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ABSTRACT

Tool wear is inevitable in daily machining process since metal cutting process involves the chip rubbing the tool
surface after it has been cut by the tool edge. Tool wear dominantly influences the deterioration of surface finish,
geometric and dimensional tolerances of the workpiece. Moreover, for complete utilization of cutting tools and
reduction of machine downtime during the machining process, it becomes necessary to understand the develop-
ment of tool wear and predict its status before happening. In this study, tool condition monitoring system was
used to monitor the behavior of a single point cutting tool to predict flank wear. A uniaxial accelerometer was
attached to a single point cutting tool under study. The accelerometer acquires vibrational signals during turning
operation on a lathe machine. The acquired signals were then used to extract statistical features such as standard
error, variance, skewness, etc. The substantial features were recognized to reduce the utilization of computing
resources. They were used to classify the signals as good and three different measures of flank wear by a decision
tree algorithm. Frequency domain features were also extracted and shown to be less effective in classification in
comparison to statistical features. REPTree (Reduced Error Pruning Tree) algorithm was used in this study.
REPTree decision tree algorithm achieved a maximum classification accuracy of 72.77% for all signals combined.
When spindle speed and feed rate are considered as the variables the accuracy is about 86.25%. When spindle
speed is the only variable parameter the accuracy is about 82.71%. When depth of cut, feed rate and speed of
the spindle are considered as variable parameters, the accuracy of the decision tree is around 93.51%. This study
demonstrates the performance of REPTree classifier in tool condition monitoring. It can be utilized for tool wear
identification and thus improve surface finish, dimensional accuracy of the work piece and reduce machine down-
time. Any additional research on the work may involve analysis of different classifier algorithms which could
potentially predict tool wear with greater accuracy.
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TPR True Positive Rate
FPR False Positive Rate

1 Introduction

Manufacturing industries are constantly looking for ways that can boost their production without
affecting any output factors negatively. This can prove fruitful for the economy of a developing nation.
Conventional metal cutting and machining processes are a vital part in production systems [1]. In mass
production, the machine tool tends to shear or wear off due to abrasion and fatigue under long machining
periods inevitably. Nearly 79.6% of machine downtime is instigated because of such tool failures [2].
Researchers have suggested employing tool condition monitoring systems which can detect cutting tool
wear prior any damage to the work piece. It would decrease machine downtime, reduce the chance for
dimensional errors, improve tolerance and surface finish and also improve productivity. This can also
achieve manufacturing automation. Flank wear is a common kind of tool wear seen in turning operations
and leads to several disadvantages like loss of dimensional accuracy and surface finish. Tool condition
monitoring can be used to identify and predict such failure and hence prevent the hindrances it would
post [3].

Many scientists, engineers and analysts have attempted to design a condition monitoring system with
high accuracy. Past research on tool condition monitoring for milling operation was reported by Zhou
et al. [4]. Hocheng et al. [5] found the correlation between the scattering intensity of light when laser is
incident on the workpiece and the nose radius of a single point cutting tool. Bhuiyan et al. [6] inferred
that acoustic and vibration signals can effectively change with respect to tool wear in turning operation.
Flank wear was predicted in a single point cutting tool using acoustic emissions by Sundaram et al. [7].
The condition monitoring of tool by examining surface roughness, vibration and material removed from
the specimen was presented in [8]. Measuring the vibration of a process is one of the most valuable in
tool condition monitoring. Krishnakumar et al. [9] has used vibration signals from the high-speed
machining of titanium alloy to predict the tool wear condition. They have used J48 decision tree classifier
and artificial neural network algorithm to diagnose the tool wear. Teli et al. [10] surveyed several decision
tree based approaches in data mining. A different study inferred that acoustical data is useful for sub-
surface irregularities and tool tip breakages while vibration signals is a better choice for tool wear studies
[11]. The estimation of remaining healthy tool life using support vector regression is presented in a paper
[12]. Wang et al. [13] found that the use of SVM can make the training faster without losing the
classification accuracy. The prediction of sharp or worn tool by utilization of wavelet packet
decomposition feature extraction technique on the vibration and sound signals of machining process was
presented in another paper [14].

The use of statistical features like mean, median, mode, variance, etc. extracted from the vibration signal
of turning operation and K-star classification algorithm was found to be helpful in predicting the blunt tool
[15]. Gangadhar et al. [16] studied the vibration signal in a turning operation by using Decision Tree
Algorithm for feature reduction as well as classification. In another study, Gangadhar et al. [17]
investigated vibration signals by obtaining descriptive statistical features for classification purpose.
Gierlak et al. [18] devised a method for the processing and analyzing of signals during diagnosing the
state of a manipulator’s tool of a robot. The usage of REPTree proves to be best among the many other
popular classifiers for the detection of a user in a social network system [19]. Here accelerometer was
used to acquire the cutting tool vibration during the machining in lathe machine. The statistical features
are extracted from the acquired vibration signal and unwanted features are removed from the dataset.
Then the dataset is classified with REPTree algorithm to evaluate the performance of the classifier on the
prediction of the tool wear level. REPTree stands for Reduced Error Pruning Tree. It belongs to one of
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the two standard classes of pruning methods, specifically backward or post pruning. Post-pruning initially
over-fits the data followed by pruning of the tree [20]. Reduced Error Pruning is a post-pruning method
decision tree [21].

2 Experimental Arrangement

A lathe machine performing a turning operation was used to conduct the experimental study. The
workpiece used was a steel bar of diameter 25 mm and a brazed carbide tip cutting tool was used as
cutting tool. A Dytran Uniaxial accelerometer was mounted on a single point cutting tool using adhesive
mounting. A data acquisition device manufactured by National Instruments (USB type) NIVIB 4432, was
connected to the accelerometer in which the analog signal was converted into digital signal. LABVIEW
software was used to obtain the signals. The experimental setup comprising of the cutting tool,
accelerometer and work piece is presented in Figs. 1 and 2 depicts the data acquisition device and
computer. Table 1 describes the machining parameters taken into consideration for this experimental
study. Vibration signals corresponding to all combinations of feed rate (FR), speed of the spindle (SS),
flank wear (FW) and depth of cut (DC) are acquired.

2.1 Experimental Studies

2.1.1 Baseline Signal Acquisition
Vibrational signals are acquired from the single point cutting tool through the accelerometer attached

over the tool. The maximum frequency that was obtained was 6 kHz. Based on Nyquist sampling
theorem, the frequency during sampling must be twice or thrice the observed maximum frequency of the

Figure 1: Adopted experimental setup comprising of work piece, cutting tool and accelerometer

Figure 2: Overall setup for experimentation
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system. Agreeing to this theorem, the sampling signal was taken as 20 kHz. The specimen was securely
affixed to the chuck of the lathe. To remove any irregularities on the surface of the work specimen, a
rough turning operation was done. After this, a uniform turning was done to record the signal but the first
few seconds are dropped to eliminate randomness in the vibration signals. When the turning operation
was stable, the vibration signals were collected.

2.1.2 Simulation of Faults
Flank wear fault was induced manually on the single point cutting tool with the aid of cutter grinding

machine and tool. Before inducing the flank wear, line for reference was marked tangential to the cutting tool
nose radius and the intermediate distance from the line and the foremost tip of the nose radius was recorded.
The same procedure was repeated after fault simulation and the difference between the two lengths gives the
actual wear of the cutting tool.

2.1.3 Acceleration Signal Acquisition
The accelerometer acquires the vibration signals from the lathe during the machining operation after

stabilization. The signal acquisition parameters were fixed at 2000 sample length and 20 kHz sampling
frequency for all machining conditions. Figs. 3–6 represent plots of time domain corresponding to
different tool wear condition.

Table 1: Process parameter variations in the study

Levels Process parameters

DC (mm) FR (mm/rev) SS (rpm) FW (mm)

1 0.5 0.109 510 0

2 0.8 0.122 770 0.2

3 1.0 0.135 900 0.4

4 - - - 0.6

Figure 3: Plot representing 0.2 mm tool wear
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Figure 4: Plot representing 0.4 mm tool wear

Figure 5: Plot representing 0.6 mm tool wear

Figure 6: Plot representing healthy tool

SDHM, 2022, vol.16, no.3 259



3 Feature Extraction

Feature extraction was implemented to extract features that has some significance and is useful for
classification from the measured data. These features include important information which can be used to
reduce the initial set of data and classification can be done on this reduced data. Here, data corresponds
to the acceleration signals obtained using the data acquisition device. Statistical features such as mean,
median, mode, maximum, minimum, range, sum, standard error, standard deviation, kurtosis and
skewness were taken into consideration for this experiment. Statistical features allow us to compute a
huge range of phenomena or attributes, allowing the study of fault diagnosis from an objective
perspective. Statistical methods possess the ability to predict deviations in a particular problem as they
are classified with different constraints. Features that possessed no or irrelevant information for the
classification were discarded. A decision tree classifier was used to reduce the data and REPTree classifier
was used for classification of the same. Frequency domain features were also extracted and used for
classification to compare and validate the choice of statistical features for the particular problem. The Fast
Fourier Transform (FFT) of a signal is visualized in Fig. 7. Imaginary parts of the transform are
neglected. The absolute value of the transform is shown in Fig. 8, where four peaks of frequency is
observed. The value of each of the peak is taken as a distinct frequency domain feature. These features
were used to classify tool wear using REPTree and their corresponding classification accuracy is
discussed in a following section.

3.1 Decision Tree Based Feature Reduction
The extracted features (statistical) were arranged in order of their significance by the decision tree

classifier. The features present at the topmost position carries vital information whilst the feature in the
lower portion offers relatively less amount of relevant information. The features at the lowest position in
the tree can be neglected to increase accuracy during classification.

4 Brief Description of Machine Learning Classifiers

4.1 Decision Tree
A decision tree is a common tool used for data mining. It creates a tree structure based on classification

factors or regression models. This tree comprises of several nodes, leaves and a single root linked together
through branches. The structure of the tree decomposes the dataset into smaller subsets and develops an

Figure 7: Fast fourier transform plot of good tool signal
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association decision tree. It can handle both numerical and categorical data. The resulting tree structure
comprises of decision nodes and leaf nodes. A decision node can divide into two or more branches while
a leaf node represents a decision. A relevant estimation criterion forms the basis for classification at each
node. Processes like information gain and entropy reduction is the main principle behind selecting the
most significant feature for classification. The decision tree flow descends from the most significant to the
least significant feature initiating from the root node. The root node handles the division of data into
homogeneous subsets. Homogeneity of the data set can be calculated from entropy. Zero entropy denotes
a completely homogenous and entropy value of one denotes a uniformly and equally divided set.

EntropyðsÞ ¼
Xn
i¼1

� pi � log2pi

where pi is the division of s belonging to class i and n is the number of classes.

The division of the data set based on a feature or attribute decreases the entropy and becomes a ground
for information gain. Information gain calculates the difference of entropy before and after the system
acquires information. Information gain ðs; xÞ of a feature corresponding to build various objects s is
computed using,

Gainðs; xÞ ¼ EntropyðsÞ �
X

v E ValueðxÞ

jsvj
jsj EntropyðsvÞ

where Value(x) corresponds to all attribute values x and feature x has a value of v in sv a subset representation

of s. Entropy(s) signifies the entropy of the original collection s and
P

v E ValueðxÞ

jsvj
jsj EntropyðsvÞ signifies the

anticipated entropy value after s is divided from feature x.

4.2 REPTree Classifier
REPTree or Reduced Error Pruning Tree is a fast decision tree learning algorithm. REPTree is a decision

tree classifier that uses regression tree logic and concludes in a final predicted function value than a
classification. A decision tree along with linear regression is called a regression tree. It gives piecewise

Figure 8: Absolute fast fourier transform plot of good tool signal
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relationship between dependent and independent variables [22]. REPTree creates multiple regression trees
based on the given model in various iterations and then selects the best one out of the lot by utilizing
entropy as a measure of impurity [23]. The selected tree is considered as the representative. The measure
used is the mean square error on the predictions when pruning the tree. It performs reduced error pruning
on a decision tree made based on information gain. It only sort values of numeric attributes once. C4.5’s
method of fractional instances is used to work with missing values, that is by splitting the corresponding
instances into pieces. The example of REP Tree algorithm is applied on UCI repository and the confusion
matrix is generated [24].

5 Results and Discussions

The performance of REPTree classifier in classifying single point cutting tool wear level was done as
follows:

� Reduction of the data obtained from the monitoring the machining operation by selecting relevant and
significant statistical features

� Determination of classification accuracy using REPTree classifier for the acquired signals

� Classifier validation through thorough analysis of confusion matrices

5.1 Feature Reduction
Feature selection methods are used to decrease the dimensionality of the data by removing unnecessary

and irrelevant attributes in the data set [25]. Reduction of initial data was carried out using J48. The statistical
features with less or no contributing data were discarded and the rest were arranged in order of their
significance. Initially, the decision tree returned a classification accuracy of 71.11% with 680 leaves. Post
reducing the errors on the same, the classification accuracy increased to 72.86% with 186 leaves.
Additionally, the classification accuracy reached 72.31% during adjustments made in the minimum
number of objects corresponding to 34 leaves.

The effect of feature combination on the accuracy is displayed in Table 2. The features skewness,
standard deviation, sum, range, variance, maximum and kurtosis were significant for the classification
while other features were neglected in future calculations. This reduced the computational burden
required for classifying the signals. From Fig. 9, one can observe the classification accuracy to be
maximum for a combination with five features. This combination was chosen for further classification.
Table 3 shows the formulae for extracting the features whose combination gave the best results.

5.2 Performance Evaluation of REPTree Classifier
The overall accuracy for classifying tool wear during turning operation using lathe for different

combinations of spindle speed (SS), feed rate (FR) and depth of cut (DC) combined was found to be
72.77% using REPTree classifier. By reducing the complexity or fixing one or two of the variables, the
classification accuracy can be improved. When spindle speed was fixed as a constant, the classification
accuracy obtained was 8%–14% better than the combined accuracy of classification (all signals
combined) as presented in Table 4. The same is graphically represented in Fig. 10.

Table 2: Effect of feature combination on classification accuracy

No. of features 1 2 3 4 5 6 7

Classification accuracy (%) 64.34 68.35 68.74 72.07 72.42 72.21 72.21
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Figure 9: Effect of features on classification accuracy

Table 3: Statistical features

Name of the statistical feature Formula

Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2 � Pxð Þ2
nðn� 1Þ

s

Skewness n

ðn� 1Þðn� 2Þ
X xi � �x

Sd

� �2
Variance n

P
x2 � P

xð Þ2
nðn� 1Þ

Sum
X

x

Kurtosis nðnþ 1Þ
ðn� 1Þðn� 2Þðn� 3Þ

X xi � �x

Sd

� �4" #
� 3ðn� 1Þ2
ðn� 2Þðn� 3Þ

Table 4: Performance of REPTree classifier with variation in spindle speed

Spindle speed (rpm) 510 770 900

Classification accuracy (%) 80.61 81.50 86.02

Figure 10: Performance of REPTree classifier with variation in spindle speed
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We can achieve better classification accuracy if the complexity is reduced more by making feed rate and
spindle speed as distinct factors. The accuracy for classifying tool wear thus obtained is given in Table 5 and
a graphical comparison is given in Fig. 11.

Similarly, by considering DC, FR and SS as distinct factors, the classification accuracy is improved by
around 7%. But for some combinations the classification accuracy obtained was less than the previous
observations. The accuracy for classifying tool wear is displayed in Table 6 along with comparison in Fig. 12.

Table 5: Performance of REPTree using FR and SS as distinct factors

Feed rate (mm/rev) Spindle speed (rpm) Classification accuracy (%)

0.109 510 90.16

0.122 510 84.33

0.135 510 82.5

0.109 770 85.33

0.122 770 90.5

0.135 770 80.75

0.109 900 82.66

0.122 900 89

0.135 900 91

Figure 11: Performance of REPTree using FR and SS as distinct factors

Table 6: Performance of REPTree classifier with DC, FR and SS as separate factors

Spindle speed (rpm) Depth of cut (mm) Feed rate (mm/rev) Classification accuracy (%)

510 0.5 0.109 98.75

510 0.8 0.109 97

510 1 0.109 97.25

510 0.5 0.122 94.75

510 0.8 0.122 91

510 1 0.122 87.75
(Continued)

264 SDHM, 2022, vol.16, no.3



Table 6 (continued)

Spindle speed (rpm) Depth of cut (mm) Feed rate (mm/rev) Classification accuracy (%)

510 0.5 0.135 92

510 0.8 0.135 88.25

510 1 0.135 96.5

770 0.5 0.109 84

770 0.8 0.109 100

770 1 0.109 88.75

770 0.5 0.122 97.25

770 0.8 0.122 99

770 1 0.122 99.5

770 0.5 0.135 79

770 0.8 0.135 91.75

770 1 0.135 88.5

900 0.5 0.109 84.75

900 0.8 0.109 92.5

900 1 0.109 98.5

900 0.5 0.122 91

900 0.8 0.122 98.5

900 1 0.122 98

900 0.5 0.135 98.5

900 0.8 0.135 93.5

900 1 0.135 98.75

Figure 12: Performance of REPTree classifier with DC, SS and FR as separate factors
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If frequency domain features are used instead of statistical domain features while considering DC, FR
and SS as distinct factors, the classification accuracies were observed to be less than the statistical feature
model in majority of the cases. The comparison between the classification accuracies of the statistical
feature model and the frequency domain model is shown in Figs. 13–15.

It can be observed that the classification accuracies from the classifier trained with statistical features are
considerably higher than that trained with frequency domain features, hence they are advantageous. It can be
observed that when separate models are considered, the classification accuracy of REPTree classifier shows
an increasing trend. Therefore, REPTree classifier can be used for monitoring and classification of various
depth of cut, speed of spindle and feed rate while the accuracy for classifying tool wear of 72.77% is
acceptable (for all signals combined).

Figure 13: Classification accuracy comparison of REPTree classifier using statistical features and frequency
domain features considering DC, FR as distinct factors and 510 rpm SS

Figure 14: Classification accuracy comparison of REPTree classifier using statistical features and frequency
domain features considering DC, FR as distinct factors and 770 rpm SS
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5.3 Validation of Classifier
The conventional method to predict fault rate of a learning procedure given a singular, fixed sample of

data is a stratified tenfold cross-validation. Every class is embodied in about the same amounts as in the
complete dataset with the data being divided into ten parts. Each part is granted orderly and the learning
structure is trained on the residual parts. The error rate is calculated on the holdout set. Therefore, the
learning technique is executed 10 times on different training sets giving 10 error estimates. An average of
the error estimates is taken to get overall error estimate. This makes sure that the fault rate is calculated
resourcefully in an unbiased way. The performance of REPTree classifier can be evaluated with the aid of
a confusion matrix as represented in Table 7. The tool wear conditions that are correctly (diagonal
elements) and incorrectly (non-diagonal elements) classified are represented as the rows and columns of
the matrix. The first element of the confusion matrix denotes the number of signals that were obtained
from a tool having good condition being classified as GOOD. The second element corresponds to the
number of signals obtained from a tool of good condition misclassified as a tool having 0.2 mm flank
wear (FLW1). Likewise, the third and fourth element of the first row are the number of signals that were
obtained from a tool that should be classified as GOOD but is misclassified as 0.4 mm (FLW2) and 0.6
mm (FLW3) respectively. The others rows are interpreted in the same way. The diagonal elements of the
confusion matrix show the correctly classified instances and the other elements signify misclassified
instances. The presence of misclassified instances might be due to signals resembling that of the other
conditions for some machining parameters.

Figure 15: Classification accuracy comparison of REPTree classifier using statistical features and frequency
domain features considering DC, FR as distinct factors and 900 rpm SS

Table 7: REPTree classifier confusion matrix

Class GOOD FLW1 FLW2 FLW3

GOOD 2033 0 400 267

FLW1 7 2388 103 202

FLW2 326 202 1741 431

FLW3 357 176 470 1697
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The class wise accuracy is expressed by measures such as the true positive rate (TPR), false positive rate
(FPR), precision, recall and F-measure. The amount of cases following the rule that were correctly classified
is True Positives (TP). The number of cases following the rule that were wrongly classified is called False
Positives (FP). The cases not following the rule but whose class does not meet the expected result class
constitute True Negatives (TN). Cases not following the rule but whose class meets the expected result
class constitute False Negatives (FN). For a good classifier, the true positive (TP) rate should approach
1 and the false positive (FP) rate should approach 0. From Table 8, most TP rates are close to 1 and most
FP rates are close to 0. This confirms the result presented by confusion matrix in Table 7. Precision is the
likelihood of retrieved cases that are suited for the class. Mathematically, precision is the ratio of true
positive (TP) to the retrieved instances (TP+FP). Precision or the positive predictive value can be called a
measure of correctness or quality. Recall which is a measure of completeness or quantity is the
information retrieval portraying the likelihood of the errors related to the classification which were
retrieved. It is the ratio of true positive (TP) to the overall cases (TP+FN). False negative (FN) is
considered as type 2 error, meaning the cases indicate misclassification but is actually correctly classified.
F-measure is the harmonic mean of recall and precision.

6 Conclusion

This study analyses the efficiency of REPTree classifier for monitoring and classifying the tool wear
conditions of single point carbide cutting tool. Statistical features and frequency domain features were
drawn from the signals obtained for various machining parameters and J48 decision tree algorithm was
used to select features significant for the classification. This feature reduction resulted in reduction of
computing time and effort. REPTree classifier yielded a classification accuracy of 72.77% for all signals
combined and hence can be used for all DC, SS and FR. The classification accuracy was greatly
improved when the complexity was reduced by considering the said parameters separately.
Misclassifications can be reduced by increasing the training data, so as to prepare the classifier to have
better accuracy when classifying a newly acquired signal.
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