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ABSTRACT

The fundamental objective of this work is to construct a comparative study of some modified methods with
Sumudu transform on fractional delay integro-differential equation. The existed solution of the equation is very
accurately computed. The aforesaid methods are presented with an illustrative example.
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1 Introduction

Recently, a variety of transformations were applied by some mathematicians which include widespread
tremendous progress in the study of linear and nonlinear equations. A similar great transform to Laplace,
Fourier and other transformations are so-called Sumudu transform [1,2]. Really, it does not require any
conditions on the function to be transformed [3].

In order to solve various linear and nonlinear equations approximately, many researchers incorporate
traditional methods into transformations, such as Laplace, Sumudu, differential transform method and
others [4–19].

Henceforth, we focus our attention on the combination of the homotopy perturbation (HPM), series
solution, homotopy analysis (HAM), Adomian decomposition method (ADM) and variational iteration
methods (VIM) with Sumudu transform, then compares the previous composition in order to ensure the
high accuracy and reliability and convergence for the offered methods. The above mentioned combination
is namely modified methods. One can see those modified methods are considered to be a new powerful
development technique to solve several problems. For more details, we point out those modified methods
can be used to solve some non-linear fractional delay integro-differential equations. Nowadays,
comparison between the preceding mentioned methods plays a vital role in the study of fractional delay
and nonlinear integro-differential equation.

The plan of this discussion as follows. In Section one, the main concepts that are applied in our paper are
considered. In Section two, the modified methods are mentioned. In Section three, computational scheme for
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the proposed problem discussed. In Section four, special cases are stated. Finally, the comparative study is
concluded in Section five.

1.1 Preliminaries
Here, we now briefly recall some necessary definitions, preliminaries and properties are used further in

this work as follows:

Definition 1.1. Let U be the set of functions such that

UðtÞ ¼ uðtÞj9C; n1; n2 . 0; juðtÞj,Ce

�jtj
ni ; t 2 ð�1Þi � ½0; 1Þ

8><
>:

9>=
>;

for a real number t t∈ [0, ∞) the Sumudu transform of a function t u(t) over the set U(t) can be written as

S½uðtÞ� ¼ �ðvÞ ¼ Rþ1

0

1
ve

�t
v uðtÞdt ¼ Rþ1

0
e�tuðvtÞdt, where v∈ ( − v1, v2).

The relation between Laplace and Sumudu transforms are as
F½1s� ¼ v�ðvÞ; sU ½s� ¼ �ð1sÞ; where L[(u(t)] =U(s).

For further properties of the Sumudu transform

[1] S½1� ¼ 1; (1)

[2] ½2� S½tn� ¼ un�ðnþ 1Þ; (2)

where �ðnÞ ¼ Rþ1

0
e�xxn�1dx; n 2 N :

[3] Linearity of the Sumudu transform, if a, b are constants,

S½auðtÞ þ bvðtÞ� ¼ aS½uðtÞ� þ bS½uðtÞ�; (3)

[4] For α∈ [1, n], Sumudu transform of the Caputo fractional derivative is represented by

S½DauðtÞ� ¼ �ðvÞ
va

�
Xk�1

i¼0

uðiÞð0Þ
va�i

: (4)

[5] The Sumudu transform of the Riemann-Liouville fractional integral of order α∈ (0, ∞) is given as

S½IauðtÞ� ¼ vaS½uðtÞ�: (5)

[6] The Caputo fractional derivative of order α > 0, defined for a continuous function by

DauðtÞ ¼ In�aDauðtÞ ¼ 1

�ðn� aÞ
Z t

0

ðt � sÞn�a�1ð d
ds
Þ
n

uðsÞds; (6)

where n − 1 < α < n.

2 Formulation of the Problem

We describe the following fractional derivative in the Caputo sense

DauðtÞ ¼ Eðuðt � sÞÞ þ �1

Z t

0

Kðt; sÞGðuðsÞÞdsþ f ðtÞ
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þ �2

Z t

0

Lðt; sÞHðuðsÞÞds; a 2 ð0; 1Þ; (7)

t 2 ð�s; 0Þ;
under the initial condition:

uð0Þ ¼ u0; (8)

where the fractional differential operator Da describes in the Caputo sense, u(t)∈ S =C([0, 1], ℝ+), τ is
the time delay; t∈ (0, +∞), K, L:[0, 1] ×ℝ→ℝ are the kernels of the Eq. (7), f(t) is an
analytic functions, E, G, H: ℝ→ℝ are nonlinear Lipschitz continuous functions of u(t) and λ1, λ2 are
real finite constants.

2.1 Modified Sumudu Homotopy Perturbation Method (MSHPM)
Taking the Sumudu operator S to both sides of Eq. (7), yields

S½DauðtÞ� ¼ S½Eðuðt � sÞÞ þ �1

Z t

0

Kðt; sÞGðuðsÞÞdsþ f ðtÞ

þ �2

Z1

0

Lðt; sÞHðuðsÞÞds�: (9)

With the help of the linearity of Sumudu operator,

S½DauðtÞ� ¼ S½Eðuðt � sÞÞ� þ �1S

"Z t

0

Kðt; sÞGðuðsÞÞds
#
þ S

�
f ðtÞ�

þ �2S

Z1

0

Lðt; sÞHðuðsÞÞds
2
4

3
5: (10)

Now, applying the property of the differentiation for Sumudu transform

�ðvÞ
va

� c ¼ S½Eðuðt � sÞÞ� þ �1S

"Z t

0

Kðt; sÞGðuðsÞÞds
#
þ S

�
f ðtÞ�

þ �2S

Z1

0

Lðt; sÞHðuðsÞÞds
2
4

3
5: (11)

where c ¼ Pk�1

i¼0

uðiÞð0Þ
va�i , then

�ðvÞ ¼ vaS½Eðuðt � sÞÞ� þ va�1S

"Z t

0

Kðt; sÞGðuðsÞÞds
#
þ vaðcþ S

�
f ðtÞ�Þ
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þ �2v
aS

Z1

0

Lðt; sÞHðuðsÞÞds
2
4

3
5: (12)

further, the solution u(t) and nonlinear functions can be described by infinite series as following:

uðtÞ ¼
X1
n¼0

pnun; (13)

Eðuðt � sÞÞ ¼
X1
n¼0

pn&nðu� sÞ; (14)

GðuðtÞÞ ¼
X1
n¼0

pnnnðu� sÞ; (15)

HðuðtÞÞ ¼
X1
n¼0

pninðu� sÞ; (16)

&nðu� sÞ ¼ 1

n!

@n

@pn
Eð

X1
i¼0

piuiðt � sÞÞ
" #

; (17)

nnðuÞ ¼
1

n!

@n

@pn
½Gð

X1
i¼0

piuiðtÞÞ�; (18)

inðuÞ ¼ 1

n!

@n

@pn

"
Hð

X1
i¼0

piuiðtÞÞ
#
; (19)

substitute (13)–(16) in (12), we get

X1
i¼1

piui ¼ S�1½vaðS½f ðtÞ�Þ� � pS�1½va�1Sð
Z t

0

Kðt; sÞ
X1
n¼0

pnnnðuÞdsÞ�

� pS�1½�2v
aSð

Z1

0

Lðt; sÞ
X1
n¼0

pninðuÞdsÞ þ vaSð
X1
n¼0

pn&nðu� sÞÞ�: (20)

On comparing of the two both sides of (20). Hence, we obtain

p0 : u0 ¼ S�1½vaSðf ðtÞÞ�;

p1 : u1 ¼ S�1½�2v
aSð

Z1

0

Lðt; sÞi0ðuÞdsÞ þ vaSð&0ðu� sÞÞ�

� S�1½�1v
aSð

Z t

0

Kðt; sÞn1ðuÞdsÞ� (21)
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p2 : u2 ¼ S�1½�2v
aSð

Z1

0

Lðt; sÞi1ðuÞdsÞ þ vaSð&1ðu� sÞÞ�

� S�1½�1v
aSð

Z t

0

Kðt; sÞn1ðuÞdsÞ� (22)

in the same manner, we can calculate un, n > 1. The approximate solution is given by

uðtÞ ¼ lim
n!1

Xn
i¼0

uiðtÞ

the convergence of the series solutions are very easily with known methods.

2.2. Modified Sumudu Series Solution Method (MSSSM)
Evidently, on continuing the same fourth steps from Eqs. (9)–(12). As a result, by the aid of series

solution method (12)

uðtÞ ¼
X1
i¼0

ciui; (23)

Eðuðt � sÞÞ ¼ Eð
X1
i¼0

ciuiðt � sÞÞ; (24)

GðuðtÞÞ ¼ Gð
X1
i¼0

ciuiðtÞÞ; (25)

HðuðtÞÞ ¼ Hð
X1
i¼0

ciuiðtÞÞ; (26)

in (12), taking (23)–(26) into consideration

X1
i¼1

ciui ¼ S�1½va�1S½
Z t

0

Kðt; sÞGð
X1
n¼0

ciuiðtÞÞdsþ
Z1

0

Lðt; sÞHð
X1
i¼0

ciuiðtÞÞds��

þ vaSðEð
X1
n¼0

ciuiðu� sÞÞÞ� þ S�1½vaðS½f ðtÞ�Þ�:
(27)

By the comparison of the coefficients on two both sides (27) and Taylor series. Consequently, the existed
solution is in a closed form.

2.3 Modified Sumudu Homotopy Analysis Method (MSHAM)
In this section, Sumudu transform directly coupled with a homotopy analysis method. For an embedding

parameter α∈ [0, 1], we construct the nonlinear operator

N½eðt : rÞ� ¼ S½eðt; rÞ� � va�1S½
Z t

0

Kðt; sÞGðeðt; rÞÞds�
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� �2v
aS½

Z1

0

Lðt; sÞHðeðt; rÞÞds��vaS½Eðeðt � s; rÞ þ f ðtÞ�; (28)

By HAM, the deformation equation of order zero is constructed as follows:

rcðtÞN½eðt : rÞ� ¼ ð1� rÞS½eðt; rÞ � u0ðtÞ� (29)

where r, c are the non zeros auxiliary parameter and functions respectively. ε(t;r) differ from u0(t) to u1(t). In
particular, r = 0,

eðt; 0Þ ¼ u0ðtÞ (30)

r ¼ 1;

eðt; 1Þ ¼ u1ðtÞ (31)

by Taylor series, we can expand

eðt : rÞ ¼ u0ðtÞ þ
X1
n¼1

unðtÞ rn; (32)

where unðtÞ ¼ ½ 1
�ðnþ1Þ

@neðt; rÞ
@rn �r¼0: The Eq. (32) becomes

uðtÞ ¼ u0ðtÞ þ
X1
n¼1

unðtÞ ; (33)

at r = 1. Differentiate (29) with respect to r, finally set r = 0 and divide by Γ(n + 1). However, the deformation
equation of n −th order is expressed by

S½unðtÞ � dnun�1ðtÞ� ¼ cIðtÞvnðun�1
��!ÞðtÞ (34)

where

vnðun�1
��!ÞðtÞ ¼ ½ 1

�ðnÞ
@n�1eðt; rÞ

@rn�1
�r¼0;

And

dn ¼ 0 n � 1;
1 n . 1:

�
(35)

By means of the inverse Sumudu transform operator S−1

unðtÞ ¼ dnun�1ðtÞ þ cS�1½IðtÞvnðun�1
��!ÞðtÞ�: (36)

The solution can be written as

uðtÞ ¼ u0ðtÞ þ
XM
n¼0

unðtÞ ; where M ! 1: (37)

2.4 Modified Sumudu Variational Iteration Method (MSVIM)
This section is based on the combination of variational iteration method with Sumudu transform.
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Let us apply the inverse Sumudu transform of both sides (12).

uðtÞ ¼ S�1½vaSðEðuðt � sÞÞÞ� þ �1S
�1½vaS½

Z t

0

Kðt; sÞGðuðsÞÞdsÞ�

þ S�1½vaðcþ Sðf ðtÞÞ� þ �2S
�1½vaSð

Z1

0

Lðt; sÞHðuðsÞÞdsÞ�: (38)

Now, differential the preceding equations with respect to t,

@uðtÞ
@t

¼ @

@t
S�1½vaSðEðuðt � sÞÞÞ� þ �1

@

@t
S�1½vaS½

Z t

0

Kðt; sÞGðuðsÞÞdsÞ�

þ @

@t
S�1½vaðcþ Sðf ðtÞÞ� þ �2

@

@t
S�1½vaSð

Z1

0

Lðt; sÞHðuðsÞÞdsÞ�:
(39)

Due to the variational iteration method, the correct function can be rewritten as:

umþ1 ¼ S�1½vaSðEðumðt � sÞÞÞ� þ �1S
�1½vaS½

Z t

0

Kðt; sÞGðumðsÞÞdsÞ�

þ S�1½vaðcþ Sðf ðtÞÞ� þ �2S
�1½vaSð

Z1

0

Lðt; sÞHðumðsÞÞdsÞ�:
(40)

So, the limit of {um(t)}m≥0 is equivalent to the exact solution.

2.5 Modified Sumudu Decomposition Method (MSDM)
Upon using the Sumudu decomposition method, definition of the solution u(t) and the nonlinear

functions are given by the infinite series

uðtÞ ¼
X1
j¼0

ujðtÞ ; E ¼
X1
j¼0

XjðtÞ ; G ¼
X1
j¼0

YjðtÞ; H ¼
X1
j¼0

ZjðtÞ (41)

where, Xj, Yj and Zj are the Adomian polynomials of u0, u1, … , uj.

Now, the Adomian polynomials for the nonlinear functions are written as

Xj ¼ 1

�ðk þ 1Þ
dk

dwk ½Eð
X1
i¼1

wjujÞ�; k ¼ 0; 1; 2; . . . (42)

Yj ¼ 1

�ðk þ 1Þ
dk

dwk ½Gð
X1
i¼1

wjujÞ�; k ¼ 0; 1; 2; . . . (43)
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Zj ¼ 1

�ðk þ 1Þ
dk

dwk ½Hð
X1
i¼1

wjujÞ�; k ¼ 0; 1; 2; . . . (44)

The new recursive relation becomes

X0 ¼ Eðu0Þ;
X1 ¼ u1E

0ðu0Þ;

X2 ¼ u2E
0ðu0Þ þ 1

2
u21E

00ðu0Þ;

X2 ¼ u3E
0ðu0Þ þ u1u2E

00ðu0Þ þ 1

3
u31E

000 ðu0Þ;

etc.,

Y0 ¼ Gðu0Þ;
Y1 ¼ u1G

0ðu0Þ;

Y2 ¼ u2G
0ðu0Þ þ 1

2
u21G

00ðu0Þ;

Y2 ¼ u3G
0ðu0Þ þ u1u2G

00ðu0Þ þ 1

3
u31G

000 ðu0Þ;

Finally,

Z0 ¼ Hðu0Þ;
Z1 ¼ u1H

0ðu0Þ;

Z2 ¼ u2H
0ðu0Þ þ 1

2
u21H

00ðu0Þ;

Z2 ¼ u3H
0ðu0Þ þ u1u2H

00ðu0Þ þ 1

3
u31H

000 ðu0Þ;

Substitute (41) in (12), we have

Sð
X1
j¼0

ujÞ ¼ va�1S½
Z t

0

Kðt; sÞ
X1
j¼0

YjðtÞds� þ va�2S½
Z1

0

Lðt; sÞ
X1
j¼0

ZjðtÞds�

þ vaSð
X1
j¼0

Xjðu� sÞÞ þ vaðcþ S½f ðtÞ�Þ
(45)

By Comparison of two both sides (45). The following iterative algorithm:

Sðu0Þ ¼ vaðcþ S½f ðtÞ�Þ; u0 ¼ RðtÞ

Sðu1Þ ¼ va�1S½
Z t

0

Kðt; sÞY0ds� þ va�2S½
Z1

0

Lðt; sÞZ0ds� þ vaS½X0ðuðt � sÞÞ�
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In general form,

SðujÞ ¼ va�1S½
Z t

0

Kðt; sÞYj�1ds� þ va�2S½
Z1

0

Lðt; sÞZj�1ds� þ vaS½Xj�1ðuðt � sÞÞ�

Suggest that R(t) is decomposed into two parts:

RðtÞ ¼ R1ðtÞ þ R2ðtÞ;
u0ðtÞ ¼ R1ðtÞ; n � 1;

u1ðtÞ ¼ R2ðtÞ þ S�1½vaSðX0ðuðt � sÞÞÞ� þ �1S
�1½vaS½

Z t

0

Kðt; sÞY0dsÞ�

þ �2S
�1½vaSð

Z1

0

Lðt; sÞZ0dsÞ�:

Generally,

ujðtÞ ¼ S�1½vaSðXj�1ðuðt � sÞÞÞ� þ �1S
�1½vaS½

Z t

0

Kðt; sÞYj�1dsÞ�

þ �2S
�1½vaSð

Z1

0

Lðt; sÞZj�1dsÞ�:

Example:

DauðtÞ ¼ u2ðt � sÞ þ t1�a

�ð2� aÞ � 4

Z1

0

u3ðsÞds� 2

Z t

0

ðuðsÞ � 1Þds (46)

with the initial condition: u(0) = 0, with the exact solution u(t) = t at τ = 1 and α = 0.75.

Solution:
(1) By MSHPM:

Taking Sumudu transform to both sides of (46)

S½DauðtÞ� ¼ S½u2ðt � sÞ� þ S
t0:25

�ð1:25Þ
� �

� 4S

Z1

0

u3ðsÞds
2
4

3
5

� 2S

Z t

0

ðuðsÞ � 1Þds
2
4

3
5

(47)

From (4) with initial conditions, we gain
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S½uðtÞ� ¼ vaS½u2ðt � sÞ� þ va

�ð1:25Þ S½t
0:25� � 4vaS½

Z1

0

u3ðsÞds�

� 2vaS½
Z t

0

ðuðsÞ � 1Þds�
(48)

That is, for a special value α = 0.75 and (48) is equivalent to

S½uðtÞ� ¼ v� 4v0:75S½
Z1

0

u3ðsÞds� þ v0:75S½u2ðt � sÞ�

� 2v0:75S½
Z t

0

ðuðsÞ � 1Þds�:
(49)

By homotopy perturbation Sumudu transform method, it follows immediately that,

S½
X1
i¼0

piuiðtÞ� ¼ v� 4v0:75S½
Z1

0

X1
i¼0

piniðuÞdt� þ v0:75S½
X1
i¼0

pi&iðuðt � sÞÞ�

� 2v0:75S½
Z t

0

ð
X1
i¼0

piuiðsÞ � 1Þds�
(50)

i.e.,

X1
i¼0

piuiðtÞ ¼ t � pS�1½4v0:75S½
Z1

0

X1
i¼0

piniðuÞdt�� þ v0:75S½
X1
i¼0

pi&iðuðt � sÞÞ�

� 2v0:75S½
Z t

0

ð
X1
i¼0

piuiðsÞ � 1Þds�
(51)

p0 ¼ u0 ¼ t

p1 : u1 ¼ S�1½4v0:75S½ðt � sÞ2 � 1� t2 þ 2t� ¼ 0

p2 : u2 ¼ 0

Repeat the above procedure until i =m, so the approximate solution is equal to the exact solution

uðtÞ ¼
X1
m¼0

um ¼ t:

(2) By MSSSM:

Throughout method of series solution in (46), for ci = 1

uðtÞ ¼
X1
i¼0

uiðtÞ; (52)
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ðuðt � sÞÞ2 ¼
X1
i¼0

ðuiðt � sÞÞ2; (53)

uðtÞ ¼ ½
X1
i¼0

uiðsÞ� � 1; (54)

u3ðtÞ ¼
X1
i¼0

ðuiðtÞÞ3; (55)

substituting (52)–(55) in (47)

X1
i¼0

ui ¼ S�1½vaSð t0:25

�ð1:25ÞÞ � 4vaS½
Z1

0

ð
X1
i¼0

uiðsÞÞ3ds� þ vaS½
X1
i¼0

ðuiðt � sÞÞ2�

� 2S�1½vaS½
Z t

0

ð
X1
i¼0

uiðsÞÞ � 1 ds�
(56)

particularly, α = 0.75, τ = 1. By the argument the both sides (56). Then un tends to u0 = t whenever n→∞.

(3) By MSHAM:

Put c(t) = 1, the zero-order deformation equation is readily given by:

ð1� rÞS½eðt; rÞ � u0ðtÞ� ¼ rcN½eðt : rÞ�; (57)

where,

N½eðt : rÞ� ¼ S½eðt; rÞ� þ 2vaS½
Z t

0

ðeðs; rÞ � 1Þ ds� þ 4vaS½
Z1

0

ðeðs; rÞÞ3ds�

þ vaS½ðeðt � s; rÞ2 þ t0:25

�ð1:25Þ �:
(58)

As a result

vnðun�1
��!ÞðtÞ ¼ S½un�1ðtÞ� þ vaS½

Z t

0

ðun�1ðsÞ � 1Þ ds� þ 4vaS½
Z1

0

ðeðs : rÞÞ3 ds�

þ vaS½ðeðt � s : rÞÞ2 þ t0:25

�ð1:25Þ�:
(59)

The n-th order deformation equation is obtained as

S½unðtÞ � dnun�1ðtÞ� ¼ cvnðun�1
��!ÞðtÞ; (60)

Especially, if α = 0.75, c = 1 and from the relationship in (36), we find

u0ðtÞ ¼ S�1½v � ¼ t (61)
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u1ðtÞ ¼ S�1½v1ðu0!ÞðtÞ� ¼ 0 (62)

u2ðtÞ ¼ S�1½v2ðu1!ÞðtÞ� ¼ 0 (63)

For more generality un approaches to u0 = t as n→∞ which gives the required solution.

(4) By MSVIM:

We construct the iteration formula as

umþ1 ¼ S�1½vaS½ðumðt � sÞÞ2�� � 2S�1½vaS½
Z t

0

ðumðsÞ � 1Þds��

þ S�1½vaðcþ Sð t0:25

�ð1:25ÞÞ� � 4S�1½vaSð
Z1

0

ðumðsÞÞ3dsÞ�:
(64)

In particular, α = 0.75, upon using the iteration formula

u0 ¼ t;

u1 ¼ 0;

Hence, the general term um is obtained as um = t agrees well with the exact solution as m tends to infinity.

(5) By MSDM:

Obviously,

Sð
X1
j¼0

ujðtÞÞ ¼ va�1S½
Z t

0

ðumðsÞ � 1Þds� þ va�2S½
Z1

0

X1
j¼0

Zj ds�

þ vaSð
X1
j¼0

Xjðu� sÞÞ þ vaðcþ S½ t0:25

�ð1:25Þ�Þ;
(65)

set α = 0.75, it implies that

Sðu0Þ ¼ vaðcþ S½ t0:25

�ð1:25Þ�Þ; u0 ¼ RðtÞ

Sðu1Þ ¼ va�1S½
Z t

0

ðu0ðsÞ � 1Þds� þ va�2S½
Z1

0

Z0ds� þ vaS½X0ðuðt � sÞÞ�:

For more generality,

SðujÞ ¼ va�1S½
Z t

0

uj�1ðsÞ � 1ds� þ va�2S½
Z1

0

Zj�1ds� þ vaS½Xj�1ðuðt � sÞÞ�:
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From Adomian decomposition, we have

u0ðtÞ ¼ t;

u1ðtÞ ¼ R2ðtÞ þ S�1½vaSðX0ðuðt � sÞÞÞ� þ �1S
�1½vaS½

Z t

0

ðu0ðsÞ � 1Þ ds��

þ �2S
�1½vaS½

Z1

0

Z0ds�� ¼ 0:

Then it follows:

ujðtÞ ¼ S�1½vaSðXj�1ðuðt � sÞÞÞ� þ �1S
�1½vaS½

Z t

0

ðuj�1ðsÞ � 1Þds��

þ �2S
�1½vaS½

Z1

0

Zj�1ds��:

uj ¼ 08 j � 1: Of course, the approximate solution approaches to t as j tends to infinity.

3. Computational Scheme for the Proposed Problem

The estimate we will obtain in this section seems to be independent of interest. Without restriction of
generality, we can assume α = 0.25, 0.75, 1.25 and α = 1.75 hold for t = 0.1, 0.2, …, 2. We compute the
experimentally determined solution of Eq. (46) for the different values of α with many values of t. This
yields information about the analogue between the exact and approximate value of u(t).

Figs. 1–4 show that there are intersections between exact uexact(t) = t and approximate value

uappðtÞ ¼ 2t0:5ffiffi
p

p ; t; 4t1:5

3
ffiffi
p

p ; t2

2, respectively. Also, Tab. 1 contains all details.

Figure 1: The experimentally determined solutions at t = 0.1, 0.2, …, 2 in Eq. (46) with a ¼ 0:25
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Figure 2: The experimentally determined solutions at t = 0.1, 0.2, …, 2 in Eq. (46) with α = 0.75

Figure 3: The experimentally determined solutions at t = 0.1, 0.2, …, 2 in Eq. (46) with α = 1.25

Figure 4: The experimentally determined solutions at t = 0.1, 0.2, …, 2 in Eq. (46) with α = 1.75
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4 Special Cases

It is evident that this manuscript is more generalized from analogues papers. More remarkable special
cases which are covered by a lot of last papers.

Remark 1 If the Eq. (7) has no delay item, it becomes fractional Volterra-Fredholm integro-differential
equation [4].

Remark 2 If the Eq. (7) has no delay item and α = 1, it becomes integro-differential equation [2,14].

Remark 3 If the Eq. (7) has no delay item and it becomes Fractional integro-differential equation [11].

Remark 4 If the Eq. (7) has no delay item and no Volterra integral, it becomes fractional Fredholm
integro-differential equation [8,11].

Remark 5 If the Eq. (7) has no delay item, no Volterra and no Fredholm integrals, it becomes fractional
differential equation [5,9,11,16].

Remark 6 If the Eq. (7) has linear function of constant delay item, it becomes fractional Volterra-
Fredholm integro-differential equation [15].

Table 1: Approximate values of u(t) where u(t) is the solution of Eq. (46)

t Exact value
uexact (t) = t

a ¼ 0:25 a ¼ 0:75 a ¼ 1:25 a ¼ 1:75

uappðtÞ ¼ 2t0:5ffiffi
p

p uappðtÞ ¼ t
uappðtÞ ¼ 4t1:5

3
ffiffiffi
p

p uappðtÞ ¼ t2

2

0.1 0.1 0.35682 0.1 0.02379 0.09500

0.2 0.2 0.50463 0.2 0.06728 0.18000

0.3 0.3 0.61804 0.3 0.12361 0.25500

0.4 0.4 0.71365 0.4 0.19031 0.32000

0.5 0.5 0.79788 0.5 0.26596 0.37500

0.6 0.6 0.87404 0.6 0.34962 0.42000

0.7 0.7 0.94407 0.7 0.44057 0.45500

0.8 0.8 1.00925 0.8 0.53827 0.48000

0.9 0.9 1.07047 0.9 0.64229 0.49500

1 1 1.12838 1 0.75225 0.50000

1.1 1.1 1.18345 1.1 0.8787 0.60500

1.2 1.2 1.23608 1.2 0.98886 0.72000

1.3 1.3 1.28655 1.3 1.11501 0.84500

1.4 1.4 1.33512 1.4 1.24611 0.98000

1.5 1.5 1.38198 1.5 1.38198 1.12500

1.6 1.6 1.42730 1.6 1.52245 1.28000

1.7 1.7 1.47123 1.7 1.67739 1.44500

1.8 1.8 1.51388 1.8 1.81666 1.62000

1.9 1.9 1.55536 1.9 1.97013 1.80500

2.0 2.0 1.59577 2.0 2.12769 2
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5 Conclusion

The benefit of modified several methods is that it successfully contributed to the rapidly progressing of
the exact, approximate and numerical solutions. Also, modified methods are considered as a new powerful
technique to solve a large range of equations such as differential, integral and integro-differential. At a certain
value of α = 0.75 the approximate solution is equal to the exact solution. Also, the analogy between the exact
and approximate solution differs from an example to others.
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