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ABSTRACT

Alleviating heavy metal pollution in farmland soil, and heavy metal toxicity in plants is the focus of global agri-
cultural environmental research. Melatonin is a kind of indoleamine compound that wide exists in organisms; it is
currently known as an endogenous free radical scavenger with the strongest antioxidant effect. As a new plant
growth regulator and signaling molecule, melatonin plays an important role in plant resistance to biotic or abiotic
stress. Recent studies indicate that melatonin can effectively alleviate heavy metal toxicity in crop plants, which
provides a new strategy to minimize heavy metal pollution in crop plants. This study summarizes the research
progress on the role of melatonin in alleviating heavy metal toxicity in crop plants and the related physiological
and ecological mechanisms such as reducing the concentration of heavy metals in the rhizosphere, fixing and
regionally isolating of heavy metals, maintaining the mineral element balance, enhancing the antioxidant defense
system and interacting with hormonal signaling. Furthermore, future prospects for the mechanism of melatonin
in regulating heavy metal toxicity, the pathway regulating synthesis and catabolism, and the interaction mechan-
ism of melatonin signaling and other phytohormones are presented in this paper, with the goal of providing a
theoretical basis for controlling heavy metal ion accumulation in crop plants grown in contaminated soil.
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1 Introduction

Soil is one of the most important resources for human survival. In recent years, with the rapid
development of urbanization, industry and agriculture, as well as the large-scale development and
utilization of mineral resources, heavy metal pollution in the soil has become increasingly severe because
contaminants continue to accumulate in the environment. The area of soil contaminated by heavy metals
has increased with the continuous migration, accumulation and transformation of heavy metals in the
environment. Heavy metal-contaminated farmland exceeds 20 million hm2, accounting for nearly 20% of
the total cultivated land in China [1]. The main heavy metal pollutants include lead (Pb), cadmium (Cd),
copper (Cu), nickel (Ni) and other metal elements with a density greater than 5.0, as well as nonmetal
elements with heavy metal characteristics such as arsenic (As) and mercury (Hg). This heavy metal
pollution has attracted increasing attention due to its long-term, concealed, cumulative, irreversible and
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nonbiodegradable characteristics [2,3]. Excessive accumulation of heavy metal ions such as Cd and Pb in
crops reduces the content of chlorophyll, increases cell membrane lipid peroxidation, inhibits root mineral
nutrient absorption, hinders the normal growth and development of crops, and ultimately threatens animal
and human health through the food chain [4–6]. Therefore, effectively alleviating and reducing heavy
metal pollution in crops, as well as improving crop yield and quality, have become a serious issue that
urgently need to be resolved in current agricultural production. Studies have found that it is feasible to
use growth regulators such as jasmonic acid (JA), brassinolide (BR) and melatonin (MT) to alleviate
heavy metals environmental stresses and improve the resistance of plants [7–9].

Melatonin, which is produced by the pineal gland in humans, is an indoleamine that is essential for life.
It is ubiquitous in most biological organisms, from unicellular algae to higher plants, and from fish, birds, to
mammals, and it is a conserved small molecular substance important for biological evolution [10,11]. The
chemical name of melatonin is N-acetyl-5-methoxytryptamine. It has both high lipophilicity and
hydrophilicity, has specific binding to receptors, and reacts with hydroxyl radicals and peroxy free
radicals, all of which are related to the N-acetyl and 5-methyl groups in the protein structure [12].
Although the content of melatonin is low in plants, it plays a very important role in physiological
regulation and the enhancement of resistance. It can not only regulate the growth processes of seed
germination, root growth, flowering, leaf senescence, and fruit maturation [13–15] but also relieve the
damage done to plants under environmental stresses, such as heavy metals, salt-alkali ions, ultraviolet
radiation, low temperature, drought, and biological stresses, such as bacteria and pests, thus conferring
resistance to adverse environments [16–18]. In recent years, studies have revealed that the toxic effects of
Cd, Cu, and other metals on crops can be alleviated by melatonin [19–22], and this protein provides a
new solution for the control of heavy metal pollution in crops, but the mechanism of mitigating heavy
metal poisoning is still unclear. Melatonin causes a reduction in the toxic effects of heavy metal ions on
plants, possibly by enhancing the synthesis of small molecule chelating agents in crops to inhibit the
migration of heavy metal ions or by regulating the ion balance and redox state in crops. In this review,
we focus on the toxic effects of heavy metals on crops and the mitigation mechanism of melatonin on
toxicity, which provides scientific support for an in-depth understanding of the mechanism by which
melatonin alleviates heavy metal pollution in crops.

2 The Biosynthesis of Melatonin in Plants

The synthesis and secretion pathways of melatonin in vertebrates have been studied extensively. The
synthesis of melatonin in plants follows a similar path to that of animals, and the precursor substances are
commonly tryptophan [23–25]. However, the synthesis of melatonin in plants is much more flexible than
that in animals, as plants can synthesize tryptophan, while animals can only obtain it from food [26], and
different plants have similar pathways of melatonin biosynthesis. The production of melatonin from
tryptophan in plants requires four consecutive enzymatic reactions. These enzymes (Fig. 1) are tryptophan
decarboxylase (TDC, EC 4.1.1.28), tryptamine 5-hydroxylase (T5H, EC 1.1.13), serotonin N
acetyltransferase (SNAT, EC 2.3.1.87), and N-acetylserotonin methyltransferase (ASMT, EC 2.1.1.4). In
addition, caffeic acid O-methyltransferase (COMT, EC 2.1.1.68) also plays an important role in
catalyzing the last two steps of melatonin synthesis [27,28]. Tryptophan is mainly catalyzed by TDC and
T5H to produce serotonin; then, serotonin is mainly catalyzed by SNAT and ASMT to form melatonin.
The analysis of overexpression or inhibition of the four enzyme genes indicated that TDC and SNAT
may be the rate-limiting enzymes for melatonin synthesis in plants [29–31].
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Fig. 1 is modified with reference to Tan et al. [26], Rajniak et al. [32] and Byeon et al. [33].

3 Toxic Effects of Heavy Metal Pollution on Crops

3.1 Plant Growth Inhibition
Heavy metals can inhibit water absorption, germination, rooting and seedling growth, resulting in

chlorosis and yellowing of leaves, dwarfing of plants, and even necrosis [34,35]. Cu and Zn are essential
trace elements for plant growth; the growth of seedling roots can be increased under the appropriate
concentration, but damage or even death can occur when exceeding a certain threshold [34]. Cd, Pb, Cr,
and other metals are nonessential elements for plant growth and can compete with certain essential metal
ions in crops, leading to a lack of relevant essential metal ions, causing nutrient deficiency symptoms,
and even inhibiting plant growth or causing death [36]. Cd stress inhibited the elongation and growth of
the aboveground and underground parts of rice, wheat, cotton, potato and other crops, and the biomass
was significantly lower than normal [37–40]. Pb stress caused a decrease in plant height and biomass of
sweet sorghum and corn [41], and a significant decrease in root biomass and the number of lateral roots
[42]. As is a highly toxic metal-like element, especially As3+, which is the most toxic of all its chemical
forms; this ion can destroy various metabolic activities related to phosphorus (P) because its chemical
structure is similar to P [43].

Figure 1: The biosynthetic pathway of melatonin in plants. Note: TDC, tryptophan decarboxylase
(EC 4.1.1.28); T5H, tryptophan 5-hydroxylase (EC 1.1.13); SNAT, serotonin N-acetyltransferase
(EC 2.3.1.87); COMT, caffeic acid O-methyltransferase (EC 2.1.1.68); and ASMT, N-acetylserotonin
methyltransferase (EC 2.1.1.4)
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3.2 Interference with the Absorption and Transport of Mineral Elements
The absorption and utilization of mineral nutrients are affected by harmful heavy metals [44]. Studies

have found that adding Cd to the nutrient solution can reduce the uptake of Cu, Mn, and Zn by the
shoots of plants [45], affect the absorption of Cu and Zn by rice plants [46], and reduce the content of Ca
and K in rice roots [47]. The influence of heavy metals on the absorption and utilization of mineral
elements is different across crop varieties and is concentration dependent. These results showed the
effects of low-concentration promotion and high-concentration inhibition on the contents of Zn and Cu in
castor beans, as well as the Mg content in the root and stem under Cd stress, while low-concentration
inhibition and high-concentration promotion effects were found for the Mn content in plants and the Fe
content in roots [48]. The content of Zn in the aboveground part of wheat increased, and the content of
Mn in the aboveground and underground parts decreased under higher Cd concentrations [49]. The main
reason is that most heavy metal ions and heavy metal-like ions, as nonessential mineral elements, can
enter the transport channels that compete with essential elements such as Fe, Mn, Ca and Zn, thereby
inhibiting the absorption and transportation of these mineral nutrients [50,51].

3.3 Inhibition of Photosynthesis
The inhibitory effect of heavy metals on chlorophyll synthesis and photosynthesis is positively

correlated with the extension of the treatment time and the increase in the treatment concentration in crop
plants. Studies have shown that Cd caused a significant decrease in the contents of chlorophyll and
carotenoids in rice, potato and rape leaves [38,40,52]; additionally, the chlorophyll fluorescence
parameters Fv/Fm, ΦPSII and qP in wheat and tomato leaves were significantly decreased, and the
photosynthetic system was significantly damaged [53,54], which affected the activity of the large subunit
of the key enzyme rubisco and the D1 subunit of the active center in PSI, which hindered electron
transfer and reduced CO2 assimilation efficiency [55,56]. The main reason may be that the activity of
chlorophyll lipid reductase was inhibited, the synthesis of amino-γ-levulinic acid was hindered, and the
activity of the electron transport chain and PSII was inhibited by Hg2+ [57]. Heavy metals mainly affect
photosynthesis in crop plants by affecting electron transfer and destroying the integrity of chloroplasts.

3.4 Destruction of the Cell Structure
Cell division and the cell structure in plants were significantly affected by heavy metals. Chromium (Cr)

inhibited cell division of the root tip, leading to chromosome breakage, adhesion, somatic chromosome
exchange, chromosome loops and other aberrations in barley [58]. Studies have shown that Cd stress
caused the destruction of chloroplast structure and the expansion of thte thylakoid membrane in wheat
[59], an increase in the number and volume of nucleoli and vacuoles in cotton root tip cells, shrinkage of
the cytoplasmic membrane, an increase in the number of chloroplasts and a decrease in their volume,
swelling of basal thylakoids, damage to the membrane structure, and increased accumulation of starch in
grains [60]. Cd existed in the nucleolus or adhered to the cell wall in the form of electron-dense particles
and crystals [60]; it also existed in the inner cortex and cylindrical layer of the cross section of the corn
roots and in the vacuole in a cross section of upper epidermal cells of leaves [61].

3.5 Induction of Oxidative Damage
The oxidative damage to crops under heavy metal stress is related to the excessive accumulation of

reactive oxygen species (ROS) [62]. When crops grow normally, the antioxidant system in plants
maintains a low-level concentration of ROS. However, the antioxidant system in the cell is damaged,
leading to a large accumulation of ROS in the cell when crop plants are under heavy metal stress, which
causes oxidative damage to cell components such as protein molecules, membrane lipids, and double-
stranded DNA molecules [63]. A decrease in SOD activity and a small increase in POD and APX
activities were caused by 50 μmol · L−1 Cd treatment in upland cotton leaves, and an increase in SOD and
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CAT activity was caused by 500 μmol · L−1 Cd treatment [64]. Similar changes were found in cotton leaves
and roots treated with Pb, Cr, and Cd separately, indicating that heavy metal stress activates the antioxidant
enzyme system to a certain extent [65]. However, Pb stress caused an increase in ROS in plant root cells,
which caused an increase in the activities of SOD, CAT, POD, and APX, this increase was higher in
hyperaccumulator plants than in nonhyperaccumulator plants [66].

3.6 Reduction in the Yield and Quality of Agricultural Products
The effect of heavy metal stress on plant growth and physiological characteristics will eventually cause a

decline in yield and quality. A significant reduction was found in cotton yield at 600 μmol · L−1 Cd, especially
the seed cotton yield, lint yield, boll number per plant and boll weight; additionally, the fiber length,
uniformity, and micronaire value of cotton decreased in the high concentration treatment, and the fiber
length and breaking strength increased with increasing Cd concentration, but elongation decreased [67].
Peanut yield and kernel weight per pot, the single pod rate and the number of pods per plant, as well as
the content of protein and oil and the ratio of oleic acid to linoleic acid, were reduced under Cd
concentrations of 7.5 mg · kg−1 or 15.0 mg · kg−1 [68]. Wheat yield was sensitive to Cd stress, and the
number of spikelets, grains per spike, and 1000-grain weight gradually decreased with increasing Cd
concentration [69]. Rice yield and rice grain components were significantly reduced under Cd stress, and
tillering, the number of effective spikes and 1000-grain weight also decreased with increasing Cd stress
[70,71]. In general, excess Cd can affect the yield and quality of crops and increase the content of Cd in
grains, which can endanger human health.

4 Mechanism by Which Melatonin Alleviates Heavy Metal Toxicity in Crops

In the long evolutionary process of crops, interactions with the environment have gradually formed
many internal physiological, biochemical and other adaptation strategies to reduce the adverse effects of
the environment. Under heavy metal stress, melatonin can reduce the concentration of heavy metals in the
rhizosphere, remove excess active oxygen in plant cells, chelate with heavy metal ions, and affect signal
transduction and gene expression, thereby alleviating heavy metal stress on plants and benefiting plant
growth and development (Fig. 2).

4.1 Reduction of Heavy Metals in the Rhizosphere
The soil microecological environment can be affected by root exudates. The form of heavy metals in the

rhizosphere of plants can be changed by adjusting the pH of the rhizosphere, forming heavy metal chelates
and complex precipitation to reduce the damage to plants. As the synthetic precursor of MT, tryptophan can
chelate with Cd2+, Pb2+, Al3+ and Fe2+, serotonin can chelate with Cu2+, Al3+ and Pb2+, and MTcan combine
with Al3+, Cd2+, Pb2+, Cu2+ and Fe3+. A study showed that Cd stress enhanced the activities of MTsynthases,
such as TDC, T5H and ASMT, and then promoted MT synthesis [27]. Adding exogenous MT had no effect
on the Cd content in roots, but that in leaves was significantly reduced. This result is due to the increase in
PCs biosynthesis caused byMT in plants in response to external stress, thereby increasing the chelation of Cd
and reducing the transfer of Cd from roots to stems and leaves [72]. Higher concentrations of MTcan chelate
more heavy metal ions, thereby protecting plant cells from damage, as seen in mustard [73], indicating that
MT participates in the process of plant resistance to heavy metals. The addition of exogenous MT can
significantly increase the endogenous MT content under Al stress, reduce the production of ROS and the
Al content, and alleviate the inhibition of Al on wheat root tips [74].

4.2 Heavy Metal Fixation and Regional Isolation
The main methods of plant fixation and isolation of heavy metals include cell wall precipitation, vacuole

area solidification, and complex precipitation with phytochelatin and metallothionein and other substances to
limit the transport of heavy metals across cell membranes. The cell wall is the first barrier to prevent heavy
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metal ions from entering the cytoplasm [75]. After entering the plant roots, Pb, Cd, and others are fixed by
carbohydrates in the root cell and polysaccharides, proteins and lignin in the cell wall, preventing heavy
metal ions from entering the cytoplasm and greatly reducing the damaging effects on many important
organelles [75]. When the metals bound to the cell wall reach the saturation point, heavy metal ions will
then enter the interior of the cell and be isolated in some vacuoles or specific areas to avoid excessively
high concentrations of free ions in the cytoplasm, preventing cell dehydration [76]. The permeability of
the cell plasma membrane is the limiting factor that determines the entry of external heavy metal ions
into cells. Under heavy metal stress, plant cells confine the heavy metal ions outside the cell plasma
membrane by synthesizing the plasma membrane component callosin (β-1,3 glucan), thereby reducing the
damage to the cell. The restriction on the transport of heavy metal ions across the membrane mainly
depends on the composition and structural integrity of the cell membrane, as well as the composition and
content of fatty acids [77]. Vacuoles combine with heavy metals through various proteins, organic acids,
organic bases and other substances, thereby reducing the activity of metal ions [78]. The high
lipophilicity of MT allows it to move between cells and organelles through biological membranes. When
plants are under stress, they can quickly transfer MT to where it is needed. MT treatment can promote the
biosynthesis of GSH and phytochelatins under Cd stress and confine Cd to the cell wall and vacuoles of
tomato plants, thereby reducing intracellular Cd fluidity [21]. However, some studies have shown that
exogenous MT can alleviate the inhibition of Al on the elongation of wheat roots by reducing the content
of pectin, hemicellulose and other cell wall components and the activity of pectin methylesterase in root
tips, as well as reducing the accumulation of Al in plant roots [74].

Figure 2: The resistance mechanism of the melatonin-regulated response to heavy metal stress in plant cells
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4.3 Maintenance of the Balance in Mineral Element Metabolism
Mineral nutrients can directly or indirectly affect the accumulation of heavy metal ions in different

organs of plants and play an important role in enduring heavy metal poisoning [79]. Studies have shown
that exogenous MT promoted the absorption of Ca by roots and stems in cucumber under Cd stress, as
well as reduced the Ca content in leaves and fruits, significantly increased the Mg content in stems and
leaves and that of Fe in roots and leaves, increased the Zn content in leaves, reduced the accumulation of
Mn in fruits, effectively maintained osmotic adjustment and ion balance, and promoted the growth and
dry matter accumulation of cucumber [80]. MT pretreatment significantly increased the content of the
macroelements K, Ca, and Mg and trace elements Fe, Mn, Cu, and Zn in tomato plants under Cd stress,
but their values were all lower than those of the control [81]. It was found that different concentrations of
MT can increase the contents of K, Ca, N, and Mg in perennial ryegrass under the combined stress of Cd
and acid rain, but there was little effect on the content of P [82]. However, the contents of Al, Fe, and Cu
in pakchoi were significantly reduced when different concentrations of MT were sprayed on the leaves,
and there was no significant effect on the contents of Mg, Zn, and Mn [83]. Moreover, exogenous MT
can induce an increase in the selenium content, the content of antioxidant enzymes and the expression of
related genes in tomato, as well as scavenge excess ROS and free radicals and protect the integrity of the
cell membrane structure and chloroplast structure [84]. The combination of Si and MT was substantially
more effective at reducing Cd and As uptake and transport than Si alone, especially in highly polluted
soil [85]. In short, MT alleviates the absorption, inhibition and loss of K, Ca, Mg, and others by heavy
metal ions, which may be related to the synthesis of plant chelating agents promoted by MT, which
chelates heavy metal ions in plant cell walls and vacuoles, reduces the activity and mobility of heavy
metal ions, and ultimately alleviates the stress of heavy metal ions on crop seedlings [86].

4.4 Strengthening of the Antioxidant Defense System
Melatonin is a highly effective active oxygen scavenger and a powerful endogenous free radical

scavenger. Studies have shown that the methoxy group at the 5-position of the indole ring and the N-
acetyl group on the side chain in the MT structure are necessary groups for removing reactive oxygen
species (ROS). MT can directly scavenge free radicals such as H2O2, NO, and OH, and 4 molecules of
H2O2 or 10 molecules of active oxygen free radical can be directly scavenged by one molecule of MT, so
that ROS can be maintained at a controllable level [26,87]. Melatonin is amphiphilic and can participate
extensively in the antioxidant reaction of cytoplasmic and membrane lipids; its antioxidant capacity is
twice that of VE and four times that of glutathione [88]. Melatonin treatment can increase the activities of
SOD and CAT and reduce the content of H2O2 and MDA in watermelon seedlings under vanadium (V)
stress [89], It can also increase the activities of SOD, CAT, and POD in wheat root tips under Al stress
[74], promote the growth of rice seedlings significantly under nickel (Ni) stress, reduce the production
rate of O2

·−, and increase the activity of CAT and the content of soluble protein [90]. Furthermore,
melatonin is not only a free radical scavenger but also an antioxidant that can repair self-oxidation
products. It was found that melatonin treatment can increase plant height, biomass accumulation and root
growth of wheat seedlings under Cd stress, significantly reduce the H2O2 content, increase the GSH
content and the activities of APX and SOD, and greatly reduce the toxic effects of Cd [91]. The
excessive accumulation of ROS in the seedlings of Brassica chinensis under Cd stress can be removed by
the foliar spraying of melatonin, increasing the antioxidant enzyme activity and antioxidant content and
alleviating oxidative stress, thereby reducing the accumulation and toxicity of Cd [83]. Melatonin
treatment can increase the content of GSH and AsA and the ratio of GSH/GSSH and AsA/DAH under Al
stress in wheat root tips, as well as inhibit the accumulation of ROS, enhance the antioxidant capacity in
vivo, and alleviate the oxidative stress of Al on wheat roots [74]. However, as a strong antioxidant, how
melatonin directly or indirectly quenches excessively produced ROS in plants under adverse conditions
and slows oxidative stress damage to plants, as well as the regulatory mechanism of this metabolic

Phyton, 2021, vol.90, no.6 1565



pathway are still unclear. Some studies have shown that several specific signaling molecules could be
induced by Cd2+, which consequently triggers some HM chelators, transporters, and antioxidants to
achieve ROS scavenging and detoxification; in particular, overexpression of the RsMT1 gene could
enhance Cd tolerance in tobacco plants, which might be similar to the melatonin-mediated upregulation
of the RsMT1 gene in radish plants [92].

4.5 Regulation of the Interaction between Hormones
Plant endogenous hormones play an important role in the response of crops to adverse stresses; they are

usually interrelated and interact to form a complex signaling network. As a new plant growth regulator and
biostimulant, melatonin may play a role in alleviating heavy metal poisoning by affecting the synthesis,
transport and metabolism of other hormones and signaling molecules in crop plants, thereby indirectly
regulating plant resistance to heavy metals. Studies have shown that the synthesis of MT and IAA
requires the same precursor, tryptophan, and these molecules are similar in structure. MT can increase the
level of auxin or show similar activity to IAA; that is, it has the characteristics of promotion at low
concentrations and inhibition at high concentrations [93]. It has been found that the growth of roots and
young leaves was stimulated by lower concentrations of MT and inhibited by higher concentrations
[12,93]. Zn is an essential element for the synthesis of IAA. Exogenous MT increased the Zn content in
cucumber leaves under Cd stress, which contributed to the synthesis of IAA and the accumulation of dry
matter above ground [80]. However, the signal transduction regulatory pathway of the interaction
between MT and IAA needs to be further studied [12]. Studies have shown that melatonin can induce the
synthesis of jasmonic acid (JA), salicylic acid (SA), ethylene (ETH) and NO in response to stress, which
is enhanced by genes related to the synthesis and signaling of cytokinin (CK) and abscisic acid (ABA)
and forms a complex regulatory network of hormones to improve plant resistance [94–96].

5 Conclusion and Prospects

In recent years, many studies have been conducted on the synthesis pathway of melatonin in plants and
its regulation of crop responses to heavy metals and other abiotic stresses. The research topics range from
physiology and biochemistry to molecules and proteins. The physiological and biochemical mechanisms
by which melatonin alleviates heavy metal toxicity in crops are basically clear, including the following
points. First, chelation with heavy metal ions in the soil reduces the concentration of heavy metals in the
rhizosphere, which reduces the accumulation of heavy metal ions by inducing the synthesis of
metallothionein and phytochelatin in plants. Second, maintaining the balance between osmotic adjustment
and mineral nutrition enhances the antioxidant defense system, protects the integrity of the cell membrane
structure and chloroplast structure, improves photosynthesis and promotes plant growth. Finally, a
complex regulatory network is formed by influencing the synthesis, transportation and metabolism of
other hormones and signaling molecules in the plant to improve the accumulation of plant assimilates and
resistance to heavy metal stress.

Previous studies have deepened people’s understanding of the pleiotropic function of melatonin in
response to crop abiotic stress. However, the current research on the melatonin response to heavy metal
stress is not thorough enough. Further research is needed on the mechanism of melatonin in response to
heavy metals, the regulation of melatonin metabolism, the interaction mechanism between melatonin and
other hormones in plants under heavy metal stress and other external environments, and the application of
melatonin to enhance the resistance of various crop plants and soils.
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