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ABSTRACT

In this paper, sub equation and 1=G’ð Þ�expansion methods are proposed to construct exact solutions of a non-
linear longitudinal wave equation (LWE) in a magneto-electro-elastic circular rod. The proposed methods have
been used to construct hyperbolic, rational, dark soliton and trigonometric solutions of the LWE in the magneto-
electro-elastic circular rod. Arbitrary values are given to the parameters in the solutions obtained. 3D, 2D and
contour graphs are presented with the help of a computer package program. Solutions attained by symbolic cal-
culations revealed that these methods are effective, reliable and simple mathematical tool for finding solutions of
nonlinear evolution equations arising in physics and nonlinear dynamics.
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1 Introduction

Nonlinear evolution equations (NLEEs) are used in various fields such as biological sciences, plasma
physics, quantum mechanics, fluid dynamics and engineering. Many methods have been used to obtain
solutions of NLEEs from past to present.

In particular, 1=G’ð Þ�expansion method that we will consider in this study produces hyperbolic type
traveling wave solution, while the sub equation method produces dark solitons. Generally, dark solitons
are solutions that contain tangent function.

We know that solitons have an important place in wave theory. There are many solitons that offer a
mathematical perspective to many physical phenomena. Some of these are dark soliton, bright soliton,
peaked solitary, topological soliton, non-topological soliton, singular soliton and so on. The mathematical
expressions of these solitons appear as a solution of NLEEs.

It is very difficult to obtain the analytical solution of NLEEs. However, with the help of classical wave
transformation, traveling wave solutions can be obtained by converting to ordinary differential equations.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI: 10.32604/sv.2021.014157

ARTICLE

echT PressScience

mailto:hijaz555@gmail.com
http://dx.doi.org/10.32604/sv.2021.014157


Traveling wave solutions, which have an important place in wave theory and contain many physical events,
are important for mathematics. Different types of traveling wave solutions are available with different
methods. Some of these methods are auxiliary equation method [1], G’=Gð Þ�expansion method [2],
Homotopy perturbation method [3], sumudu transform method [4], 1=G0ð Þ�expansion method [5,6],
finite element method [7], variational iteration method (VIM) and modified VIM algorithms [8–15],
Meshless methods [16], Homotopy analysis, Homotopy-Pade methods [17], decomposition method [18],
the first integral method [19], Clarkson–Kruskal direct method [20], residual power series method [21],
collocation method [22], F-expansion method [23], homogeneous balance method [24], the auto-
Bäcklund transformation method [25], new sub equation method [26,27], Exp-function method [28] and
so on [29–38].

Let’s take the LWE in a magneto-electro-elastic circular rod [39]

utt � g2uxx � g
2
u2 þ qutt

� �
xx
¼ 0; (1)

where g is the linear longitudinal wave velocity and q is the dispersion parameter for a magneto-electro-
elastic circular rod, all of which depend on the material property and geometry [40].

The real-world physical response of a magneto-electro-elastic circular rod LWE is the combination of
piezomagnetic and piezoelectric BaTiO3 [39]. The solutions offered especially for those working in this
field are important. It will become more important with the physical meaning of the constants in the solution.

In this study, some researchers have examined the physically precious LWE. In the study of Iqbal
et al. wave solutions have been obtained with extended auxiliary equation mapping and extended direct
algebraic mapping methods [39]. Ilhan et al. have provided solutions including complex, hyperbolic and
trigonometric functions with sine-Gordon expansion method [40]. Baskonus et al. have been presented
topological, non-topological and singular soliton solutions using the extended sinh-Gordon equation
expansion method [41]. Also, Baskonus et al. have obtained hyperbolic, complex and complex hyperbolic
function solutions with the modified exp expansion function method [42]. In their study, Yang et al.
achieved solitary wave solutions that peaked using direct integration with the boundary condition and
symmetry condition [43]. Younis et al. have been presented dark, bright and singular solitons solutions
with the solitary wave ansatz method [44].

In this study, we will present different solutions from the solutions presented in the literature. In
particular, we offer a different solution than the dark solitons that Younis et al. present in their work.

2 Sub-Equation Method

Consider the sub-equation method for the solving NLEEs. Regard the NLEEs as

@ u; ut; ux; utt; uxx;…ð Þ ¼ 0: (2)

Applying the wave transmutation

U nð Þ ¼ u x; tð Þ; n ¼ kxþ wt; (3)

Eq. (2) converts into ODE

T U ;U 0;U 00;…ð Þ ¼ 0; (4)

where w is arbitrary constant. In the form it is supposed that Eq. (4) has a solution

U nð Þ ¼
Xn
i¼0

aif
i nð Þ; an 6¼ 0; (5)
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in here ai; 0 � i � nð Þ are constants to be determined, n is a positive integer value which is going to be
attained in Eq. (4) by balancing term is found according to the principle of balance and the solution of
Riccati equation is f nð Þ
f0 nð Þ ¼ lþ f nð Þð Þ2; (6)

where l is an arbitrary constant. Some exclusive solutions are given of the Riccati equation in (6) as follows:

f nð Þ ¼

� ffiffiffiffiffiffiffi�l
p

tanh
ffiffiffiffiffiffiffi�l

p
n

� �
; l, 0

� ffiffiffiffiffiffiffi�l
p

coth
ffiffiffiffiffiffiffi�l

p
n

� �
; l , 0ffiffiffi

l
p

tan
ffiffiffi
l

p
n

� �
; l. 0

� ffiffiffi
l

p
cot

ffiffiffi
l

p
n

� �
; l. 0

� 1

nþ r
; l ¼ 0 ðr is a cons:Þ

8>>>>>><
>>>>>>:

(7)

In Eq. (4), if we apply the Eqs. (6) and (5), we attained the new polynomial with respect f nð Þ a nonlinear
algebraic equation system in ai; i ¼ 0; 1;…; nð Þ setting all the coefficients of to zero yields
fi nð Þ; i ¼ 0; 1;…; nð Þ: To find solutions in nonlinear algebraic equations to we determine constants
l; s; k; r; ai; i ¼ 0; 1;…; nð Þ: Substituting attained constants from this system and by the aid of the
formulas (7) the solutions of Eq. (6) into Eq. (5). Then, we obtain analytic solutions for Eq. (2).

Using this analytical method, trigonometric provides solutions of hyperbolic and algebraic type. These
solutions are in Eq. (7) formats. Especially our tanh solution contains dark soliton feature [45]. This method
is a reliable, effective and powerful analytical method in obtaining the analytical solution of many differential
equations.

3 The (1/G’)-Expansion Method

Consider a general form of NLEEs,

� u;
@u

@t
;
@u

@x
;
@2u

@x2
;…

� �
¼ 0: (8)

Let u ¼ U nð Þ ¼ u x; tð Þ; n ¼ kxþ wt;w 6¼ 0;where w is a constant and the speed of the wave. We can
convert it into the following nODE for U nð Þ:
U ; kU 0; sU 0; k2U 00;…
� � ¼ 0: (9)

The solution of Eq. (9) is assumed to have the form

U nð Þ ¼ a0 þ
Xn
i¼1

ai
1

G0

� �i

; (10)

where ai; i ¼ 0; 1;…; n are constants, n is the balancing term that we need to calculate based on the
homogeneous balance principle. G ¼ G nð Þ provides the following second order IODE:

G00 þ �G0 þ d ¼ 0; (11)

where � and d are constants to be determined after,

1

G0 nð Þ ¼
1

� d
�
þ B cosh n�ð Þ � B sinh n�ð Þ

; (12)

where B is integral constant.
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After calculating the n balancing term, the structure of the solution function of the assumed Eq. (10)
emerges. The necessary derivatives of this solution are taken and replaced in the Eq. (9), and after some
algebraic operations, a polynomial that accepts the expression 1=G0ð Þi; i ¼ 0; 1; 2;…; nð Þ as a variable
can be created. Considering the zero polynomial property, the coefficients of the variable are equal to
zero and an algebraic system of equations is obtained. We can reach the solution of the algebraic equation
system using ready-made package programs. These solutions are the coefficients of the solution function
of the default Eq. (10). When these coefficients are replaced in Eq. (10), there is a solution of Eq. (9).
Finally, the classical wave transformation is reversed and the solution of Eq. (8) is reached.

4 Application of Sub-Equation Method

If we apply the transform in the Eq. (3) to the Eq. (1), we find

w2U 00 � g2k2U 00 � g
2

U2
� �00 � qw2U ð4Þ ¼ 0; (13)

or

w2 � g2k2
� �

U 00 � g
2

U2
� �00 � qw2U ð4Þ ¼ 0: (14)

If we take the integral twice according to n to the Eq. (14) and neglecting the integration constant with
zero, we obtain

w2 � g2k2
� �

U � g
2

U2
� �� qw2U 00 ¼ 0; (15)

In Eq. (15), we get n ¼ 2 from the balance principle and in Eq. (5), the following situation is
obtained

U nð Þ ¼ a0 þ a1f nð Þ þ a2 f nð Þð Þ2; (16)

If the equation given by (16) is placed in the Eq. (15) and the necessary arrangements are made, we can
write the following equation system:

f nð Þð Þ0 : w2a0 � k2g2a0 � 1

2
k2ga20 � 2k2qw2l2a2 ¼ 0;

f nð Þð Þ1 : w2a1 � k2g2a1 � 2k2qw2la1 � k2ga0a1 ¼ 0;

f nð Þð Þ2 : � 1

2
k2ga21 þ w2a2 � k2g2a2 � 8k2qw2la2 � k2ga0a2 ¼ 0;

f nð Þð Þ3 : �2k2qw2a1 � k2ga1a2 ¼ 0;

f nð Þð Þ4 : �6k2qw2a2 � 1

2
k2ga22 ¼ 0:

9>>>>>>>>>>=
>>>>>>>>>>;

(17)

a0; a1; a2 and l constants are attained from Eq. (17) system with the aid of packet program.

Case 1: If l < 0;

a0 ¼ �w2 þ k2g2

k2g
; a1 ¼ 0; a2 ¼ � 12qw2

g
; l ¼ w2 � k2g2

4k2qw2
; (18)

Substituting values (18) into (16), we can also present the dark soliton for Eq. (1) using the classical
wave transformation inverse, that is, using the n ¼ kxþ wt, as follows:
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u1 x; tð Þ ¼ �w2 þ k2g2

k2g
þ
3 w2 � k2g2ð Þ tanh 1

2
twþ kxð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w2 � k2g2

k2qw2

s2
4

3
5
2

k2g
: (19)

Case II: If l < 0;

a0 ¼ �w2 þ k2g2

k2g
; a1 ¼ 0; a2 ¼ � 12qw2

g
; l ¼ w2 � k2g2

4k2qw2
; (20)

Substituting values (20) into (16), we can also present the singular for Eq. (1) using the classical wave
transformation inverse, that is, using the n ¼ kxþ wt, as follows:

u2 x; tð Þ ¼ �w2 þ k2g2

k2g
þ
3 w2 � k2g2ð Þ coth 1

2
twþ kxð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w2 � k2g2

k2qw2

s2
4

3
5
2

k2g
: (21)

Figure 1: 3D, 2D and contour graphs respectively for w ¼ 0:5; g ¼ 2:65; q ¼ 2; k ¼ 0:2 values of
Eq. (19)

Figure 2: 3D, 2D and contour graphs respectively for w ¼ 0:5; g ¼ 0:5; q ¼ 2; k ¼ 2 values of Eq. (21)
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Case III: If l > 0;

a0 ¼ �w2 þ k2g2

k2g
; a1 ¼ 0; a2 ¼ � 12qw2

g
; l ¼ w2 � k2g2

4k2qw2
; (22)

Substituting values (22) into (16), we attain trigonometric soliton for Eq. (1)

u3 x; tð Þ ¼ �w2 þ k2g2

k2g
�
3 w2 � k2g2ð Þ tan 1

2
twþ kxð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � k2g2

k2qw2

s2
4

3
5
2

k2g
: (23)

Case IV: If l > 0;

a0 ¼ �w2 þ k2g2

k2g
; a1 ¼ 0; a2 ¼ � 12qw2

g
; l ¼ w2 � k2g2

4k2qw2
; (24)

Substituting values (24) into (16), we attain trigonometric soliton for Eq. (1)

u4 x; tð Þ ¼ �w2 þ k2g2

k2g
�
3 w2 � k2g2ð Þ cot 1

2
twþ kxð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � k2g2

k2qw2

s2
4

3
5
2

k2g
: (25)

Figure 3: 3D, 2D and contour graphs respectively for w ¼ 0:5; g ¼ 2; q ¼ 2; k ¼ 0:2 values of Eq. (23)

Figure 4: 3D, 2D and contour graphs respectively for w ¼ 0:5; g ¼ 0:5; q ¼ 2; k ¼ 2 values of Eq. (25)
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Case V: If l ¼ 0;

w ¼
ffiffiffiffiffiffiffiffiffi
k2g2

p
; a0 ¼ �w2 þ k2g2

k2g
; a1 ¼ 0; a2 ¼ � 12qw2

g
; l ¼ w2 � k2g2

4k2qw2
; (26)

Substituting values (26) into (16), we attain rational traveling wave solution for Eq. (1)

u5 x; tð Þ ¼ � 12k2qg

r þ kxþ t
ffiffiffiffiffiffiffiffiffi
k2g2

p� �2 : (27)

5 Application of (1/G’)-Expansion Method

Considering Eq. (15), we get balancing term n ¼ 2 and in Eq. (10), the following situation is
obtained:

u nð Þ ¼ a0 þ a1
1

G0

� �
þ a2

1

G0

� �2

; a2 6¼ 0: (28)

Replacing Eq. (28) into Eq. (15) and the coefficients of the algebraic Eq. (1) are equal to zero, can find
the following algebraic equation systems:

Const : w2a0 � k2g2a0 � 1

2
k2ga20 ¼ 0;

1

G0 n½ �
� �1

: w2a1 � k2g2a1 � k2qw2�2a1 � k2ga0a1 ¼ 0;

1

G0 n½ �
� �2

: �3k2qw2�da1 � 1

2
k2ga21 þ w2a2 � k2g2a2 � 4k2qw2�2a2 � k2ga0a2 ¼ 0;

1

G0 n½ �
� �3

: �2k2qw2d2a1 � 10k2qw2�da2 � k2ga1a2 ¼ 0;

1

G0 n½ �
� �4

: �6k2qw2d2a2 � 1

2
k2ga22 ¼ 0:

(29)

Figure 5: 3D, 2D and contour graphs respectively for r ¼ 0:5; g ¼ 0:5; q ¼ 2; k ¼ 2 values of Eq. (27)
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Case 1.

a0 ¼ � 2k2qg�2

1þ k2q�2
; a1 ¼ � 12k2qg�d

1þ k2q�2
; a2 ¼ � 12k2qgd2

1þ k2q�2
; w ¼ kgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2q�2
p ; (30)

Replacing values Eq. (30) into Eq. (28) and we have the following hyperbolic type solutions for Eq. (1):

u1 x; tð Þ ¼ � 2k2qg�2

1þ k2q�2
� 12k2qgd2

1þ k2q�2ð Þ � d
�
þ c1 cosh � kxþ ktgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2q�2
p

 !" #
� c1 sinh � kxþ ktgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2q�2
p

 !" # !2

� 12k2qg�d

1þ k2q�2ð Þ � d
�
þ c1 cosh � kxþ ktgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2q�2
p

 !" #
� c1 sinh � kxþ ktgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2q�2
p

 !" # ! :

ð31Þ

6 Results and Discussion

In this study, the LWE of a magneto-electro-elastic circular rod has been successfully produced using
two different analytical methods. These solutions are emphasized to be hyperbolic, rational, dark soliton
and trigonometric type traveling wave solutions. Generating the solutions of this equation is
mathematically valuable as much in terms of physical meaning. The u solutions presented in this article
represent the electrostatic potential of the magneto-electro-elastic circular rod. Also, using this potential, a
different physical perspective can be presented. If we represent the pressure of this physical event with P,
the P pressure can be calculated for different analytical solutions as follows:

P x; tð Þ ¼ �q
@u x; tð Þ

@t
; (32)

The potential u calculated here and the P pressure magneto-electro-elastic circular rod can offer different
interpretations and different perspectives on the physical event [46–49].

The figures presented in this work are the graphs of solitons representing the standing wave. Fig. 1
represents the dark soliton, Fig. 2 represents the singular soliton, Figs. 3 and 4 represent the trigonometric
solitons, Fig. 5 represents the rational soliton, and Fig. 6 represents the graphics of hyperbolic type solitons.

Figure 6: 3D, 2D and contour graphs respectively for c1 ¼ 0:9; d ¼ 0:3; � ¼ 0:5; q ¼ 3; k ¼ 1; g ¼ 2
values of Eq. (31)
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7 Conclusions

In this study, we have achieved hyperbolic, rational, dark soliton and trigonometric traveling wave
solutions for the LWE in a magneto-electro-elastic circular rod using sub equation method and
ð1=G’Þ-expansion method. By giving arbitrary values to the constants in the solution obtained, 3D, 2D
and contour graphics of the solution representing the stationary wave are presented. It has been observed
that the methods used are easy, effective and powerful, and solutions of NLEEs can be obtained. It would
be even more valuable to add a physical meaning to these solutions in the future. Computer package
program was used in the construction of these solutions.
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