponding differential polynomial system

DPS ¼
gx; �3ny � nny; �6nyy � 2nnyy; �f ðyÞny � nyyy;
�3nxx � 2nnxx; �3nxxy; �nxxx;
�9nxy � 4nnxy þ 3gyy þ 2ngyy;
�3nxyy � 2f ðyÞgy þ gyyy � gf 0ðyÞ;

8>><
>>:

(11)

Step 1 Compute Zero(DPS).

Under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS1 ¼ fny; nxx; gg; (12)

with IS products I1�I2�I3 6¼ 0, and

I1 ¼ 3f 0ðyÞ2 � 2f ðyÞf 00ðyÞ; (13)

I2 ¼ 3 þ n; (14)

I3 ¼ 3 þ 2n; (15)

then, we get

ZeroðDPSÞ ¼ ZeroðDCS1=I1�I2 � I3Þ þ ZeroðDPS; I1Þ þ ZeroðDPS; I2Þ þ ZeroðDPS; I3Þ; (16)

in which

ZeroðDCS1=I1�I2 � I3Þ¼ fn ¼ c1xþ c2; g ¼ 0g; (17)

and c1, c2 are arbitrary constants.

Step 2 I1 = 0, compute Zero(DPS, I1).

Obtain characteristic set

DCS2 ¼ fny; nxx; gx; 2f ðyÞgy þ gf 0ðyÞg; (18)

with IS products I2�I3 6¼ 0, then, we get
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ZeroðDPS; I1Þ¼ ZeroðDCS2=I2 � I3Þ (19)

in which

Case 1. ZeroðDCS2=I2 � I3Þ¼ n¼ c3xþ c4; g ¼ c5ðe
ffiffi
6

p
yÞ1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1e
ffiffi
6

p
yþc2

p
� �

, with the corresponding function

f ðyÞ ¼ c1e
ffiffi
6

p
y

2 þ c2e�
ffiffi
6

p
y

2 , and c1, c2, ⋅ ⋅ ⋅ c5 are arbitrary constants.

Case 2. ZeroðDCS2=I2 � I3Þ¼ fn¼ c1xþ c2; g ¼ FðyÞg, with the corresponding function f(y) = 0, F(y)
is an arbitrary function of y, and c1, c2 are arbitrary constants.

Step 3 I2 = 0, compute Zero(DPS, I2).

The determining Eq. (5) simplify to

DTE1 ¼
gx ¼ 0; nxx ¼ 0;
�f ðyÞny � nyyy ¼ 0; 3nxy � 3gyy ¼ 0;

�3nxyy � 2f ðyÞgy þ gyyy � gf 0ðyÞ ¼ 0;

8><
>: (20)

taking left hand side for each equation, we have following corresponding differential polynomial system:

DPS1 ¼
gx; nxx;
�f ðyÞny � nyyy; 3nxy � 3gyy;
�3nxyy � 2f ðyÞgy þ gyyy � gf 0ðyÞ;

8<
: (21)

under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS3 ¼ ff ðyÞny þ nyyy; nxy; nxx; gg; (22)

with IS products I4 ≠ 0, and

I4 ¼ 27f 0ðyÞ4 � 18f ðyÞf 0ðyÞ2f 00ðyÞ � 56f 00ðyÞ3 þ 72f 0ðyÞf 00ðyÞf ð3ÞðyÞ � 18f 0ðyÞ2f ð4ÞðyÞ; (23)

then, we get

ZeroðDPS; I2Þ ¼ ZeroðDCS3=I4Þþ ZeroðDPS; I2; I4Þ; (24)

in which

Case 1. Zero(DCS3/I4) = {ξ = c1x + c2, η = 0}, with the corresponding function f(y) is an arbitrary
function of y, and c1, c2 are arbitrary constants.

Case 2. ZeroðDCS3=I4Þ ¼ n ¼ c1xþ 1
2 c2u

2 þ c3uþ c4; g ¼ 0
� �

, with the corresponding function f(y)
is an arbitrary function of y, and c1, c2, ⋅ ⋅ ⋅ , c4 are arbitrary constants.

Case 3. Zero(DCS3/I4) = {ξ = c1x + F(y), η = 0}, with the corresponding function f(y) = 0, F(y) is an
arbitrary function of y, and c1 is an arbitrary constant.

Step 3.1 I4 = 0, compute Zero(DPS, I2, I4).

Obtain characteristic set

DCS4 ¼ ff ðyÞnyþ nyyy; nxx; gx; 3gyf
0ðyÞ þ gf 00ðyÞ; 9nxyf 0ðyÞ2 � 4gf 00ðyÞ2 þ 3gf 0ðyÞf ð3ÞðyÞg; (25)

with IS products is empty set, then, we get
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ZeroðDPS; I2; I4Þ¼ ZeroðDCS4Þ; (26)

in which

Case 1. ZeroðDCS4Þ¼ n¼ c2xþ c3þ c4 sinð ffiffiffiffi
c1

p
yÞ þ c5 cosð ffiffiffiffi

c1
p

yÞ; g ¼ 0
� �

, with the corresponding
function f(y) = c1 ≥ 0, and c1, c2, ⋅ ⋅ ⋅ c5 are arbitrary constants.

Case 2. ZeroðDCS4Þ¼ fn¼ c1xþ c2; g ¼ FðyÞg, and with the corresponding function f(y) = c3, F(y) is
an arbitrary function of y, and c1, c2, c3 are arbitrary constants.

Case 3. ZeroðDCS4Þ¼ fn¼ ðc4xþ c6Þe�c1y þ ðc3xþ c7Þec1y þ c2xþ c5; g ¼ FðyÞg, with the
corresponding function f ðyÞ ¼ �c21, F(y) is an arbitrary function of y, and c1, c2, ⋅ ⋅ ⋅ , c7 are arbitrary
constants.

Case 4. ZeroðDCS4Þ¼ fn¼ c1xþ c2; g ¼ 0g, with the corresponding function f(y) = c3, and c1, c2, c3
are arbitrary constants.

Case 5. ZeroðDCS4Þ¼ fn¼ ðc4xþ c6Þe�c1y þ ðc3xþ c7Þec1y þ c2xþ c5; g ¼ 0g, with the
corresponding function f ðyÞ ¼ �c21, and c1, c2, ⋅ ⋅ ⋅ , c7 are arbitrary constants.

Case 6. ZeroðDCS4Þ¼ fn¼ c1xþ c2; g ¼ c3yþ c4g, with the corresponding function f ðyÞ ¼ c5
ðc3yþc4Þ2,

and c1, c2, ⋅ ⋅ ⋅ , c5 are arbitrary constants.

Case 7. ZeroðDCS4Þ¼ n¼ c1xþ 1
2 c2y

2 þ c3yþ c4; g ¼ c5yþ c6
� �

, with the corresponding function
f(y) = 0, and c1, c2, ⋅ ⋅ ⋅ , c6 are arbitrary constants.

Step 4 I3 = 0, compute Zero(DPS, I3).

The determining Eq. (5) simplify to

DTE2 ¼ gx ¼ 0; ny ¼ 0; �2nxxx ¼ 0;
�4f ðyÞgy þ 2gyyy � 2gf 0ðyÞ ¼ 0;

�
(27)

taking left hand side for each equation, we have following corresponding differential polynomial system

DPS2 ¼ gx; ny; �2nxxx;
�4f ðyÞgy þ 2gyyy � 2gf 0ðyÞ;

�
(28)

under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS5 ¼ fny; nxxx; gx; 2f ðyÞgy � gyyy þ gf 0ðyÞg; (29)

with IS products is empty set, and we get

ZeroðDPS; I3Þ¼ ZeroðDCS5Þ; (30)

in which

Case 1. ZeroðDCS5Þ¼ n¼ 1
2 c1x

2 þ c2x þ c3; g ¼ 0
� �

, with the corresponding function f(y) is an
arbitrary function of y, and c1, c2, c3 are arbitrary constants.

Case 2. ZeroðDCS5Þ¼ n¼ 1
2 c1x

2 þ c2xþ c3; g ¼ FðyÞ� �
, with the corresponding function

f ðyÞ ¼ �F0ðyÞ2
2 þFðyÞF 00ðyÞþc4

FðyÞ2 , and c1, c2, ⋅ ⋅ ⋅ , c4 are arbitrary constants.

At the end of this section, we give the symmetry classification for Eq. (1) with n = 0 based on differential
form Wu’s method.
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As stated before, the determining Eq. (5) simplify to

DTE3 ¼
ny ¼ 0; gyy ¼ 0; �3nxx þ 3gxy ¼ 0;
�3f ðyÞgx þ 3gxyy ¼ 0; �nxxx þ 3gxxy ¼ 0;
gxxx ¼ 0; �2f ðyÞgy þ gyyy � gf 0ðyÞ ¼ 0;

8<
: (31)

taking left hand side for each equation, we have following corresponding differential polynomial system:

DPS3 ¼
ny; gyy; �3nxx þ 3gxy;
�3f ðyÞgx þ 3gxyy; �nxxx þ 3gxxy;
gxxx; �2f ðyÞgy þ gyyy � gf 0ðyÞ;

8<
: (32)

Step 1 Compute Zero(DPS3).

Under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS6 ¼ fny; nxx; gg; (33)

with IS products I5 ≠ 0, and

I5 ¼ 15f 0ðyÞ3 � 18f ðyÞf 0ðyÞf 00ðyÞþ 4f ðyÞ2f ð3ÞðyÞ; (34)

then, we get

ZeroðDPS3Þ¼ ZeroðDCS6=I5Þþ ZeroðDPS3; I5Þ; (35)

in which

ZeroðDCS6=I5Þ ¼ fn ¼ c1xþ c2; g ¼ 0g; (36)

and c1, c2 are arbitrary constants.

Step 2 I5 = 0, compute Zero(DPS3, I5).

Obtain characteristic set DCS6with IS products I6 ≠ 0, and

I6 ¼ 3f 0ðyÞ2 � 2f ðyÞf 00ðyÞ; (37)

then, we get

ZeroðDPS3; I5Þ¼ ZeroðDCS6=I6Þþ ZeroðDPS3; I5; I6Þ; (38)

in which

ZeroðDCS6=I6Þ¼ ZeroðDCS6=I5Þ; (39)

Step 2.1 I6 = 0, compute Zero(DPS3, I5, I6).

Obtain characteristic set

DCS7 ¼ fny; nxx; gx; 2f ðyÞgy þ gf 0ðyÞg (40)

with IS products is empty set, and we get

ZeroðDPS3; I5; I6Þ¼ ZeroðDCS7Þ; (41)

in which

Case 1. ZeroðDCS7Þ¼ fn¼ c1xþ c2; g ¼ c5ðc3yþ c4Þg, with the corresponding function f ðyÞ ¼ 4
ðc3yþc4Þ2,

and c1, c2, ⋅ ⋅ ⋅ , c5 are arbitrary constants.
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Case 2. ZeroðDCS7Þ¼ fn¼ c1xþ c2; g ¼ FðyÞg,with the corresponding function f(y) = 0, F(y) is an
arbitrary function of y, and c1, c2 are arbitrary constants.

3 Lie Point Symmetries of Eq. (2)

The second generalized Kummer-Schwarz equation Eq. (2) can be written as

y000y0 þ nðy00Þ2 � f ðyÞðy0Þ2 ¼ 0: (42)

Consider the third-order prolongation

X ð3Þ ¼ X þ gð1Þ
@

@y0
þ gð2Þ

@

@y00
þ gð3Þ

@

@y000
; (43)

of a Lie point symmetry generator

X ¼ nðx; yÞ @

@x
þ gðx; yÞ @

@y
; (44)

of Eq. (42), then the invariance condition is

X ð3Þðy000y0 þ nðy00Þ2 � f ðyÞðy0Þ2Þjð3Þ ¼ 0; (45)

the determining equations from (45) simplify to

DTE ¼

gx ¼ 0; �3ny � nny ¼ 0; �6nyy � 2nnyy ¼ 0;
�nyyy ¼ 0; �3nxx � 2nnxx ¼ 0; �3f ðyÞny � 3nxxy ¼ 0;
�9nxy � 4nnxy þ 3gyy þ 2ngyy ¼ 0;
�3nxyy þ gyyy ¼ 0;
�2f ðyÞnx � nxxx � gf 0ðyÞ ¼ 0;

8>>>><
>>>>:

(46)

taking left hand side for each equation, we have following corresponding differential polynomial system

DPS ¼

gx; �3ny � nny; �6nyy � 2nnyy;
�nyyy; �3nxx � 2nnxx; �3f ðyÞny � 3nxxy;
�9nxy � 4nnxy þ 3gyy þ 2ngyy;
�3nxyy þ gyyy ¼ 0;
�2f ðyÞnx � nxxx � gf 0ðyÞ ¼ 0;

8>>>><
>>>>:

(47)

Step 1 Compute ZeroðDPSÞ.
Under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS1 ¼ fny; nx; gg; (48)

with IS products I1�I2�I3 6¼ 0, and

I1¼ f 0ðyÞ2f 00ðyÞ � 2f ðyÞf 00ðyÞ2þ f ðyÞf 0ðyÞf ð3ÞðyÞ; (49)

I2¼ 3 þ n; (50)

I3¼ 3 þ 2n; (51)

then, we get

ZeroðDPSÞ ¼ ZeroðDCS1=I1�I2 � I3Þ þ ZeroðDPS; I1Þ þ ZeroðDPS; I2Þ þ ZeroðDPS; I3Þ; (52)
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in which

ZeroðDCS1=I1�I2 � I3Þ¼ fn¼ c1; g ¼ 0g; (53)

and c1 is an arbitrary constant.

Step 2 I1¼ 0, compute ZeroðDPS; I1Þ.
Obtain characteristic set

DCS2 ¼ fny; gx; 2f ðyÞnx þ gf 0ðyÞ; gyf ðyÞf 0ðyÞ � gf 0ðyÞ2 þ gf ðyÞf 00ðyÞg; (54)

with IS products I2�I3 6¼ 0, then, we get

ZeroðDPS; I1Þ¼ ZeroðDCS2=I2 � I3Þ; (55)

in which

Case 1. ZeroðDCS2=I2 � I3Þ¼ fn¼ c3xþ c4; g ¼ c1yþ c2g, with the corresponding function

f ðyÞ ¼ c5ðc1yþ c2Þ�
2c3
c1 , and c1, c2, ⋅ ⋅ ⋅ c5 are arbitrary constants.

Case 2. ZeroðDCS2=I2 � I3Þ¼ fn¼ c1; g ¼ 0g, with the corresponding function f ðyÞ ¼ ðc3 � uÞc2c4,
and c1, c2, ⋅ ⋅ ⋅ c4 are arbitrary constants.

Case 3. ZeroðDCS2=I2 � I3Þ¼ fn¼ c1; g ¼ FðyÞg, with the corresponding function f(y) = c2, F(y) is an
arbitrary function of y, and c1, c2 are arbitrary constants.

Case 4. ZeroðDCS2=I2 � I3Þ¼ fn¼ FðxÞ; g ¼ GðyÞg, with the corresponding function f(y) = 0, F(x) is
an arbitrary function of x,G(y)is an arbitrary function of y.

Step 3 I2¼ 0, compute ZeroðDPS; I2Þ.
The determining Eq. (45) simplify to

DTE1 ¼
gx ¼ 0; �nyyy ¼ 0; 3nxx ¼ 0;
�3f ðyÞny � 3nxxy ¼ 0; 3nxy � 3gyy ¼ 0;
�3nxyy þ gyyy ¼ 0;
�2f ðyÞnx � nxxx � gf 0ðyÞ ¼ 0;

8>><
>>:

(56)

taking left hand side for each equation, we have following corresponding differential polynomial system

DPS1 ¼
gx; �nyyy; 3nxx;
�3f ðyÞny � 3nxxy; 3nxy � 3gyy;
�3nxyy þ gyyy;
�2f ðyÞnx � nxxx � gf 0ðyÞ;

8>><
>>:

(57)

under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS3 ¼ fnx; ny; gg; (58)

with IS products I1 6¼ 0, then, we get

ZeroðDPS; I2Þ¼ ZeroðDCS3=I1Þþ ZeroðDPS; I2; I1Þ; (59)
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in which

ZeroðDCS3=I1Þ ¼ fn ¼ c1; g ¼ 0g; (60)

and c1is an arbitrary constant.

Step 3.1 I1¼ 0, compute ZeroðDPS; I2; I1Þ.
Obtain characteristic set DCS2 with IS products is empty set, then, we get

ZeroðDPS; I2; I1Þ¼ ZeroðDCS2Þ¼ ZeroðDCS2=I2 � I3Þ; (61)

Step 4 I3¼ 0, compute ZeroðDPS; I3Þ.
The determining Eq. (45) simplify to

DTE2 ¼ gx ¼ 0; ny ¼ 0; 2gyyy ¼ 0;
�4f ðyÞnx � 2nxxx � 2gf 0ðyÞ ¼ 0;

�
(62)

taking left hand side for each equation, we have following corresponding differential polynomial system

DPS2 ¼ gx; ny; 2gyyy;
�4f ðyÞnx � 2nxxx � 2gf 0ðyÞ;

�
(63)

under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS4 ¼ fny; nx; gg; (64)

with IS products I4 6¼ 0, and

I4 ¼ �3f 0ðyÞ2f 00ðyÞ2 þ 6f ðyÞf 00ðyÞ3 þ 2f 0ðyÞ3f ð3ÞðyÞ;
� 6f ðyÞf 0ðyÞf 00ðyÞf ð3ÞðyÞþ f ðyÞf 0ðyÞ2f ð4ÞðyÞ; (65)

then, we get

ZeroðDPS; I3Þ¼ ZeroðDCS4=I4Þþ ZeroðDPS; I3; I4Þ; (66)

in which

ZeroðDCS4=I4Þ ¼ fn ¼ c1; g ¼ 0g; (67)

and c1 is an arbitrary constant.

Step 4.1 I4¼ 0, compute ZeroðDPS; I3; I4Þ.
Obtain characteristic set DCS2 with IS products I5 6¼ 0, and

I5 ¼ � 3f 00ðyÞ2þ 2f 0ðyÞf ð3ÞðyÞ; (68)

then, we get

ZeroðDPS; I3; I4Þ ¼ ZeroðDCS2=I5Þ þ ZeroðDPS; I3; I4; I5Þ; (69)

in which

Case 1. ZeroðDCS2=I5Þ¼ n ¼ c4xþ c5; g ¼ 1
2 c1y

2 þ c2yþ c3
� �

, with the corresponding function

f ðyÞ ¼ e
�

4c4 arctan
c1yþc2ffiffiffiffiffiffiffiffiffiffiffi
2c1c3�c2

2

p
� �
ffiffiffiffiffiffiffiffiffiffiffi
2c1c3�c2

2

p
c6, and c1, c2, ⋅ ⋅ ⋅ c6 are arbitrary constants.
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Case 2. ZeroðDCS2=I5Þ¼ fn¼ c1; g ¼ FðyÞg, with the corresponding function f(y) = c2, F(y) is an
arbitrary function of y, and c1, c2 are arbitrary constants.

Case 3. ZeroðDCS2=I5Þ¼ fn¼ c1; g ¼ 0g, with the corresponding function f ðyÞ ¼ e

c5
ffiffiffiffiffi
c2c3

p þ2 arctan h
c3ðc4þyÞffiffiffiffiffi

c2c3
p

	 

ffiffiffiffiffi
c2c3

p
,

and c1, c2, ⋅ ⋅ ⋅ , c5 are arbitrary constants.

Case 4. ZeroðDCS2=I5Þ¼ fn¼ c1; g ¼ 0g, with the corresponding function f(y) = c2, and c1, c2 are
arbitrary constants.

Case 5. ZeroðDCS2=I5Þ¼ fn¼ FðxÞ; g ¼ GðyÞg, w ith the corresponding function f(y) = 0, and F(x) is
an arbitrary function of x,G(y) is an arbitrary function of y.

Step 4.2 I5¼ 0, compute ZeroðDPS; I3; I4; I5Þ.
Obtain characteristic set DCS2with IS products is empty set, and we get

ZeroðDPS; I3; I4; I5Þ¼ ZeroðDCS2Þ¼ ZeroðDCS2=I5Þ: (70)

At the end of this section, we give the symmetry classification for Eq. (2) with n = 0 based on differential
form Wu’s method.

As stated before, the determining Eq. (45) simplify to

DTE3 ¼ ny ¼ 0; gyy ¼ 0; �3nxx þ 3gxy ¼ 0; �f ðyÞgx þ gxxx ¼ 0;
�2f ðyÞnx � nxxx þ 3gxxy � gf 0ðyÞ ¼ 0;

�
(71)

taking left hand side for each equation, we have following corresponding differential polynomial system:

DPS3 ¼ ny; gyy; �3nxx þ 3gxy; �f ðyÞgx þ gxxx;
�2f ðyÞnx � nxxx þ 3gxxy � gf 0ðyÞ;

�
(72)

Step 1 Compute ZeroðDPS3Þ.
Under the rank x � y � n � g, using the differential form Wu’s method, we obtain characteristic set

DCS5 ¼ fny; nx; gg; (73)

with IS products I1 6¼ 0, then, we get

ZeroðDPS3Þ¼ ZeroðDCS5=I1Þþ ZeroðDPS3; I1Þ; (74)

in which

ZeroðDCS5=I1Þ ¼ fn ¼ c1; g ¼ 0g; (75)

and c1 is an arbitrary constant.

Step 2 I1¼ 0, compute ZeroðDPS3; I1Þ.
Obtain characteristic set DCS2 with IS products is empty set, then, we get

ZeroðDPS3; I1Þ¼ ZeroðDCS2Þ¼ ZeroðDCS2=I2 � I3Þ: (76)

4 Conclusion

In this paper, Lie algorithm combined with differential form Wu’s method is used to complete the
symmetry classification of ODEs containing arbitrary parameter. This process can be reduced to solve a
system of determining equations, then the differential form Wu’s method is used to decompose the
determining equations into a series of equations, which are easy to solve relatively. To illustrate the
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usefulness of this method, we apply it to the generalizations of the Kummer-Schwarz equations, and the
results show the performance of the present work.

In addition, the second-order nonlinear ODE [20]

2ðKðyÞy0Þ0 þ xy0 ¼ 0; (77)

and the following ODE [21]:

y00 ¼ f ðxÞy2; (78)

are studied by many researchers. The algorithm of Wu’s method is performed on computer in this paper, we
try to give the symmetry classification of Eqs. (77) and (78), after four days, the program is still running, only
part of the results are obtained. In the next, we will make some improvements to the differential form Wu’s
method, and expect to get the complete symmetry classification results.
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