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ABSTRACT

Sulfur is an indispensable nutrient for plant growth and development, and is important in the synthesis of sulfur-
containing amino acids. Although several studies on the effects of some macronutrients, including nitrogen and
phosphorus, have been conducted on the performance of several crops at the genomic level, studies on the effect
of sulfur on crop performance are limited. Therefore, this study aimed to examine the effect of different sulfur
concentration on the transcriptome of soybean. Additionally, soybean yield parameters were also examined.
Two soybean varieties, DND252 and HN84, were exposed to low and high concentrations of sulfur, and differ-
entially expressed genes (DEGs) were identified using transcriptome analysis. The study results showed that the
DEGs identified in the DND252 variety were involved in stimuli response, DNA binding and cell periphery under
low sulfur concentrations. Also, the DEGs identified under high sulfur concentration were involved in membrane
and membrane parts. Additionally, DEGs identified in the HN84 variety under low sulfur concentrations had
similar functions as those identified in DND252 under high sulfur concentrations, indicating that HN84 was more
sensitive to sulfur concentration changes than DND252. However, under higher sulfur concentrations, the DEGs
identified in HN84 were primarily involved in membrane and membrane parts, indicating that high sulfur can
cause cell membrane damage. Furthermore, soybean grown using 2.0 mmol/L sulfur had the best yield. The find-
ings of this study identified candidate genes for the breeding and development of sulfur-efficient soybean varieties.
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1 Introduction

Sulfur (S) is an indispensable nutrient for several plant metabolic processes, including the biosynthesis
of sulfur-containing amino acids, however, there has been a decline in available sulfur for plant metabolic
processes in the last 30 years [1]. Plants must assimilate this nutrient from the environment and convert it
into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine
and glutathione [2]. Sulfur-containing amino acids and metabolites maintain plant cell mechanisms to
improve stress tolerance. Sulfur interacts with several biomolecules, such as phytohormones, polyamines,
and nitric oxide (NO), which can produce derivatives that are essential for abiotic stress tolerance [3].
Moreover, sulfur is an essential element determining the productivity and quality of agricultural crops [4].
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Plants undergo a series of altered morphological and physiological processes under sulfur deficiency
conditions [5], which can affect productivity. Plants adapt to sulfur deficiency by activating the
assimilation and catabolism of stored sulfur compounds, and repressing the synthesis of secondary sulfur
metabolites, such as glucosinolates [6]. More than 30% of agrochemicals today, including fungicides,
herbicides, and pesticides, contain at least one sulfur compound [7]. Plant sulfur nutrition is particularly
important because plant proteins are the primary source of methionine, an essential amino acid [8]. One
such protein-rich crop is a soybean that is highly used in livestock and human diets as a protein source.

Soybean (Glycine max L. Merr.) was domesticated approximately 3,000–5,000 years ago in China [9].
It is one of the most widely cultivated economic legume crops for its oil, mineral, and protein resources
[10–12]. Soybean seed contains 20% oil, 30%–40% protein, 30% carbohydrate, and considerable
quantities of dietary fiber, minerals, and vitamins [13]. Protein- and oil-rich beans contribute to
approximately 69% of the protein and 30% of the oil consumed by humans and livestock [14]. The
cultivation of soybean has shown a constant increase over the years [15]. In 2018, the United States
(35%), Brazil (34%) and Argentina (11%) produced approximately 80% of the world’s soybean, which is
equivalent to approximately 350 Mt [16]. Although soybean is rich in protein, its sulfur amino acid
content is relatively low. Therefore, owing to the low sulfur amino acid content of soybean compared
with animal proteins, some studies have been performed on possible approaches to improve the amino
acid profile of soybean. One of such approaches involves the manipulation of enzymes involved in sulfur
assimilatory pathways. Moreover, owing to the decrease in the availability of sulfur for plant growth, it is
necessary to examine the response of soybean to different soil sulfur levels. However, such studies are
often genomic and involve the use of transcriptomic technologies.

Transcriptome analysis is a useful tool for determining transcriptional changes in cells under different
conditions [17]. The whole genome sequence of soybean has been published. Transcriptomic
technologies have been applied in various aspects of soybean research, including seed coat color research,
material synthesis pathway, identification of transcription factors (TFs), and determination of stress,
disease, and insect resistances [18–22]. However, studies on the direct effects of sulfur on soybean
transcriptome are limited, moreover, compared with nitrogen and phosphate nutrition, plant sulfur
nutrition has not been extensively studied [23]. Therefore, this study aimed to examine the effects of
sulfur concentrations on soybean transcriptome. Additionally, differentially expressed genes (DEGs) were
annotated using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases.

2 Material and Methods

2.1 Materials and Experimental Procedures
Two major soybean varieties were used for this study: Heinong 84 (HN84) and Dongnong Dou 252

(DND252). The protein content of variety DND252 was about 42.47%, and that of variety HN84 was
about 40.82%. The difference in protein content between the two varieties was 1.65%, which also led to
a certain difference in amino acid content between the two varieties. The study was conducted at the
Northeast Agricultural University, China. Soybean plants were grown in plastic barrels (28 cm in
diameter and 30 cm in height) for easy observation and sampling. A screen was laid at the bottom of the
barrels; thereafter, the barrels were filled with pure sand. High-quality seeds of the two varieties
(HN84 and DND252) were selected for planting, and ensure the survival of four seedlings in each pot.

The effect of sulfur on the transcriptome of soybean was examined using three sulfur treatments: low
(0.1 mmol/L), normal (2.0 mmol/L; control), and high sulfur (10.0 mmol/L) levels. Soybean plants of
both varieties were exposed to the three sulfur levels (HN84_01, HN84_2, HN84_10, DND252_01,
DND252_2, and DND252_10). However, the effect of sulfur concentrations on yield was examined using
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five sulfur treatments: 0.1, 2.0, 4.0, 6.0, and 10.0 mmol/L (Table 1). The different sulfur concentrations were
prepared using MgSO4 and MgCl2; these were dissolved in distilled water to prepare the sulfur nutrient
solution. The plants were watered with 500 mL distilled water before the uncurling of the leaves;
however, after the leaves uncurled, the sulfur solution and mineral nutrient solution were applied to the
seedlings in the morning and night, respectively, during the study period. The composition of the mineral
nutrient solution is shown in Table 2. Fe-EDTA solution was prepared by dissolving 7.45 g Na2EDTA
and 5.57 g FeSO4·7H2O in 900 mL distilled water, which was then adjusted to 1 L. Each liter of nutrient
solution required 1 mL Fe-EDTA solution. The nutrient solution was prepared with distilled water, and
500 mL were supplied to the plants daily. Distilled water was added once every three days to prevent salt
accumulation in the soil. Each treatment was biologically repeated three times, and the mixed samples of
the second and third leaves were selected. Sulfur content = concentration × biomass.

At the 4th vegetative (V4) stage, two to three-leaf blades were collected in the morning. The samples
were washed with sterile deionized water, frozen in liquid nitrogen, and stored at −80°C in an ultra-low
temperature refrigerator (Haier, China) for further analysis.

2.2 Bioinformatics Analysis
The leaf tissues were ground using a TissueLyser (Qiagen) and homogenized. Total RNAwas extracted

from the homogenized tissue using RNeasy Plant Mini Kit (Qiagen, China), following the manufacturer’s
instructions. Contaminating DNA was removed using a TURBO DNA-free kit (Ambion), and RNA was
purified and concentrated using RNeasy MiniElute Cleanup Kit (Qiagen). RNA quality and quantity of
the 18 samples were determined using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher
Scientific) and a QIAxcel Advanced System (Qiagen).

Total RNA was subjected to mRNA enrichment and rRNA removal. For mRNA enrichment, mRNAs
with polyA tails were purified using oligo-dT magnetic beads. For rRNA removal, rRNA was hybridized
with DNA probes, RNaseH selective digestion of DNA/RNA hybrid strands was performed, and the

Table 1: Concentration of sulfur nutrient solution

S (mmol/L) S (mg/L) MgSO4 (mg/L) MgCl2 (mg/L)

0.1 3.2 12.0 940.5

2.0 64.0 240.0 760.0

4.0 128.0 480.0 570.0

6.0 192.0 720.0 380.0

10.0 320.0 1200.0 0.0
Note: Prepared with magnesium sulfate and MgCl2.

Table 2: Nutrient solution composition

Inorganic salts Concentration (mg/L) Inorganic salts Concentration (mg/L)

KH2PO4 136 ZnCl2 0.1

NH4NO3 142.86 MnCl2·4H2O 4.9

CaCl2 220 H3BO3 2.86

Na2MoO4·H2O 0.03 Fe–EDTA *

CuCl2 0.05
*Note: Dissolve 5.57 g FeSO4·7H2O and 7.45 g Na2EDTA to 1 L, respectively, and add 1 mL stock solution per liter of nutrient solution when using.
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DNA probes were then digested with DNase I, yielding the required RNA after purification. Shearing buffer
was used to fragment the obtained RNA, the reverse strand was obtained with random N6 primers, and two
strands of cDNAwere then synthesized to form double-stranded DNA. The synthesized two-stranded DNA
was uncoiled and phosphorylated at the 5’ end to form a sticky end with an “A” overhang, which was then
ligated with a protruding “T” at the 3’ end. PCR amplification was performed using specific primers. PCR
products were converted into single strands, and a single strand of cyclic DNA library was obtained using a
bridge primer, and sequencing was performed on the DNBSEQ-T7 machine (The Beijing Genomics
Institute, China).

To obtain high-quality reads, the raw reads were first preprocessed to remove paired-end (PE) reads with
ambiguous base calls (N) > 5%, long homopolymer regions (>10 bp), and low-quality bases (bases with
quality score < 10) using Trimmomatic 0.39 (The Usadel Lab, USA). Huada independent research and
development filtering software SOAPnuke (The Beijing Genomics Institute, China) was used for
statistics. The clean reads were saved in the FASTQ format and aligned against NCBI reference genome
(GCF_000004515.4_Glycine_max_v2.0) using HISAT [24]. We used StringTie v1.0.4 (Johns Hopkins
University, USA) to reconstruct the transcripts of each sample, and then used Cuffmerge to integrate the
reconstructed information of all samples. Thereafter, we used Cuffcompare to compare the integrated
transcripts with the reference annotation information. DEGseq package in R software [25] was used to
detect DEGs between the two varieties under the treatment conditions and to calculate the fold changes
for each gene. Genes with fold changes > 2, q values < 0.01, and FDR < 0.01 were defined as DEGs and
used for further analysis. Finally, GO function annotation and KEGG pathway enrichment analyses were
carried out for the DEGs to identify genes involved in sulfur absorption and metabolism in soybean.

2.3 Statistical Analysis
A one-way ANOVAwas used to determine the effects of the various sulfur concentrations on soybean

yield within each variety. The R software was used to make such ANOVA.

3 Results

3.1 Effect of Sulfur Concentration on Soybean Yield
The highest yield on the DND252 variety was obtained at a concentration of 2.0 mmol/L (Fig. 1).

Similarly, the highest yield on the HN84 variety was obtained at a concentration of 2.0 mmol/L, although
this value did not differ from that at 4 mmol/L (Fig. 1). This result was the rationale behind selecting the
sulfur concentration of 2.0 mmol/L as the control in the transcriptome experiment.
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Figure 1: Effect of sulfur concentrations on soybean yield. Note: Each histogram is the mean of n = …

Vertical bars are ± 1 S.E. Within each variety, different letters indicate significant differences at P < 0.05
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With the increase of sulfur concentration, the leaf sulfur concentrations in the two varieties first
increased significantly and then decreased (Table 3). The dry matter weight of different tissues in the two
varieties first increased significantly and then decreased, but the root dry weight in HN84. The dry matter
weight was greatest under 2 mmol/L sulfur concentration. In the variety HN84, the dry matter weight of
leaves and stems were greater under the highest than lowest concentrations, and the dry matter weight of
roots was the lowest under the highest than lower sulfur concentrations. In the variety DND252, there
was no significant difference in the dry matter weight of leaves, stems and roots between the highest and
lowest sulfur concentrations. The results showed that too high or too low sulfur concentrations affected
the dry matter weight of aboveground and underground plant parts depending on the soybean variety.

3.2 Statistics and Gene Expression
Eighteen cDNA libraries were established in the experiment, with a total of four treatment groups

(HN84_01, HN84_10, DND252_01, DND252_10) and two control groups (HN84_2 and DND252_2).
Each test sample had an average of 6.58 Gb data. The original library sequencing data (raw reads) ranged
from 49.08 to 52.59 million regions. Through a series of processing, 789.69 million clean data were
obtained, with HN84_01, HN84_2, HN84_10, DND252_01, DND252_2, and DND252_10 having an
average of 43.26, 44.93, 44.31, 43.57, 43.33, and 43.84 million clean data, respectively. HISAT software
was used to compare clean data with reference genomes (GCF_000004515.4_Glycine_max_v2.0 from
NCBI, sent by US DOE Joint Genome Institute, https://www.ncbi.nlm.nih.gov/assembly/GCF_000004515.4)
of cultivated soybeans. The average ratio of reference genes and clean data for the two varieties were 82.17%
and 92.12%, respectively.

We used Bowtie2 to align the clean reads sequences, and then RSEM was used to calculate gene
expression levels for each sample. There were 41,063 genes expressed in HN84 under low sulfur
conditions, 40,991 under normal sulfur conditions, and 41,858 under high sulfur conditions. However,
only 38,418 genes were expressed under low, normal, and high sulfur conditions, 962 genes were
specifically expressed under low sulfur conditions, 696 genes were specifically expressed under normal
conditions, and 1,096 genes were specifically expressed under high sulfur conditions (Fig. 2A). A total of
42,035 genes were expressed in DND252 under low sulfur conditions, 40,610 under normal conditions,

Table 3: Dry matter weight and leaf sulfur concentrations of the two varieties under different sulfur
concentrations

Varieties S concentration
(mmol/L)

Leaf (g) Stem (g) Root (g) Sulfur content in leaves (%)

HN84 0.1 0.8711d 0.3726d 1.1239ab 0.2740c

2 1.0093a 0.4988a 1.1402a 0.3305a

4 0.9786b 0.4871ab 1.1110ab 0.3144b

6 0.9707b 0.4651b 1.0016b 0.2757c

10 0.9151c 0.4380c 0.9586c 0.2553d

DND252 0.1 0.9260c 0.5011c 0.8931c 0.2194c

2 1.1503a 0.5651a 1.1124a 0.2692a

4 0.9849b 0.5432ab 1.0559ab 0.2400b

6 0.9260c 0.5368b 0.9776b 0.1770d

10 0.9251c 0.5021c 0.9518bc 0.1450e
Note: Each value is the mean of n = … Within the same column, values followed by different letters are statistically different at P < 0.05.
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and 41,151 under high sulfur conditions. However, only 38,754 genes were expressed under low, normal,
and high sulfur conditions, with 1,238 genes specifically expressed under low sulfur conditions,
506 genes specifically expressed under normal conditions, and 758 genes specifically expressed under
high sulfur conditions (Fig. 2B). The difference in gene expression may represent the differences between
varieties.

3.3 Statistics of DEGs
According to the gene expression level of each sample, DEGseq was used to examine the DEGs between

four comparison groups: DND252-2 vs. DND252-01, DND252-2 vs. DND252-10, HN84-2 vs. HN84-01,
and HN84-2 vs. HN84-10 groups. A total of 34,278 DEGs were identified among the groups, including
7,867 (6,772 up- and 1,095 downregulated), 8,078 (5,992 up- and 2,086 downregulated), 13,517
(9,855 up- and 3,662 downregulated), and 4,816 (3,536 up- and 1,280 downregulated) in DND252-2 vs.
DND252-01, DND252-2 vs. DND252-10, HN84-2 vs. HN84-01, and HN84-2 vs. HN84-10 comparison
groups, respectively, which were presented in volcano plots (Fig. 3). Fig. 4 showed the Venn map of
DEGs in the four comparison groups. A total of 3,936 DEGs were common to the DND252-01 and
DND252-10 groups, and 3,120 were common to the HN84-01 and HN84-10 groups. Overall, 963 DEGs
were common to the four groups (DND252-01, DND252-10, HN84-01, and HN84-10), which may be
related to the change in sulfur concentration.

3.4 Gene Ontology Enrichment of DEGs
GO terms can be classified into three categories: biological processes (BP), molecular functions (MF),

and cellular components (CC). GO enrichment analysis showed that in DND252, the number of DEGs
increased with the increase of sulfur concentrations, but the increase was not obvious (Figs. 5A and 5B).
In the biological process (GO: 0008150) classification, the number of DEG enriched in the cellular
process (GO: 0009987), metabolic process (GO: 0008152), biological regulation (GO: 0065007) and
response to stimulus (GO: 0050896) were significantly higher than those in the other classifications. In
the cellular component (GO: 0005575) classification, cell part (GO: 0044464) and super-resolution
complex (GO: 0099080) were the least classified genes. In the molecular function (GO: 0003874)
classification, binding (GO: 0005488) and catalytic activity (GO: 0003824) enriched more genes.

Figure 2: (A) HN84 gene expression Venn map (B) DND252 gene expression Venn map
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Figs. 5C and 5D showed the GO analysis of variety HN84 at different sulfur concentrations. In the
biological process classification, the number of DEG enriched in cellular processes (GO: 0009987),
metabolic processes (GO: 0008152), biological regulation (GO: 0065007) and response to stimulus
(GO: 0050896) which were significantly greater than that in other classifications. In cellular components,
the supramolecular complex (GO: 0099080) and symplast (GO: 0055044) were the least classified genes.
In the molecular function classification, binding (GO: 0005488) and catalytic activity (GO: 0003824)
enriched more genes.

Figure 3: Volcano plots of DEGs. (A) DND252-2 vs. DND252-01 (B) DND252-2 vs. DND252-10 (C)
HN84-2 vs. HN84-01 (D) HN84-2 vs. HN84-10. Note: Red represents up-regulation, blue represents
down-regulation, and gray represents non-DEGs
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3.5 Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis
The KEGG metabolic pathway classifies genes into seven pathways: cellular processes, environmental

information processing, genetic information processing, human disease (animals only), metabolism,
organismal systems, and drug development. The KEGG enrichment showed that DEGs responding to
sulfur concentrations involved a large number of pathways (Fig. 6). Similar to GO enrichment, the three
most significantly enriched pathways in DND252 were Plant-pathogen interaction, MAPK signaling
pathway-plant and Plant hormone signal transduction. With the increase of sulfur concentration, the
number of DEGs increased slightly. At the same time, some amino acid metabolic pathways were
enriched, such as Valine, leucine and isoleucine degradation and beta-Alanine metabolism. In HN84, the
three pathways with the most significant enrichment at low sulfur concentrations were MAPK signaling
pathway-plant, Plant-pathogen interaction and Photosynthesis-antenna proteins. With the increase of
sulfur concentrations, the number of DEGs related to photosynthesis decreased, and the number of DEGs
enriched in secondary metabolite biosynthesis pathways such as Isoflavonoid biosynthesis, and Flavonoid
biosynthesis decreased. MAPK signaling pathway-plant, Plant-pathogen interaction and Isoflavonoid
biosynthesis were the three most significant pathways under high sulfur concentrations.

3.6 Sulfur-Related Amino Acids Metabolic Processes
DEGs related to sulfur amino acids and their derivatives. In DND252, 26 DEGs were found when sulfur

was at low concentrations: 4 DEGs were involved in S-adenosylmethionine biosynthetic process, 5 DEGs
were involved in S-adenosylmethionine metabolic process, 1 DEG was involved in S-adenosyl-L-
methionine transmembrane transporter activity, 3 DEGs were involved in methionine metabolic process,
2 DEGs were involved in methionine biosynthetic process, 1 DEG was involved in S-adenosylmethionine
cycle, 3 DEGs were involved in cysteine metabolic process, 2 DEGs were involved in cysteine
biosynthetic process from serine, 2 DEGs were involved in cysteine biosynthetic process, 1 DEG was
involved in S-adenosylhomocysteine catabolic process, 1 DEG was involved in L-cysteine metabolic
process, and 1 DEG was involved in S-adenosylhomocysteine metabolic process. When sulfur was at
high concentrations, 18 DEGs were found: 1 DEG was involved in S-adenosyl-L-methionine
transmembrane transporter activity, 4 DEGs were involved in methionine metabolic process, 3 DEGs
were involved in S-adenosylmethionine biosynthetic process, 3 DEGs were involved in methionine
biosynthetic process, 1 DEG was involved in S-adenosylmethionine cycle, 4 DEGs were involved in S-
adenosylmethionine metabolic process, 1 DEG was involved in L-methionine biosynthetic process,
1 DEG was involved in ‘de novo’ L-methionine biosynthetic process.

Figure 4: Venn map of DEGs in all groups
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Figure 5: (Continued)
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Figure 5: GO classification of DEGs identified in the treatments (A) DND252-2 vs. DND252-01 (B)
DND252-2 vs. DND252-10 (C) HN84-2 vs. HN84-01 (D) HN84-2 vs. HN84-10
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Figure 6: (Continued)
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Forty three DEGs were found in HN84 at low sulfur concentrations: 1 DEG was involved in S-adenosyl-
L-methionine transmembrane transporter activity, 3 DEGs were involved in methionine metabolic process,
4 DEGs were involved in S-adenosylmethionine biosynthetic process, 2 DEGs were involved in methionine

Figure 6: KEGG enrichment of DEGs identified in the treatments (A) DND252-2 vs. DND252-01 (B)
DND252-2 vs. DND252-10 (C) HN84-2 vs. HN84-01 (D) HN84-2 vs. HN84-10. Note: The size of the
bubble indicates the number of genes annotated to a KEGG pathway. The color represents the enriched
Qvalue value. The red color represents the smaller Qvalue
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biosynthetic process, 1 DEG was involved in peptidyl-methionine modification, 1 DEG was involved in
S-adenosylmethionine cycle, 5 DEGs were involved in S-adenosylmethionine metabolic process, 8 DEGs
were involved in cysteine metabolic process, 6 DEGs were involved in cysteine biosynthetic process
from serine, 1 DEG was involved in peptidyl-cysteine modification, 7 DEGs were involved in cysteine
biosynthetic process, 1 DEG was involved in S-adenosylhomocysteine catabolic process, 1 DEG was
involved in L-cysteine metabolic process, 1 DEG was involved in S-adenosylhomocysteine metabolic
process, and 1 DEG was involved in peptidyl-cysteine modification to L-cysteine persulfide. Fifteen
DEGs were found at high sulfur concentrations: 1 DEG was involved in ‘de novo’ L-methionine
biosynthetic process, 1 DEG was involved in methionine metabolic process, 1 DEG was involved in
methionine biosynthetic process, 1 DEG was involved in L-methionine biosynthetic process, 1 DEG was
involved in cysteine biosynthetic process via cystathionine, 1 DEG was involved in peptidyl-cysteine
modification to L-cysteine persulfide, 3 DEGs were involved in cysteine metabolic process, 1 DEG was
involved in cysteine biosynthetic process from serine, 1 DEG was involved in peptidyl-cysteine
modification, 3 DEGs were involved in cysteine biosynthetic process, and 1 DEG was involved in
homocysteine metabolic process.

DEGs related to sulfur-containing amino acid metabolic enzymes. In DND252, 86 DEGs were found
when sulfur was at low concentrations: 4 DEGs were involved in methionine adenosyltransferase activity,
1 DEG was involved in adenosylmethionine decarboxylase activity, 1 DEG was involved in methionine-
tRNA synthetase activity, 26 DEGs were involved in S-adenosylmethionine-dependent methyltransferase
activity, 5 DEGs were involved in cysteine-type endopeptidase inhibitor activity, 2 DEGs were involved
in cysteine synthase activity, 12 DEGs were involved in cysteine-type endopeptidase activity, 20 DEGs
were involved in cysteine-type peptidase activity, 5 DEGs were involved in protein-cysteine
S-palmitoyltransferase activity, 5 DEGs were involved in protein-cysteine S-acyltransferase activity,
1 DEG was involved in betaine-homocysteine S-methyltransferase activity, 2 DEGs were involved in
regulation of cysteine-type endopeptidase activity, and 2 DEGs were involved in negative regulation of
cysteine-type endopeptidase activity. When sulfur was at high concentrations, 69 DEGs were found:
1 DEG was involved in adenosylmethionine decarboxylase activity, 3 DEGs were involved in methionine
adenosyltransferase activity, 1 DEG was involved in methionine-tRNA ligase activity, 1 DEG was
involved in peptide-methionine (S)-S-oxide reductase activity, 31 DEGs were involved in
S-adenosylmethionine-dependent methyltransferase activity, 1 DEG was involved in peptide-methionine
(S)-S-oxide reductase activity, and 31 DEGs were involved in S-adenosylmethionine-dependent
methyltransferase activity.

In HN84, 198 DEGs were found when sulfur was at low concentrations: 1 DEG was involved in
adenosylmethionine decarboxylase activity, 4 DEGs were involved in methionine adenosyltransferase
activity, 2 DEGs were involved in methionine-tRNA ligase activity, 2 DEGs were involved in peptide-
methionine (S)-S-oxide reductase activity, 84 DEGs were involved in S-adenosylmethionine-dependent
methyltransferase activity, 1 DEG was involved in peptide-methionine (R)-S-oxide reductase activity.
5 DEGs were involved in cysteine synthase activity, 13 DEGs were involved in cysteine-type
endopeptidase activity, 2 DEGs were involved in calcium-dependent cysteine-type endopeptidase activity,
1 DEG was involved in glutamate-cysteine ligase activity, 6 DEGs were involved in cysteine-type
endopeptidase inhibitor activity, 41 DEG was involved in cysteine-type peptidase activity, 1 DEG was
involved in enzyme active site formation via cysteine modification to L-cysteine persulfide, 13 DEGs
were involved in protein-cysteine S-palmitoyltransferase activity, 13 DEGs were involved in protein-
cysteine S-acyltransferase activity, 1 DEG was involved in betaine-homocysteine S-methyltransferase
activity, 4 DEGs were involved in regulation of cysteine-type endopeptidase activity, and 4 DEGs were
involved in negative regulation of cysteine-type endopeptidase activity. When sulfur was at high
concentrations, 59 DEGs were found: 2 DEGs were involved in methionine-tRNA ligase activity,
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24 DEGs were involved in S-adenosylmethionine-dependent methyltransferase activity, 1 DEG was
involved in enzyme active site formation via cysteine modification to L-cysteine persulfide, 5 DEGs were
involved in cysteine-type endopeptidase activity, 1 DEG was involved in calcium-dependent cysteine-
type endopeptidase activity, 2 DEGs were involved in cysteine-type endopeptidase inhibitor activity,
16 DEGs were involved in cysteine-type peptidase activity, 4 DEGs were involved in protein-cysteine
S-palmitoyltransferase activity, and 4 DEGs were involved in protein-cysteine S-acyltransferase activity.
These DEGs were directly affected by sulfur concentrations.

In these DEGs, combined with the results of GO analysis, we found that some DEGs were involved in
the metabolic pathway of many sulfur-containing amino acids, and existed in both varieties of soybean.
Fig. 7 represents the metabolic pathway of these DEGs. In the process of cysteine metabolism,
LOC100806420 [EC: 2.5.1.47] mainly regulated the transformation of O-acetyl-L-serine and O-phospho-
L-serine to L-cysteine. In the metabolic process of methionine, LOC100787210 [EC: 3.3.1.1] mainly
regulated the transformation of S-adenosyl-l-homocysteine to L-homocysteine. LOC100799139,
LOC100777770, LOC100777009 [EC: 2.5.1.6] were responsible for the transformation of l-methione to
S-adenosylmethione.

Table 4 showed the log2 fold change of important genes. The expression of gene LOC100777009 was
the largest under the low sulfur concentration of the two varieties (measured according to the FPKM value).
Gene LOC100787718 was a gene with large differential changes in the four groups. In variety HN84, the
differential change multiple of the gene under the low sulfur concentration reached 11.7, and 9.3 at the
high sulfur concentration. The differential change multiple of the gene reached 3.1 at medium and low
sulfur concentration, and 1.7 at the high sulfur concentration. When the sulfur concentration changed, this
gene expression increased, and increased more at low sulfur concentrations. In addition, we also found
that the expression of LOC100812341 gene was opposite under different sulfur concentrations between
the two varieties. In DND252, the expression of LOC100812341 gene was the largest under the high
sulfur concentration, while in HN84, the expression was the largest under the low sulfur concentration,
which may be one of the reasons for the different sensitivity of the two varieties to sulfur.

Figure 7: Metabolic pathway diagram of important DEGs. Note: Circles represent substances, boxes
represent enzymes or genes, and yellow represents important DEGs
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4 Discussion

Higher plants assimilate inorganic sulfate into cysteine, which is subsequently converted into
methionine and into various other sulfur-containing organic compounds. Nikiforova et al. [26] found that
632 genes responded specifically to sulfur deficiency through significant overexpression in Arabidopsis
thaliana. Forieri et al. [27] found that glutathione, cysteine, total glucosinolates, methylthioadenosine,
methionine, and S-methylmethionine significantly decreased in the absence of sulfur in Arabidopsis.
Sulfur deficiency down-regulated 1,638 genes and up-regulated 1,338 genes in roots. This experiment
described changes in gene expression under different sulfur concentrations. When sulfur was deficient,
7,867 (6,772 up-regulated and 1,095 down-regulated) and 8,078 (5,992 up-regulated and 2,086 down-
regulated) differential genes were identified in the two varieties, and the number of up-regulated genes
was significantly greater than that of down-regulated genes. The results were inconsistent with those
obtained by Forieri et al. [27], which may be due to differences in species, sulfur concentrations and
sampling sites. Assefa et al. [28] studied the effect of sulfur application rate on wheat yield. Among the
three sulfur levels (0, 15 and 30 kg ha-1), wheat yield was the highest at 15 kg ha-1, and too high or too
low sulfur application rates affected wheat yield. Similar results have been shown in studies of Wild
Marigold (Tagetes minuta L.) in the Western Himalaya [29]. In this study, we studied the effects of five
sulfur concentrations on yield. The results showed that yield of the control group was the highest, and it
decreased if the sulfur concentration was too high or too low, which was consistent with the results of the
above experiments.

RNA sequencing, a powerful strategy for identifying functional genes, has provided a better qualitative
and quantitative description of gene expression under certain conditions in several plant species [30]. In the
present study, we identified the numbers of upregulated and downregulated genes in the two soybean
varieties under different sulfur concentrations, and performed GO functional annotation and KEGG
pathway analyses of these genes. DEGs identified in the DND252 variety were primarily enriched in
cellular amide metabolic processes, cell, binding, and catalytic activity, whereas DEGs identified in the
HN84 variety were primarily enriched in cellular processes, membranes, and binding. A transcriptome
analysis of cucumber treated with H2S showed that the DEGs were primarily enriched in inherent
components of the membrane [31], which is similar to the findings of the present study, suggesting that
sulfur affects the cell membranes.

Sulfur deficiency leads to stunted plant growth and yield loss [32]. Sulfur is not only a nutrient element
but can also be used to relieve heavy metal stress in plants. Cadmium (Cd) accumulation and sulfur
assimilation in poplar leaves are limited by low sulfur content; high sulfate supply increases Cd toxicity,
whereas low sulfur reduces it [33]. A recent study suggested that H2S and proline interact to alleviate Cd

Table 4: Log2 fold change of important genes

LOC100787210 LOC100799139 LOC100777770 LOC100777009 LOC100787718

DND252_2-vs.-
DND252_01

1.51 2.68 1.1 1.39 3.09

DND252_2-vs.-
DND252_10

–1.04 2.07 1.77 x 1.74

HN84_2-vs.-
HN84_01

–4.92 1.33 1.22 1.15 11.74

HN84_2-vs.-
HN84_10

x x x x 9.34

Note: x represents no difference detected between groups.
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damage in foxtail millet [34]. Studies on A. thaliana have shown that sulfur deficiency increases phosphate
accumulation, absorption, and transport [6]. The pivotal role of sulfur compounds in plant disease resistance
has become obvious in recent decades. Sulfur-containing defense compounds (SDCs) play important roles in
plant defense responses against pathogens. These compounds include sulfur-containing amino acids, such as
cysteine and methionine, tripeptide glutathione, thionine, defensins, glucosinolates, phytoalexins, reactive
sulfur species, and hydrogen sulfide. SDCs play versatile roles in both pathogen perception and initiation
of signal transduction pathways that are interconnected with various defense processes regulated by plant
hormones (salicylic acid, jasmonic acid, and ethylene) and ROS [35]. Drought is one of the most
common factors that limits plant growth and productivity. Sulfur dioxide (SO2) has recently been found
to play a beneficial role in the protection of plants against environmental stress. SO2 pretreatment
increased the activities of superoxide dismutase and peroxidase, and effectively reduced the hydrogen
peroxide and malondialdehyde content of wheat seedlings under drought conditions; this suggests that
SO2 could alleviate drought-induced oxidative damage by enhancing the antioxidant defense system in
plants [36]. SO2 has also been used to improve the drought resistance of millet [37]. In the studies cited
above, sulfur generally played an auxiliary role or participated in regulating other elements. Some studies
have also reported physiological indicators of the sulfur effect, but the direct effect of sulfur on crop
transcription level is rarely reported. In the present study, we examined the transcriptional effects of
different concentrations of sulfur on soybean.

5 Conclusion

In the present study, the response of two soybean varieties to sulfur was examined at the transcriptome
level, and we found that low and high sulfur concentration significantly influenced the expression of several
genes. We highlighted some DEGs involved in methionine and cysteine metabolism. Additionally, the DEGs
identified in the varieties under low and high sulfur concentrations were involved in several GO terms and
KEGG pathways, including plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal
transduction. We also found some important DEGs regulating sulfur-containing amino acid metabolism, and
their expression changed under different sulfur concentrations. Soybean yield was also significantly affected
by sulfur concentrations, with the best result obtained at 2.0 mmol/L. However, future studies should
examine the roles of several functionally related differential proteins and metabolites in response to the
different sulfur concentrations.
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