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ABSTRACT

Cadmium (Cd), a life threatening hazardous heavy metal is abundant in nature. Cd amounts are greater in leaves
than other plant parts, and it shows considerable effects on photosynthesis. Nitric oxide (NO), a free radical pre-
sent in living organisms, is now known as an important signaling molecule playing various physiological pro-
cesses in plants. In this study, the possible ameliorative effect of NO on photosynthesis was examined on pea
seedlings grown under Cd stress. Results showed that chlorophyll, net photosynthetic rate, transpiration rate, sto-
matal conductance, photochemical efficiency of Photosystem II and Photosystem I decreased, and Fo and non-
photochemical parameters for PSII and PSI significantly increased due to Cd stress. This suggests that Cd affects
the photochemistry efficiency at both the PSII and PSI levels. Nitric oxide supplementation through SNP ame-
liorated Cd stress by enhancing all the above mentioned parameters but causing a reduction in the Fo, and
non-photochemical parameters of PSII and PSI in pea plants. These data indicate that the exogenous application
of NO was useful in mitigating Cd-induced damage to photosynthesis in pea seedling.
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1 Introduction

Heavy metals including Cd occur naturally in soils in trace amounts. Anthropogenic activities have led
to Cd contamination of agricultural lands [1]. Cd is taken up from soil and transported to all parts of plant, as
a result become potential hazard for both plant and animals [2]. Cd causes (1) inhibition of many
physiological processes in plants like nitrogen assimilation, mineral nutrition, photosynthesis, respiration,
transpiration, and carbohydrate metabolism (2) increases in chlorosis, wilting, necrotic lesions, and
oxidative stress, and induction of senescence, all of which reduce biomass production [3,4]. Furthermore,
Cd stress has also been associated with reactive oxygen species (ROS) generation, including superoxide
ions (O2

−•), hydroxyl radicals (HO•) and hydrogen peroxide (H2O2) [5,6].
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Photosynthesis, one of the most important physiological processes in plants, affects the entire
metabolism of plants. Cd (1) disrupts thylakoid and chloroplast of the photosynthetic apparatus [1,7,8],
(2) decreases Chl and carotenoid pigments [9], (3) inhibits the enzymes involved in Chlorophyll synthesis
[10] in addition to RUBISCO [11,12], and (4) affects photoreduction and association of
protochlorophyllide in etioplast inner membrane preparations and dark-grown leaves of wheat.
Chlorophyll biosynthesis is a physiological phenomenon which is connected to photosynthetic efficiency
of plants. The δ-amino levulinic acid, an important intermediate of the chlorophyll biosynthetic pathway,
can be synthesized from 5-carbon compounds, like glutamate [12]. Further, the enzyme δ-amino levulinic
acid dehydratase, of the chlorophyll biosynthetic pathway, has been shown to be hindered by Cd in radish
leaves. Cd2+ is also reported to replace the Mg2+ central atom of chlorophyll in water plants [13,14].

PSII plays an imperative role in the response to environmental worries and stresses in photosynthesis in
higher plants [15]. It was reported that Cd targets PSII instead of PSI [16,17]. The NADP oxidoreductase,
ATP-synthase and oxygen-evolving complex of the photosynthetic electron transport chain are considered
sensitive to Cd [18]. Oxidizing or reducing sites of PSII are probably common sites for heavy metal
action in plants [13]. Cd2+ replaces Mn2+ from the water-oxidizing system of PSII leading to PSII
reaction inhibition [7]. Only few studies have been done to study the effects of Cd on PSI electron
transport in vivo. Most of the effects of Cd on the photosynthetic electron transport have been shown in
vitro. PAM fluorometry and especially P700 absorbance–two noninvasive, net photosynthetically
informative measuring techniques–are really important tools to detect photochemical changes with
appreciable sensitivity due to heavy metal toxicity in photosynthetic organisms. Moreover,
P700 absorbance measurements may well provide additional in vivo data to magnify our information on
the impacts of heavy metals on PSI photochemistry in plants.

NO is one among the few known gaseous signaling molecules [17]. The high reactivity and diffusibility
make NO perfect for a transient signaling molecule [19–21]. Both photorespiration and photosynthesis can
be influenced by NO in various plants. Depending on its concentrations, the plant age or tissue, and the form
of stress, some researchers reported NO as a stress promoting factor, whereas others have shown its
ameliorating role [22–24]. Treatments with NO donors, such as SNP, have been shown to enhance
photosynthetic rate, chlorophyll concentration, stomatal conductance and transpiration rate in plants [25].
In contrast, SNP diminished the quantity of β subunits of the RUBISCO subunit-binding protein and
Rubisco activase in mung bean [26]. Cd toxicity is a major problem which inhibits many physiological
processes in plants including photosynthesis and thus reduces crop yield. Therefore, the present work was
undertaken with the objective of studying the ameliorating role of NO in alleviating photochemical
damage induced by Cd stress in pea.

2 Materials and Methods

2.1 Plant Material, Treatments and Growing Conditions
Pea (Pisum sativum L.) seeds were surface sterilized by immersion in a 0.5% sodium hypochlorite

(NaOCl) solution for 5 min and then washed three times with sterile, distilled water. Seeds were
germinated on filter paper moistened with deionized water for 4 days. Following germination, seedlings
were transferred to plastic pots filled with 2L hoagland solution [27] as a control treatment. At the same
time, two concentrations of CdCl2 (50 and 200 μM) with or without SNP (NO donor) (50 μM) were
added to the nutrient solution and used as the treatment solutions. Seedlings were grown in a growth
chamber with 12 h day/12 h night, temperatures of 25/20°C day/night, white fluorescent light intensity of
350 μmol photons m–2·s–1, and 70% relative humidity. Growth solutions were continuously aerated and
renewed every three days. After 15 days of treatment, a full expanded leaf was used for photosynthetic
parameters measurements.
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2.2 Determination of Chlorophyll
The chlorophyll determination was made following Arnon [28]. After discarding major veins and any

tough, fibrous tissue, leaves were cut in small pieces. Fresh leaves weighing 0.5 g were grinded in 10 ml of
80% acetone (acetone:water 80:20 v:v) using a mortar and pestle. Leaf homogenate was filtered using filter
paper. The extract was transferred to a graduated tube and filled to 10 ml with 80% acetone and assayed
immediately. The absorbance was measured at 664, 647 and 470 nm in 1 cm cells using an 80% aqueous
acetone as blank. Chl a, Chl b, total Chl (Chl a + b) and carotenoids concentrations were calculated using
Arnon equation and expressed as mg·g−1 fresh weight.

2.3 Determination of Photosynthetic Rate, Transpiration Rate, Stomatal Conductance and Water Use

Efficiency
Gas exchange was measured with a portable photosynthesis system CI-340 (CID Bio-Science).

Photosynthetic (Pn) (μmol CO2 m−2·s−1), transpiration (Tn) (mmol H2O m−2 s−1), and stomatal
conductance rates (mmol m–2·s–1) were registered every 30 sec on fully expanded leaves during 40 min.
Measurements were performed on one randomly selected seedling per pot. From these data, a daily mean
of measured indices was calculated. Water use efficiency (WUE) (μmol CO2 mmol H2O

−1) was
calculated by dividing the photosynthetic rate by the transpiration rate. The environmental conditions
during the experiments were as follows: air flow rate 400 μmol·s−1, block and leaf temperatures 25°C,
CO2 concentration in sample cell 300–400 μmol CO2 mol−1, relative humidity in sample cell 30%,
lightness in quantum 180 μmol m−2·s−1.

2.4 Measurement of Chlorophyll Fluorescence and P700 Parameter
Chlorophyll fluorescence parameters and the redox change of P700 were assessed with a Dual-PAM-

100 measuring system (Walz) on fully expanded leaves. Leaves of the different treatments (Control,
50 μM SNP, 50 μM Cd, 50 μM Cd + 50 μM SNP, 200 μM Cd, and 200 μM Cd + 50 μM SNP) were
exposed to darkness for 30 min before determining the following Chlorophyll fluorescence parameters:
Fo; Fm; Fv/Fm = (Fm-Fo)/Fm; qN = Fm-Fm’/Fm-Fo; qL = qP(Fo’/F’); qP = (Fm’-F)/(Fm’-Fo’);
NPQ = (Fm-Fm’)/(Fm’); Y(II) = (Fm’-Fo’)/Fm’; D = Fo′/Fm′; Y(NPQ) = 1-Y-Y(NO); Y(NO) = 1/NPQ
+ 1 + qL((Fm/Fo)-1); Y(I) = 1-Y(ND)-Y(NA); Y(NA) = (Pm-Pm’)/Pm, and Y(ND) = 1-P700 red.

2.5 Statistical Analysis
One-way Analysis of Variance (ANOVA) was carried out using Graph Pad PRISM version 5.01.

Multiple linear regression (MLR) and β-regression analysis were conducted using Microsoft Excel
2010 [29,30]. Values shown are means ±1 standard error (SE), and *, ** and *** represent significant
differences at P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001, respectively.

3 Results

3.1 SNP Enhances Chlorophyll and Carotenoid Concentration under Cd Stress
Total Chl and carotenoids decreased by 3.95% and 24.00%, respectively, at 50 μM Cd, and by 20.00%

and 46.00%, respectively, at 200 μMCd-treated seedlings compared to controls (Figs. 1A and 1B). Ratios of
Chl a/b and Chl/Carotenoid increased by 6.00% and 24.00%, respectively, at 50 μM Cd, and 14.00% and
46.00%, respectively, at the 200 μM Cd treatment compared to controls (Figs. 1C and 1D). Application
of 50 μM SNP alone as well as in combination with 50 or 200 μM Cd improved photosynthetic pigment
concentrations in Cd stressed plants. Application of 50 μM SNP with 50 or 200 μM Cd led to 15.00% or
22.00% increase in chlorophyll concentration, respectively; 13.00% or 50.00% increase in carotenoid
concentration, respectively, 19.00% or 21.00% decrease in chl-a/b ratio, respectively, and 2.00% increase
or 17.00% decrease in chl/carotenoids ratio, respectively, compared to the plants treated with 50 or

Phyton, 2022, vol.91, no.5 961



200 μM Cd alone. Moreover, multiple linear regression analysis (MLR) revealed that seedlings in presence
of Cd resulted in a reduction of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid concentrations.
However, the application of nitric oxide donor (SNP) along with Cd significantly increased the
concentrations of all pigments. This is, while the relationships between Cd vs. the pigment concentrations
were negative, those between Cd + SNP vs. the pigment concentrations were positive (Table 1).

Figure 1: Effect of Cd, SNP and their combinations on total chlorophyll (A), carotenoids (B), chlorophyll
a/b (C) and chlorophyll/carotenoid (D) In leaves of pea seedlings. Values are means ±1 standard error (SE).
Different letters represent significant differences compared to the control treatment at P ≤ 0.05. *, ** and ***
represent significant differences between the Cd + SNP treatment and the Cd treatment at P ≤ 0.05, P ≤ 0.01
and P ≤ 0.001, respectively

Table 1: Multiple linear regression analysis showing the effect of SNP (50 μM) on 50 or 200 μM CdCl2
induced-changes on pigment concentrations and photosynthetic parameters, PSII and PSI in leaves of pea
seedlings

S. No. MLR equation β-regression coefficient R

β1 β2
1 Total Chl (mg·g−1 FW) = 2.1837 − 0.0047 X1 + 0.0148 X2 −0.7277 0.6649 0.9857**

2 Carotenoids (mg·g−1 FW) = 5.1104 + 0.061 X1 + 0.0268 X2 −0.5881 0.7590 0.9602**
(Continued)
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3.2 Photosynthesis Rate, Transpiration Rate, Stomatal Conductance and Water Use Efficiency
In the presence of 50 μM Cd, there were decreases of 49.31% in photosynthetic rate, 69.52% in

transpiration rate and 59.89% in stomatal conductance on leaves of pea plants as compared to controls
(Figs. 2A–2C). At 200 μM Cd concentration, photosynthetic rate decreased by 63.87%, transpiration rates
by 86.60% and stomatal conductance by 80.00% as compared to controls. In plants treated with both
50 μM CdCl2 and 50 μM SNP, photosynthesis, transpiration rates and stomatal conductance were partially
recovered by 97.75%, 60.89% and 43.00%, respectively, compared to those treated only with 50 μM
CdCl2. Plants treated with 200 μM CdCl2 and 50 μM SNP showed 124.66%, 126.62% and 88.12%
recovery in photosynthetic rate, transpiration rates and stomatal conductance, respectively, compared to
plants treated only with 200 μM Cd (Figs. 2A–2C). Treatment of 50 or 200 μM Cd increased water use
efficiency by 5.00% or 125.18%, respectively, as compared to the control treatments. However, plants
treated with 50 or 200 μM CdCl2 along with 50 μM SNP showed an enhancement in water use efficiency
by 88.89% and 8.34%, respectively, compared to plants treated only with 50 and 200 μM CdCl2
(Fig. 2D). Moreover, MLR also revealed that Cd application resulted in a decline in photosynthetic rate,

Table 1 (continued)

S. No. MLR equation β-regression coefficient R

β1 β2
3 Pn (μ mol m–2·s–1) = 5.9723 – 0.0170 X1 + 0.0584 X2 −0.6490 0.6531 0.9207*

4 Et (m mol m–2·s–1) = 4.1872 – 0.01609 X1 + 0.002 X2 −0.7969 0.0348 0.7976

5 Gs (m mol m–2·s–1) = 103.8919 – 0.3419 X1 + 0.0440 X2 −0.8054 0.0305 0.8060

6 Fo = 1.5592 + 0.0016 X1 – 0.0140 X2 0.3709 −0.9160 0.9882**

7 Fm = 5.4495 – 0.0088 X1 + 0.0084 X2 −0.7619 0.2141 0.7914

8 Fv/Fm = 0.6915 – 0.0010 X1 + 0.0039 X2 −0.6214 0.7215 0.9522*

9 qN = 0.4085 + 0.0017 X1 – 0.0043 X2 0.7096 −0.5288 0.8850*

10 qL = 0.4703 + 0.0001 X1 – 0.0012 X2 0.0645 −0.1434 0.1573

11 qP = 0.8444 – 0.0017 X1 + 0.0057 X2 −0.5946 0.5670 0.8216

12 NPQ = 0.3638 + 0.0010 X1 – 0.0018 X2 0.7594 −0.3902 0.8538

13 Y(II) = 0.5644 – 0.0018 X1 + 0.0064 X2 −0.6480 0.6712 0.9329*

14 D = 0.3733 + 0.0012 X1 – 0.0046 X2 0.6401 −0.7022 0.9501*

15 Y(NPQ) = 0.1175 + 0.0008 X1 – 0.0023 X2 0.6992 −0.5682 0.9009*

16 Y(NO) = 0.3179 + 0.0009 X1 – 0.0041 X2 0.5996 −0.7358 0.9492*

17 Y(I) = 0.3845 – 0.0011 X1 + 0.0002 X2 −0.9416 0.0515 0.9430*

18 Y(NA) = 0.1666 – 0.0001 X1 – 0.0008 X2 −0.1753 −0.4184 0.4536

19 Y(ND) = 0.4054 + 0.0014 X1 + 0.0003 X2 0.9715 0.0645 0.9736**
Notes: X1 = CdCl2 (μM), X2 = sodium nitroprusside (μM), beta regression coefficients, β1 = CdCl2, β2 = SNP, R = multiple
correlation coefficient, Pn = net photosynthetic rate, Et = transpiration rate, Gs = stomatal conductance, Fo = dark fluorescence yield,
Fm = maximal fluorescence yield, Fv/Fm = maximal PSII quantum yield, qN = coefficient of non-photochemical quenching, qL =
coefficient of photochemical quenching, qP = coefficient of photochemical quenching, NPQ = non-photochemical quenching,
Y(II) = PSII quantum yield, D = dissipated thermally, Y(NPQ) = quantum yield of regulated energy dissipation, Y(NO) = quantum
yield of non-regulated energy dissipation, Y(I) = photochemical quantum yield of PSI, Y(NA) = non-photochemical quantum yield
of PSI, Y(ND) = non-photochemical quantum yield of PSI. *, ** and *** represent significant differences at P ≤ 0.05, P ≤ 0.01 and
P ≤ 0.001, respectively.
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transpiration rate, and stomatal conductance of the plants, whereas Cd treatment with SNP significantly
increased these parameters on pea plants (Table 1). This is, the relationships between the Cd levels vs. the
photosynthetic rate, transpiration rate, and stomatal conductance of the plants were negative. However,
those between the Cd levels + SNP vs. the photosynthetic rate, transpiration rate, and stomatal
conductance of the plants were positive (Table 1).

3.3 SNP Maintains Chlorophyll Fluorescence under Cd Stress
Fo, Fm and Fv/Fm were used to measure the photochemical efficiency and PSII activity. Compared to

the control, Fo increased by 7.36% or 18.45% in leaves of 50 or 200 μM CdCl2 treated plants, respectively.
Addition of 50 μM SNP along with the 50 or 200 μM CdCl2 treatment resulted in a significant decrease of
44.00% or 37.24%, respectively, as compared to plants treated with 50 or 200 μM CdCl2 alone (Fig. 3A).
Compared to the control, Fm decreased by 35.71% or 46.47% in the 50 or 200 μM CdCl2 treatment,
respectively. Addition of the 50 μM SNP treatment resulted in a significant increase of 27.85% or 30.88%
in comparison to plants treated with 50 or 200 μM CdCl2, respectively (Fig. 3B). In contrast, Fv/Fm in
50 or 200 μM Cd-treated pea leaves decreased by 16.56% or 40.53%, respectively, as compared to the
control. However, the 50 μM SNP treatment inhibited the decrease of Fv/Fm by 35.79% or 64.48% as
compared to plants treated with 50 or 200 μM Cd alone, respectively (Fig. 3C). qN in 50 or 200 μM

Figure 2: Effect of Cd, SNP and their combinations on photosynthetic rate (A), transpiration rate (B),
stomatal conductance rate (C) and water use efficiency (D) In leaves of pea seedlings. Values are means
±1 standard error (SE). Different letters represent significant differences compared to the control treatment
at P ≤ 0.05. *, ** and *** represent significant differences between the Cd + SNP treatment and the Cd
treatment at P ≤ 0.05, P ≤ 0.01 and P ≤ 0.001, respectively
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CdCl2-treated plants increased by 87.36% or 2.14 folds, respectively, compared to the control. However, 50
μM SNP treatment along with 50 or 200 μM CdCl2 inhibited the increase of qN by 42.76% or 53.00%,
respectively (Fig. 3D).

In our study, qL increased by 103.35% and decreased by 42.67% on leaves of 50 and 200 μM CdCl2
treated seedlings, respectively, compared to the control (Fig. 4A). In turn, 50 μM SNP treatment
decreased qL by 63.50% and increased it by 1.86 folds in comparison to the 50 and 200 μM CdCl2
treatments, respectively (Fig. 4A). qP decreased by 13.65% and 70.65% on leaves of 50 and 200 μM
CdCl2-treated seedlings, respectively, in comparison to the control. The 50 μM SNP treatment decreased
qP by 18.15% and 2.48 folds as compared to the 50 and 200 μM CdCl2 treatments, respectively
(Fig. 4B). NPQ increased by 82.28% and 137.36% in 50 and 200 μM CdCl2 treatment, respectively, over
values on the control. However, 50 μM SNP treatment inhibited the increase of NPQ by 29.45% and
32.02% as compared to 50 and 200 μM CdCl2 treatments, respectively (Fig. 4C). Y(II) was decreased by
34.72% and 86.00% to the 50 and 200 μM CdCl2 treatements, respectively in comparison to the control
(Fig. 4D), However, 50 μM SNP treatment inhibited the decreases in Y(II) by 78.63% and 5 folds as
compared to 50 and 200 μM CdCl2 treatments, respectively (Fig. 4D).

Figure 3: Effect of Cd, SNP and their combinations on Fo (A), Fm (B), Fv/Fm (C), and qN (D) on leaves of
pea seedlings. Values are means ±1 standard error (SE). Different letters represent significant differences at
P ≤ 0.05 as compared to the control. *, ** and *** represent significant differences between the Cd + SNP
treatment and the Cd treatment at P ≤ 0.05, P ≤ 0.01 and P ≤ 0.001, respectively
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Our results showed that on leaves of 50 and 200 μM CdCl2-treated seedlings, dissipated thermally D
increased by 58.35% and 1.26 folds, respectively, (Fig. 5A); Y(NPQ) increased by 1.38 folds and
4.28 folds, respectively, (Fig. 5B), and Y(NO) increased by 59.16% and 121.69%, respectively, (Fig. 5C),
in comparison to controls. However, 50 μM SNP treatment inhibited (1) the increase in D by 59.14% and
50%, (2) the increase in Y(NO) by 61.62% and 51.96%, and (3) the decrease in Y(NPQ) by 68.72% and
67.23% in comparison to the 50 and 200 μM CdCl2 treatments, respectively (Figs. 5A–5C).

Moreover, MLR also revealed that Cd application resulted in a decline of Fm, Fv/Fm, Y(II) and qP, and
an increase of Fo, qN, qL, NPQ, D, Y(NPQ) and Y(NO) of the fluorescence parameter. In turn, the Cd
treatment with SNP significantly increased Fm, Fv/Fm, qP, and Y(II), and decreased Fo, qN, qL, NPQ, D,
Y(NPQ) and Y(NO) of the fluorescence parameter on pea plants. The relationship between the Cd levels
vs. (1) Fm, Fv/Fm, Y(II) and qP was negative, and (2) Fo, qN, qL, NPQ, D, Y(NPQ) and Y(NO) of the
fluorescence parameter was positive (Table 1). In turn, the relationship between the SNP treatment vs. (1)
Fm, Fv/Fm, qP, and Y(II) was positive, and (2) Fo, qN, qL, NPQ, D, Y(NPQ) and Y(NO) of the
fluorescence parameter was negative (Table 1).

Figure 4: Effect of Cd, SNP and their combinations on qL (A), qP (B), NPQ (C), and Y(II) (D) on leaves of
pea seedlings. Values are means ±1 standard error (SE). Different letters represent significant differences at
P ≤ 0.05 as compared to the control. *, ** and *** represent significant differences between the Cd + SNP
treatment and the Cd treatment at P ≤ 0.05, P ≤ 0.01 and P ≤ 0.001, respectively
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3.4 Effect of SNP on PSI under Cd Stress
In our study, Y (I) decreased by 30.96% and 62.80% on leaves of 50 and 200 μM CdCl2-treated plants,

respectively, as compared to control (Fig. 6A). Addition of 50 μM SNP along with Cd did not show a
significant change in Y (I) when compared to the Cd treatments. Furthermore, Y(NA) decreased by
45.89% and 23.63% due to the 50 and 200 μM CdCl2 treatments, respectively. Addition of 50 μM SNP
to50 and 200 μM CdCl2 further reduced Y(NA) by 60.23% and 22.77% compared to the 50 and 200 μM
CdCl2 treatment, respectively (Fig. 6B). Furthermore, Y(ND) increased by 46.63% and 88.76% due to
the 50 and 200 μM CdCl2 treatments, respectively. Supplementation of 50 μM SNP with 50 and 200 μM
CdCl2 did not cause any significant change in Y(ND) in comparison to the 50 and 200 μM CdCl2
treatments (Fig. 6C).

MLR revealed that Cd treatment caused reduction in Y(I) and Y(NA) but increased Y(ND). However,
the application of the nitric oxide donor (SNP) along with Cd significantly increased Y(I) and Y(ND) and
decreased Y(NA). The relationships between the Cd levels vs. Y(I) and Y(NA) were negative while that
vs. Y(ND) was positive (Table 1). In turn, the relationship between SNP vs. Y(I) and Y(ND) was positive
while that vs. Y (NA) of PSI was negative (Table 1).

Figure 5: Effect of Cd, SNP and their combinations on D (A), Y(NPQ) (B) and Y(NO) (C) on leaves of pea
seedlings. Values are means ±1 standard error (SE). Different letters represent significant differences at P ≤
0.05 as compared to the control. *, ** and *** represent significant differences between the Cd + SNP
treatment and the Cd treatment at P ≤ 0.05, P ≤ 0.01 and P ≤ 0.001, respectively
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4 Discussion

Photosynthesis is considered as one of the most important physiological processes in plants. The whole
metabolism of plants specifically or by implication depends on this process and hence any change in
photosynthetic rate will automatically affect the remaining plant processes. Cd can inhibit photosynthesis
and induce damage and dysfunction of chloroplast. This decrease may be because of (i) inhibition of
photosynthetic electron transport chain [31], (ii) inhibition of the enzymes required for Chl biosynthesis
[31], (iii) disturbance in the PSII reaction center [32], (iv) replacement of central Mg2+ of Chl [33] and
(v) reduction in P uptake which is involved in pigment biosynthesis [33]. The Cd could harm chloroplast
submicroscopic structure, through damaging grana stacking structure [34,35]. The ability of the
chloroplast for capturing light energy is greatly decrease in presence of Cd, thus affecting the role of
many functions associated with photosynthesis [36].

Our results showed less concentration of photosynthetic pigments in leaves of Cd-treated Pisum
sativum. This could be because of Cd-led increases in the activity of chlorophyllase, inhibition of the
enzymes involved in the biosynthesis of photosynthetic pigments and destruction of photosynthetic
pigments by oxidative stress [37]. In the present study, a significant loss in chlorophyll concentration was
seen in Cd-treated plants. Chl b was affected more strongly than Chl a. Chlorophyll concentration was
also strongly diminished in Oryza sativa [38], Hordeum vulgare [39], Lycopersicon esculentum [40–42],
Zea mays [43] and Brassica oleracea [44,45] exposed to Cd. A putative debasement of chlorophyll and
additionally the hindrance of its biosynthesis were proposed to be responsible for the inhibition of
photosynthesis and growth due to Cd [36]. In the present study, NO supplementation to Cd stressed

Figure 6: Effect of Cd, SNP and their combinations on PSI Y(I) (A), Y(NA) (B), and Y(ND) (C) in leaves of
pea seedlings. Values are means ±1 standard error (SE). Different letters represent significant differences at
P ≤ 0.05 as compared to the control. *, ** and *** represent significant differences between the Cd + SNP
treatment and the Cd treatment at P ≤ 0.05, P ≤ 0.01 and P ≤ 0.001, respectively
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plants reverted chlorophyll loss in pea which can be corroborated with findings in maize [46], lettuce [47,48],
fava bean [31] and mustard [49] under Cd toxicity. Increased Chl due to NO supplementation could be due to
reduced oxidative stress and damage to chlorophyll pigments in Cd-treated plants (Fig. 1A). NO inhibits
photosynthetic pigment degradation by protecting the photosynthetic membrane, Rubisco, cytochrome
b6/f, and D1 and D2 proteins [50]. Carotenoids by acting as light-harvesting pigments can protect
chlorophyll and membranes from damage by quenching triplet chlorophyll and removing oxygen from
the excited chlorophyll [51]. Carotenoids enhancement in pea plants exposed to 50 μM SNP with 50 μM
Cd and 200 μM Cd-treated plants (Fig. 1B) may reflect an attempt to protect chlorophyll and the
photosynthetic mechanical assembly from the photo oxidative destruction of Cd toxicity [52]. Our results
suggested Cd-induced inhibition of the photosynthesis rate, transpiration rate, and stomatal conductance
in pea plants (Figs. 2A–2C). Similar to our results, several studies have shown Cd-led inhibition in
photosynthesis rate, transpiration rate, and stomatal conductance in pea plants [53]. The observed
amelioration in photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency in
presence of SNP could be due to the impact of NO on stomatal closure (Figs. 2A–2C).

PSII is one of the prime targets of Cd toxicity. Chl fluorescence was studied to evaluate the effects of Cd,
SNP and the combination of Cd and SNP on PSII on Cd-stressed pea plants. Similar to prior studies, Cd
diminished PSII values and decreased electron yield of PSII [9,54]. The Fv/Fm, representing the maximal
efficiency of excitation energy capture by the ‘‘open’’ PSII reaction center, is usually used as a stress
indicator on plants [55]. In this study, the Fv/Fm ratio decreased with Cd treatment (Fig. 3C). In pea
plants exposed to 50 and 200 μM Cd, the increase of Fo and the decrease of Fm resulted in a reduction
of the Fv/Fm ratio (Fig. 3A–3C). An increase of Fo points to photo damage, and a decline in Fm, reflect
an enhanced non-radiative energy. The Fv/Fm was reduced in several plant species, including pea,
exposed to Cd [56]. The decrease in Fv/Fm and PSII efficiency suggested that Cd stress led to the
inhibition of the PSII photoactivation. This might have been due to damage of the antennae pigments and
the limitation of QA (quinone) reoxidation due to the decrease or partial blockage of the electron transport
from PSII to PSI [57]. The exogenous application of SNP increased the Fv/Fm ratio, which specifies that
the plant is healthy, and not suffering from photoinhibition (Fig. 3C).

Under various stress conditions, an increment in NPQ and qN can be associated with photoinactivation
of PSII reaction centers, that leads to an oxidative damage to the reaction centers and an increase in Fo [58].
In the present study qN and NPQ increments were with increases in Fv/Fm under Cd toxicity (Figs. 3D and
4C). Use of SNP along with Cd led to a decrease in qN and NPQ through regulating photochemistry. It can be
considered as an additional mechanism to adjust for the excess of absorbed light energy; therefore, SNP
counters photoinhibition of PSII caused by Cd toxicity. Under Cd stress, SNP increased Fv/Fm and
photochemical efficiency, and decreased NPQ and qN of PSII in ryegrass seedling leaves treated with
NaHCO3 [59]. SNP restored the chlorophyll fluorescence. This might have been due to its role in (i)
protecting the pigment systems from oxidative damage, (ii) keeping up the chlorophyll biosynthesis.

PSI is considered to be less sensitive to heavy metals; however, apart from a few exceptions [35], earlier
studies generally preferred several artificial electron donors and inhibitors to study the PSI activity [16,60]
under heavy-metal stress, which may itself affect the PSI activity. Therefore, in the current study we used
P700 absorbance measurements, which made direct, noninvasive monitoring of the PSI photochemistry in
whole leaves without using electron donors or inhibitors. Our results clearly indicated that Cd decreased
PSI photochemistry. Significant damages were observed to the photosynthetic electron transport at
concentrations of 50 and 200 μM CdCl2 (Fig. 6A). PSI efficiency measurements on the Cd-treated plants
revealed decreased yields of PSI Y(I), and Y(NA), and increased Y(ND), which can be caused by an
increased cyclic electron flow (CEF) around the PSI (Figs. 6A–6C). Earlier reports demonstrated that Cd
caused iron deficiency in cell organelles which is probably a reason for PSI damage [61,62]. Long-term
iron deficiency resulted in ROS production in thylakoids which primarily damage iron-sulphur centres
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(PSI) and LHC I antennae [63]. Cd-induced damage to PSI has been noticed in Cucumis sativus [64,65] and
Triticum aestivum [66]. Unlike the chlorophyll concentration and PSII, SNP treatment did not show any
ameliorative effects on PSI parameters. These results suggest that Cd stress caused damage to both PSI
and PSII in Pisum sativum. They also suggest that exogenous NO application is useful in mitigating the
Cd-induced damage to photosynthesis on pea seedlings because of its ameliorating effects on the
photosynthetic pigment concentrations and PSII.
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