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ABSTRACT

Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse
dynamic loading is performed for a specified duration. The study investigates the first ply failure load, followed
by the detection of successive ply failures and their failure modes using various failure theories. Some of the well-
established failure theories, mostly used by the researchers, are considered for the failure prediction in laminates.
The finite element computational model based on higher order shear deformation displacement field is used for
the failure analysis and the complete methodology is computer coded using FORTRAN. The ply-discount stiffness
reduction scheme is employed to modify the material properties of the failed lamina. The failure theories used in
the analysis are compared according to their ability to predict failure load, failed ply, failure mode and progression
of failure. The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply
supported and clamped. The significance of fibre orientation and stacking sequence in terms of the strength of a
laminate and failure progression is also highlighted.
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1 Introduction

The failure analysis of laminated composite plates under dynamic load is essential as the laminated
plates are used as a primary load-bearing member in aircraft, marine, civil and aerospace structures. The
applications of composite structures have now extended to the traditional automotive industry also.
The increasing applications of composite structures demand a reliable performance assessment of these
structures. Failure of a composite material due to its complexities has always been a subject of research
ever since its inception. A fibrous composite laminate fails progressively, starting from micro-level failure
such as fibre failure, matrix failure, fibre matrix pull-out, etc. to laminate level failure in the form of
cracks in the constituent lamina.

Over the past decades, the dynamic behaviour of laminated plates has been studied by many researchers.
The free vibration analysis [1–14] of laminates includes the determination of natural frequencies of laminates
using different plate theories, solving techniques and numerical methods. The transient response of anti-
symmetric angle-ply laminated composite plates with simply-supported edges under arbitrary loading was
presented by Khdeir et al. [15]. Khdeir [16] developed an analytical procedure to investigate the dynamic
response of angle-ply anti-symmetric laminates with varying boundary conditions. Alexander et al. [17]
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investigated the initial and progressive failure analyses of a laminated composite structure subjected to
dynamic loading using phenomenological failure theories. A method using a semi-analytical finite strip
method was developed by Chen et al. [18] for predicting the linear transient response of rectangular
homogeneous and heterogeneous laminated plates. Swaddinudhipong et al. [19] carried out elastic
dynamic response analysis using modified nine noded degenerated shell element with assumed strain
field. Jam et al. [20] investigated laminated composite plates failure under dynamic loading using Tsai-
Wu failure theory. The nonlinear dynamic response of laminated basalt composite plate was studied by
Basturk et al. [21]. The geometric nonlinearity was considered by employing von-Karman nonlinear
kinematics and the Newmark method for solving the nonlinear-coupled equation of motion. Ray et al.
[22] presented the static and dynamic first ply failure analyses of laminated composite plate based on
FSDT and various failure theories. Liao et al. [23] investigated composite laminate’s progressive failure
under low-velocity impact using the Puck failure criterion. The Newmark-beta method was used for
obtaining the forced vibration response. Soufeiani et al. [24] studied the effect of stacking sequence and
fiber orientation of FRP composite slab under dynamic loads using a finite element based ANSYS
software. Adhikari et al. [25] studied the free and forced vibration of laminated composite plates using a
Quasi 3-D theory based on the linear variation of transverse displacement of plate. Joshi et al. [26]
presented a progressive failure of laminates subjected to transverse static loading within the finite element
framework using eight failure theories. Joshi et al. [27] presented the free vibration frequencies of
composite laminates during its ply-by-ply failure. The literature on dynamic analysis of composite
laminates is mostly focused on free vibration analysis and dynamic response of laminates under dynamic
loads. However, the progressive failure analysis of laminates under dynamic load is not available in the
literature. This study is an attempt to fill this gap. The present investigation deals with the failure
initiation and its progression, i.e., failure sequence of laminates under a dynamic environment. The
significance of stacking sequence fibre orientation and boundary condition on failure progression is
highlighted in the present study.

The present study investigates the ply-by-ply failure analysis of laminates under dynamic load based
on higher order shear deformation theory (HSDT) using the finite element method. The study aims to
analyse the failure of laminates under dynamic load for a specified duration. For all the laminates
investigated, the load is applied for a duration of 0.4 sec and checked for first ply failure. The first ply
failure loads of laminates are calculated for the given load duration and the progress of failure is
observed after the first ply failure load has been removed. The dynamic response of the laminates is
obtained using the Newmark-beta direct integration scheme.

2 Failure Theories

The failure theories used for the failure prediction of composite laminates are classified in three criteria
viz. independent, interactive and mode determining failure criteria [26].

2.1 Independent Failure Criteria
This is the oldest failure criteria used for composite laminates. This failure criteria assume failure if any

of the stress or strain component reaches its maximum permissible value. The maximum stress criterion is an
example of this category.

2.1.1 Maximum Stress Theory
This failure criterion assumes failure when any of the six stress components reaches its ultimate

allowable value while the other stress components may be well within their limit. The safe conditions
mathematically according to the maximum stress theory can be written as:
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XC < s11 < XT (1)

YC < s22 < YT (2)

ZC < s33 < ZT (3)

t23j j < Q (4)

t31j j < R (5)

t12j j < S (6)

where s11;s22;s33; t23; t31and t12 are the stress components in the material coordinate axis. X, Y and Z are
the maximum permissible values of stresses in the material coordinate axis with subscript T and C denoting
tension and compression. Q, R and S are the maximum permissible values of shear stresses.

2.2 Interactive Failure Criteria
In this criteria, a single polynomial usually quadratic equation with all the stress components is used

to predict the lamina’s failure. This failure criteria better correlate the theoretical values and the
experiments by including all the stress components. Tsai-Hill, Azzi-Tsai, Hoffman and Tsai-Wu failure
theories fall in this category.

2.2.1 Tsai-Hill Theory
This criterion is an extension of Von-Mises distortional energy failure criterion applied to the anisotropic

material. The theory suggests failure if the following equation is satisfied.

f rij
� � ¼ F r22�r33ð Þ2 þ G r33�r11ð Þ2 þ H r11�r22ð Þ2 þ 2Lt223 þ 2Mt213 þ 2Nt212 ¼ 1 (7)

where F, G, H, L, M and N are the material strength parameters that are determined from a series of thought
experiments.

The reduced form of failure criterion for plane stress condition can be represented as follows:

r11
X

� �2 þ r22
Y

� �2 þ r11
X

� � r22
X

� �
þ t12

S

� �2 ¼ 1 (8)

where X, Y and S are ultimate in-plane stresses.

2.2.2 Azzi-Tsai Theory
This failure theory is the same as Tsai-Hill theory, but the absolute value of the two normal stresses

product is taken; hence the failure criterion can be written as:

r11
X

� �2
þ r22

Y

� �2
þ 1

X

� �2

r11 r22j j þ t12
S

� �2
¼ 1 (9)

2.2.3 Hoffman Theory
The Hoffman failure theory’s strength parameters include odd functions of normal stresses, unlike the

Tsai-Hill expression. Therefore the failure condition for plane stress is given by:

1

XT
� 1

XC

� �
r11 þ 1

YT
� 1

YC

� �
r11 � 1

XTXC
r11r22
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þ 1

XTXC
r11ð Þ2 þ 1

YTYC
r22ð Þ2 þ 1

S2
t12ð Þ2 ¼ 1 (10)

2.2.4 Tsai-Wu Theory
This failure criterion consists of the scalar polynomial of stress tensors and strength. The following

expression gives the failure surface:

f(σi) = Fiσi + Fijσij = 1 (11)

The following expression gives the failure surface expression for plane stress condition:

1

XT
� 1

XC

� �
r11 þ 1

YT
� 1

YC

� �
r11 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

XTXC
� 1

YTYC

r� �
r11r22 þ 1

XTXC
r11ð Þ2 þ 1

YTYC
r22ð Þ2

þ 1

S2
t12ð Þ2 ¼ 1 (12)

2.3 Mode Determining Failure Criteria
The independent and interactive failure criteria do not provide any information about the failure mode.

The mode determining failure criteria predict the failure along with the failure mode. These failure criteria
include separate polynomial equations for each failure mode viz. fibre tension, matrix tension, fibre
compression, matrix compression, etc., Hashin-Rotem, Rotem and Hashin failure criteria are some of the
examples of mode determining failure criteria.

2.3.1 Hashin-Rotem Failure Criterion
Hashin-Rotem criterion assumes failure in a lamina if any of these equations for their corresponding

modes of failure satisfies.

Fibre failure (tension), i.e., σ11 ≥ 0

r11
XT

¼ 1 (13)

Fibre failure (compression), i.e., σ11 < 0

r11
XC

¼ 1 (14)

Matrix failure (tension), i.e., σ22 > 0

r22
YT

� �2

þ t12
S

� �2
¼ 1 (15)

Matrix failure (compression), i.e., σ22 < 0

r22
YC

� �2

þ t12
S

� �2
¼ 1 (16)

2.3.2 Rotem Failure Criterion
In Rotem’s failure criterion, the lamina’s axial matrix properties are also considered for the matrix mode

failure. The failure criterion is given by:
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Fibre failure (tension), i.e., σ11 ≥ 0

r11
XT

¼ 1 (17)

Fibre failure (compression), i.e., σ11 < 0

r11
XC

¼ 1 (18)

Matrix failure (tension), i.e., σ22 > 0

Eme11e11
YT

� �2

þ r22
YT

� �2

þ t12
S

� �2
¼ 1 (19)

Matrix failure (compression), i.e., σ22 < 0

Eme11e11
YC

� �2

þ r22
YC

� �2

þ t12
S

� �2
¼ 1 (20)

where Em is the young’s modulus of matrix.

2.3.3 Hashin Failure Criterion
In Hashin failure theory, the linear terms in the expression for fibre failure modes of Hashin-Rotem

failure theory are replaced by quadratic terms and a strength parameter of a different plane is considered
for matrix compression failure mode. The expressions for Hashin failure criterion are given as:

Fibre failure (tension), i.e., σ11 ≥ 0

r11
XT

� �2

þ t12
S

� �2
¼ 1 (21)

Fibre failure (compression), i.e., σ11 < 0

r11
XC

� �2

¼ 1 (22)

Matrix failure (tension), i.e., σ22 > 0

r22
YT

� �2

þ t12
S

� �2
¼ 1 (23)

Matrix failure (compression), i.e., σ22 < 0

YC

2Q

� �2

� 1

 !
r22
YC

� �
þ t12

S

� �2
þ r22

2Q

� �2

¼ 1 (24)

3 Failure Modes

For failure criteria other than the mode determining, failure indices are to be determined to predict the
failure mode. The failure indices are calculated as follows:

H1 ¼ F1F11 þ F11 r11ð Þ2 (fibre failure); and H2 ¼ F2F22 þ F22 r22ð Þ2 (matrix failure) (25)

The largest among H1 and H2 is considered as the dominant failure mode and the respective elastic
constants are reduced to zero. The failure indices parameters for different failure criteria are given as follows:
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3.1 Maximum Stress Criterion

F1 ¼ 1

XT
� 1

XC
; F2 ¼ 1

YT
� 1

YC
; F12 ¼ � F1F2

2
;F11 ¼ 1

XTXC
; F22 ¼ 1

YTYC
(26)

3.2 Hoffman Criterion

F1 ¼ 1

XT
� 1

XC
; F2 ¼ 1

YT
� 1

YC
; F12 ¼ � 1

2XTXC
; F11 ¼ 1

XTXC
; F22 ¼ 1

YTYC
(27)

3.3 Tsai-Hill Criterion & Azzi-Tsai Criterion

F1 ¼ 0; F2 ¼ 0; F12 ¼ � 1

2X2 ; F11 ¼
1

X2 ; F22 ¼
1

Y2 (28)

3.4 Tsai-Wu Criterion

F1 ¼ 1

XT
� 1

XC
; F2 ¼ 1

YT
� 1

YC
; F12 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F11F22

p
2

; F11 ¼ 1

XTXC
; F22 ¼ 1

YTYC
(29)

4 Mathematical Formulation

The displacement field, according to HSDT of a point in an anisotropic laminated composite plate is
expressed as [27]:

U x; y; zð Þ ¼ uþ zux þ z2u�x þ z3’x

V x; y; zð Þ ¼ vþ zuy þ z2u�y þ z3’y

W x; y; zð Þ ¼ w x; yð Þ

8<
: (30)

U, V and W represent displacements at any point in x, y, z directions respectively. The mid-plane
translation component in the x, y and z axis are denoted by u, v & w, respectively. ux and uy denotes the
rotational component of normal to mid-plane about y and x axis, respectively. u�x and u�y are the higher
order translation functions, and ’x and ’y are the higher-order rotation function. The transverse shear
stress free surfaces condition is satisfied by the above displacement field. For a laminated plate
comprising layers of orthotropic plies or an orthotropic plate, the transverse shear stress-free surfaces
condition requires the corresponding shear strains to be zero at the surfaces, i.e.,

gyz x; y;� h

2

� �
¼ 0 and gxz x; y;� h

2

� �
¼ 0 (31)

gyz ¼
@V

@z
þ @W

@y
and gxz ¼

@U

@z
þ @W

@x
(32)

Equating Eqs. (31) and (32) and substituting for U, V, W from Eq. (30) we obtain u�x and u
�
y = 0 and the

displacement field reduces to

U x; y; zð Þ ¼ uþ zux þ z3’x

V x; y; zð Þ ¼ vþ zuy þ z3’y

W x; y; zð Þ ¼ w x; yð Þ

8<
: (33)

Eq. (33) is the reduced seven degrees of freedom displacement field formulated from the original nine
degrees of freedom displacement field (Eq. (30)) is used in the present investigation. The finite element

178 SV, 2021, vol.55, no.2



computational model and stress-strain constitution model is well known and can be referred from the
literature [28]. The equation of motion for undamped forced vibration is given by

M½ � €d
	 
þ K½ � df g ¼ Pf g (34)

The undamped free vibration equation is given by

M½ � €d
	 
þ K½ � df g ¼ 0f g (35)

where {d} is the global displacement vector, [M] is the global mass matrix, [K] is the global stiffness matrix
and {P} is the load vector. The element mass matrix is calculated as

Me½ � ¼
ZZ

½N�T m½ � N½ �dxdy (36)

where, m½ � ¼

I0 0 0 I1 0 I3 0
0 I0 0 0 I1 0 I3
0 0 I0 0 0 0 0
I1 0 0 I2 0 I4 0
0 I1 0 0 I2 0 I4
I3 0 0 I4 0 I6 0
0 I3 0 0 I4 0 I6

2
666666664

3
777777775
and

Ii ¼
Xn
k¼1

Z zk

zk�1

zirk dz; i ¼ 0; . . . ; 6 (37)

where, [N] is the shape function of eight noded isoparametric element, [m] is the density matrix, and rk is the
density of kth lamina. The solution of Eq. (34) is obtained using the Newmark-beta direct integration scheme.
The damping is neglected in the failure analysis of laminates so that the maximum detrimental effect of the
dynamic load at the fundamental frequency on the laminates can be investigated.

5 Numerical Results and Discussion

Eight noded isoparametric plate element having seven degrees of freedom at each node, as described
by the displacement field, is used to model the laminated plate. The discretization of the plate is done by
8 × 8 mesh division. Therefore, the modeled plate has 1575 total degrees of freedom. By the kinematic
constraints of simply supported boundary condition, 268 degrees of freedom are restrained. Remaining
1307 are free degrees of freedom, while for clamped boundary condition, 448 are restrained and
1127 free degrees of freedom. Failure is considered to have initiated with the failure of any of the plies in
either mode, commonly called first ply failure. It continues until the system attains steady state, i.e., no
more failure is detected, or the final ply fails in either mode. Failure of a ply is considered if either the
matrix or the fibre has failed. Material properties of the failed ply are reduced according to the ply-
discount stiffness reduction scheme. The degradation model employed is provided in Tab. 1. For both the
failure modes shear failure is also assumed. According to the failure mode, the degraded properties
are set equal to zero and the equilibrium is re-established with the new stiffness matrix. A flowchart of
the failure analysis is shown in Fig. 1. The displacements are obtained by the Newmark-beta method, and
accordingly, the stresses and strains are computed. The obtained stresses and strains are checked for the
failure of the lamina according to a failure criterion. Eight failure criteria viz. maximum stress, Tsai-Hill,
Azzi-Tsai, Tsai-Wu, Hoffman, Hashin-Rotem, Rotem and Hashin are considered to predict the failure of
laminate. Of these eight failure theories, the later three are the mode determining failure theories and for
other theories, failure indices are to be calculated to determine the failure mode [26].
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Symmetric and anti-symmetric four-ply laminates made up of T300/5208 graphite-epoxy composite
material are investigated in the present study. The laminate dimensions are 228.6 mm in length,
127.0 mm in width, and 0.127 mm in thickness. The mass density of the laminates investigated is
1.5757 × 10-6 kg/mm3. The strength parameters and material properties are provided in Tab. 2.
Laminates with the same material and geometrical properties were also investigated by Reddy et al. [29],
Pal & Ray [30], Pal et al. [31] and Pal et al. [32] for the first ply failure analysis. The lamination schemes
used for the investigation are given in Tab. 3. where θ is the fibre orientation angle in radian and for
laminate types C and D, θ is varied from 0° to 90° at an interval of 15°.

A convergence study is carried out to determine the appropriate mesh size required for the analysis to
achieve a satisfactory result. Fig. 2 shows the convergence study for simply supported anti-symmetric and
symmetric cross-ply laminates under a sinusoidal dynamic load at the fundamental frequency and an
amplitude of 0.001 MPa. The results of central deflection are recorded after the first iteration of the

Table 1: Material degradation model

Failure mode Degraded properties Induced failure

Fibre E1, G12, υ12 Shear

Matrix E2, G12, υ12 Shear

First ply failure 
detected?

No

iteration = iteration + 1

Is iteration = 40

Yes

P0 = 0

No

Yes

iteration = 1

Yes

No

iteration = 1

Remove the applied load 

No

Yes

Define initial state

Apply load, Pi = P0Sinωt

Linear dynamic analysis 
to obtain displacement
[M] + [K]{d} = {Pi}

Compute stresses

Ply failure detected?

Load increment

Re-establish equilibrium 
with the new stiffness of  

laminate

Degrade material properties of 
the failed lamina according to 

the failure mode

Last ply failure detected?

Stop

Pi = Pi-1 + ΔP

Figure 1: Flowchart of the failure analysis
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Newmark-beta method. The convergence is achieved at 8 × 8 mesh division. For the validation of the coded
methodology, first ply failure load of a four-ply symmetric cross-ply laminate with all edges simply
supported (type-B) under uniform transverse static pressure is determined for different failure theories.
The results obtained are presented in Tab. 4 and were found to be in good agreement with those reported
by Pal et al. [31].

The coded methodology provides acceptable results for different failure theories, as shown in Tab. 4.
The dynamic failure loads are then determined from the developed finite element code for symmetric and
anti-symmetric laminates for the lamination schemes listed in Tab. 3.

5.1 Dynamic Failure Load of Simply Supported Laminates
The structure’s dynamic response depends on the amplitude and frequency of applied load, mass and

stiffness of the structure, and fundamental frequency of the structure. The fundamental frequencies of
simply supported laminates are evaluated from Eq. (35) using the Jacobi iterative technique and are
presented in Tab. 5. Typical time response of central deflection of both the anti-symmetric and symmetric
cross-ply laminates under sinusoidal forcing amplitude of 0.001 MPa at the fundamental frequency is
shown in Fig. 3. It is found that the deflection increases with time. For a given amplitude, the dynamic
response depends only on the frequency ratio since the structure’s mass and stiffness are constant. The
maximum effect of a dynamic load occurs when the frequency ratio is one, i.e., when the load is applied
at the fundamental frequency or resonant frequency.

Table 2: Material properties

Properties Values

E1 132500 MPa

E2 10800 MPa

G12 = G13 5700 MPa

G23 3400 MPa

υ12 = υ13 0.24

υ23 0.49

XT 1515 MPa

XC 1697 MPa

YT = YC 43.8 MPa

S = T 86.9 MPa

ST 67.6 MPa

Table 3: Lamination schemes

Laminate Lamination scheme Laminate type

A (0°/90°/0°/90°) Anti-symmetric cross-ply

B (0°/90°/90°/0°) Symmetric cross-ply

C (θ/-θ / θ /-θ) Anti-symmetric angle-ply

D (θ/-θ /-θ / θ) Symmetric angle-ply
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Figure 2: Convergence study for anti-symmetric and symmetric cross-ply laminates

Table 4: Validation of results

Failure theory First ply failure load (MPa) (%) variation

Present results
(HSDT)

Pal et al. [31]
(FSDT)

Maximum stress 0.00426 0.00398 7.03

Hoffman 0.00422 0.00394 7.10

Tsai-Wu 0.00432 0.00404 6.93

Tsai-Hill 0.00424 – –

Azzi-Tsai 0.00424 – –

Hashin-Rotem 0.00426 – –

Rotem 0.00426 – –

Hashin 0.00426 – –

Table 5: Fundamental frequency (radian/sec) of simply supported laminates

Fibre angle Anti-symmetric Symmetric

0° 12.728 12.728

15° 14.764 14.510

30° 18.744 18.330

45° 22.402 22.158

60° 24.831 24.609

75° 26.364 26.688

90° 19.555 15.500
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In this study, the failure loads are determined under the sinusoidal dynamic load of P0sinωt, where P0
implies the amplitude of load, and ω is the frequency of the load. A time step of 0.04 s is taken for
determining the dynamic response of each laminate by using the Newmark-beta method. Therefore, ten
numbers of iteration imply a dynamic load for a duration of 0.4 s. Initially, a load of very small
amplitude is applied and checked for the failure. If no failure is detected during the load duration of 0.4 s,
the amplitude is increased by a small amount and the process is repeated. If a failure is detected, the load
is immediately removed and the structure is allowed to vibrate freely. The failure may progress after first
ply to some successive plies during the free vibration. The ply failure is designated by M (matrix failure)
or F (fibre failure) depending upon whether the matrix or the fibre has failed. M and F are preceded by
failed ply-number with top most ply numbered as 1 and bottom most ply as 4 for the four-ply laminates
investigated. The computed failure loads of symmetric and anti-symmetric simply supported laminates are
presented in Tab. 6. The failure progression of laminates is presented in Tab. 7.

Figure 3: Central deflection of anti-symmetric and symmetric cross-ply laminates

Table 6: First ply failure load (MPa � 10-3) of anti-symmetric (B&C) and symmetric (A&D) laminates

Fibre angle Type Failure theory

Max. stress Tsai-Hill Azzi-Tsai Hoffman Tsai-Wu Hashin-Rotem Rotem Hashin

0° – 1.82 1.82 1.82 1.82 1.92 1.82 1.82 1.82

15° C 1.52 1.52 1.52 1.52 1.62 1.52 1.52 1.52

D 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32

30° C 2.82 2.72 2.72 2.62 2.82 2.72 2.72 2.72

D 2.12 2.12 2.12 2.12 2.22 2.12 2.12 2.12

45° C 3.72 3.42 3.42 3.42 3.62 3.62 3.62 3.62

D 3.12 3.12 3.12 2.92 3.12 3.02 3.02 3.02

60° C 5.62 5.42 5.42 5.42 5.42 5.52 5.52 5.52

D 3.42 3.22 3.22 3.22 3.42 3.32 3.32 3.32

75° C 5.92 5.42 5.42 5.42 5.52 5.92 5.92 5.92

D 4.62 4.22 4.22 4.22 4.52 4.52 4.52 4.52

90° A 3.32 3.32 3.32 3.32 3.42 3.32 3.32 3.32

B 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
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It is found that a load for 0.4 s duration can initiate the failure of the first ply, and can cause successive
failures even after the load is removed. The successive failure is caused due to periodic displacement that
continues after the load is removed. Since the load has been removed, the response is treated as the free
vibration effects; therefore, the complete failure of a laminate may not occur, but it can progress to some
successive ply failures, as demonstrated in Tab. 6. However, the predicted failure depends on the failure
theory used. The failure theories may predict different failure load, mode of failure and number of failed
laminae. The number of failed plies increases with the fibre orientation up to 60° and then decreases up to
90° for most of the failure theories. The mode determining failure criteria (Hashin-Rotem, Rotem and
Hashin) predict the greater number of ply failures than the other failure criteria for most of the cases. The
failure in symmetric laminates progresses to a greater number of ply failures than in the anti-symmetric
laminates. Therefore, symmetric laminates are observed to be more sensitive to dynamic loads. The failure
load predicted by different failure theories are the same for most of the cases. This is attributed to the fact
that for a load of given amplitude, the displacement varies within a range; therefore, there is more
probability that the failure prediction by different failure theories may fall within that range. The first ply
failure load or failure initiation load vs fibre orientation for anti-symmetric and symmetric laminates are
illustrated in Figs. 4 and 5, respectively. For both the laminates, it is observed that the failure load steadily
increases with fibre orientation angle i.e., almost up to 75°, then decreases till 90° for all the failure
theories. The failure load of 0° laminate is found to be more than that of 15° for both the types of laminates.

5.2 Dynamic Failure Load of Clamped Laminates
Likewise, the fundamental frequencies of clamped laminates are presented in Tab. 8. The central

deflection of anti-symmetric and symmetric cross-ply laminates under sinusoidal forcing amplitude of
0.001 MPa at the fundamental frequency is demonstrated in Fig. 6. A similar phenomenon is observed as
the applied frequency is close to the fundamental frequency. The failure loads are determined at the

Table 7: Failure progression of anti-symmetric (B&C) and symmetric (A&D) laminates

Fibre
angle

Type Failure theory

Max. stress Tsai-Hill Azzi-Tsai Hoffman Tsai-Wu Hashin-Rotem Rotem Hashin

0° – 4M-1M 1M-4M 1M-4M 1M-4M 1M-4M 4M-1F-1M 4F-1M-4M 1M-4M

15° C 4M-1F-1M 1M-4M 1M-4M 1M-4M 1M-4M 4M-1F-1M 4F-1M-4M 1M-4M

D 1M-4M 4M-1F 4M-1F 4M-1F 4M-1F 1M-4M-4F 1M-4M-4F 4M-1F

30° C 4M-1F-1M 1M-4M 1M-4M 1M-4M 1M-4M 4M-1F-1M 4F-1M-4M 1M-4F-4M

D 4M-1F-1M-
3F

1M-4M 1M-4M 1M-4M 1M-4M 4M-1F-1M-3F 4M-1F-1M-3F 1M-4M

45° C 1M-4F-2M 4M-1F-3F-2F 4M-1F-3F-2F 4M-1F-3F-
2F

4M-1F-3F-
2F

1F-4M 1F-4M 1F-4M

D 4M-1F-3F-
1M-3M-2F

4M-1F-3F-1M-
3M-2F

4M-1F-3F-1M-
3M-2F

4M-1F-3F-
1M-3M-2F

4M-1F-3F-
1M-3M-2F

4M-1F-3F-
1M-3M-2F

4M-1F-3F-1M-
3M-2F

4M-1F-3F-
1M-3M-2F

60° C 1M-4M 4M-1F-1M-3F-
2F

4M-1F-1M-3F-
2F

4M-1F-1M-
3F-2F

4M-1F-1M-
3F-2F

1F-4M-1M-
3F-2F

1F-4M-1M-3F-
2F

1F-4M-1M-
3F-2F

D 1M-4M 4M-1M-3F-
1M-3M-4F-2M

4M-1M-3F-
1M-3M-4F-2M

4M-1M 4M-1M 4M-1F-3F-
1M-3M-4F-2F

4M-1F-3F-1M-
3M-4F-2M

4M-1F-3F-
1M-3M-4F-2F

75° C 1M-4M 4M-1F 4M-1F 4M-1F 4M-1F 1M-4M 1M-4M 4M-1F

D 1M-4M 4M-1F-1M 4M-1F-1M 4M-1M 4M-1M 4M-1F-1M-
3F-4F

4M-1F-1M-3F-
4F

4M-1F-3F-
1M-4F

90° A 1M 1M 1M 1M 1M 1M 1M 1M

B 4M-1F-1M 1M-4M 1M-4M 1M-4F-1M 1M-4F-4M 4M-1F-1M 4M-1F-1M 1M-4M
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resonant frequency for a duration of 0.4 s. The computed failure loads are presented in Tab. 9 for clamped
laminates. The failure progression of laminates is presented in Tab. 10. The failure load of clamped laminates
is normally higher than simply supported laminates. The failure load of anti-symmetric laminates is generally
higher than their respective symmetric laminates. The failure progresses to a greater number of ply failures as
the fibre orientation increases for both the anti-symmetric and symmetric angle-ply laminates. As compared
to simply supported laminate’s failure, the clamped laminates have generally progressed to a greater number
of ply failures. The first ply failure loads of anti-symmetric and symmetric clamped laminates are illustrated
in Figs. 7 and 8, respectively. The first ply failure load for anti-symmetric as well as symmetric laminate
constantly increases from 0° to 75° then decreases till 90° for all the cases of failure theories. The failure
loads for all the failure theories are the same for most of the cases even though the failed ply and failure
mode may be different. The failure loads show that all the failure theories are almost equally capable of
predicting the first ply failure.

Figure 4: First ply failure load vs. fibre orientation of anti-symmetric laminate

Figure 5: First ply failure load vs. fibre orientation of symmetric laminate
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Table 8: Fundamental frequency (radian/sec) of clamped laminates

Fibre angle Anti-symmetric Symmetric

0° 26.574 26.574

15° 28.157 28.521

30° 32.797 32.496

45° 38.678 39.502

60° 44.961 46.347

75° 50.511 52.042

90° 38.482 34.567

Figure 6: Central deflection of anti-symmetric and symmetric cross-ply laminates

Table 9: First Ply failure load (MPa � 10–3) of anti-symmetric (B&C) and symmetric (A&D) laminates

Fibre angle Type Failure theory

Max. stress Tsai-Hill Azzi-Tsai Hoffman Tsai-Wu Hashin-Rotem Rotem Hashin

0° – 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82

15° C 2.22 2.12 2.12 2.12 2.22 2.12 2.12 2.22

D 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12

30° C 2.52 2.32 2.32 2.32 2.42 2.32 2.32 2.32

D 2.42 2.32 2.32 2.32 2.32 2.32 2.32 2.32

45° C 8.52 7.52 7.52 7.52 7.52 7.61 7.61 7.61

D 6.02 5.82 5.82 5.72 6.02 5.92 5.92 5.92

60° C 13.82 13.22 13.22 13.22 13.22 13.62 13.62 13.72

D 8.42 7.92 7.92 7.82 8.42 8.22 8.22 8.22
(Continued)
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Table 9 (continued).

Fibre angle Type Failure theory

Max. stress Tsai-Hill Azzi-Tsai Hoffman Tsai-Wu Hashin-Rotem Rotem Hashin

75° C 16.62 15.22 15.22 15.22 15.22 16.52 16.52 16.52

D 12.52 11.82 11.82 11.62 12.52 12.42 12.42 12.42

90° A 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12

B 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.42

Table 10: Failure progression of anti-symmetric (B&C) and symmetric (A&D) laminates

Fibre
angle

Type Failure theory

Max.
stress

Tsai-Hill Azzi-Tsai Hoffman Tsai-Wu Hashin-Rotem Rotem Hashin

0° – 4M-1M 1M-4M 1M-4M 1M-4M 1M-4M 4F-1M-4M 4F-1M-4M 1M-4M

15° C 4M-1M 4F-1M-4M 4F-1M-4M 4M-1M 4M-1M 4F-1M-4M 4F-1M-4M 1F-4F-4M

D 4M-1M 1M-4M 1M-4M 1M-4M 1M-4M 4F-1M-4M 4F-1M-4M 1M-4M

30° C 4F-1M-
4M

4F-1M-4M 4F-1M-4M 4F-1M-4M 4F-1M-4M 4F-1M-4M 4F-1M-4M 4F-1M

D 4M-1M 4M-1F-1M-3F 4M-1F-1M-3F 4M-1M 4M-1M 4M-1F-1M-3F 4F-1M-4M-
2M

4M-1F-1M-3F

45° C 1F-4F-
1M-4M

4F-1M-4M-
2M-1F-3M

4F-1M-4M-
2M-1F-3M

4F-1M-4M-
2F-3M

4F-1M-4M-
2F-3M

1F-4M-1M-4F 1F-4M-1M-
4F

4F-1M-4M-2F-
3M

D 4M-1M 4M-1F-3F-1M-
3M-4F-2M

4M-1F-3F-1M-
3M-4F-2M

4M-1M 4M-1M 1M-4M 1M-4M 4M-1F-3F-1M-
3M-4F-2F

60° C 1M-4M-
3F-2M

4M-1F-3F-2F 4M-1F-3F-2F 4M-1F-3M-
4F-1M-2F

4M-1F-3M-
4F-1M-2F

1F-4M-4F-1M 1F-4F-1M-
4M

4M-1F-3F-2F

D 4M-1M 4M-1F-3F-1M-
3M-4F-2M

4M-1F-3F-1M-
3M-4F-2M

4M-1M 4M-1M 4M-1F-3F-1M-
3M-4F-2F

4M-1F-3F-
1M-3M-2F

4M-1F-3F-1M-
3M-4F-2F

75° C 4M-1M-
3M-2F

1M-4M-3F-2F 1M-4M-3F-2F 1M-4M-3F-
2F

1M-4M-3F-
2F

4M-1F-4F-1M-
2F-3F

4F-1M-4M-
1F-2M-3M

1M-4M-3F-2F

D 4M-1M 1M-4F-4M-
2M-1F-3M

1M-4F-4M-
2M-1F-3M

1M-4M 1M-4M 4M-1F-1M-3F-
3M-2F

4F-1M-4M-
2M-3M

1M-4F-2M-
4M-1F-3M

90° A 1M-3M 1M-3M-4M 1M-3M-4M 1M-3M-4M 1M-3M 1M-3F-3M 1M-3F-3M 1M-3M

B 4M-1F-
1M

4M-1F-1M 4M-1F-1M 1M-4F-4M 1M-4F-4M 4F-4M-1F-1M 4F-4M-1M 1M-4F-4M
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6 Conclusions

The behaviour of laminates under uniform transverse sinusoidal dynamic pressure was investigated
during its successive failure. The prediction of failure load, mode of failure, failed lamina and progression
of failure were studied by different failure theories. The following conclusions are drawn based on the
investigation carried out:

� The first ply failure loads predicted by all the theories are close to each other and even the same for
most cases, which shows that they are almost equally capable of predicting the first ply failure load.

� A dynamic load at the fundamental frequency of a laminate can cause the first ply failure and lead to
successive ply failures even after the load is removed.

Figure 7: First ply failure load vs. fibre orientation of anti-symmetric laminate

Figure 8: First ply failure load vs. fibre orientation of symmetric laminate
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� For simply supported angle-ply laminates, the failure load increases with fibre orientation after 15°
fibre orientation, whereas for clamped laminates, it increases with fibre orientation for all the cases.

� The anti-symmetric laminates are generally stronger (greater first ply failure load) than their
respective symmetric laminates for both simply supported and clamped edges. The symmetric
laminates are more susceptible to dynamic loads as compared to anti-symmetric laminates.

� The progression of failure after removing the load as predicted by different failure theories is generally
not the same. The mode determining failure theories predict the failure to a greater extent than other
failure theories for most of the simply supported laminates.

� Failure progresses to a greater number of ply failures as the fibre orientation increases for both simply
supported and clamped laminates. Failure in clamped laminates is generally progressed to a greater
number of ply failures than simply supported laminates.
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