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ABSTRACT

During the evolution, plants acquired the ability to synthesize different phenylpropanoid compounds like chloro-
genic acid (CGA), which plays vital roles in resistance mechanisms to abiotic stresses. These environmental fac-
tors, including heavy metal, cold, heat, ultraviolet (UV) light, drought, and salinity affect the plant physiological
processes, resulting in massive losses of agriculture production. As plants evolve from green algae to bryophytes,
ferns, gymnosperms and angiosperms, phenylpropanoids are produced and accumulated in different tissues, giv-
ing the plant the capacity to counteract the harmful effects of the adverse environments. Studies have been per-
formed on the metabolic evolution of rosmarinic acid, flavonoids and lignin, showing that the biosynthesis of
phenylpropanoids begins in green algae until the emersion of genes found in angiosperms; however, the evolution
of the CGA pathway has not yet been reviewed. We hypothesize that CGA could also be synthesized from algae to
angiosperms. In the present review, the evolutionary analysis of CGA pathway and the function of this compound
in plant tolerance to abiotic stresses are summarized. Bioinformatics analyzes were carried out on CGA-related
genes across 37 plant species and revealed that the metabolic pathway starts in algae and gradually increases until
it becomes complete in angiosperms. The key genes exhibited different expression patterns in stress and plant
tissues. Interestingly, some genes accumulated rapidly during evolution and were more sensitive to environmental
stresses, while others appeared only later in angiosperms. Further studies are needed to better understand the evo-
lution of the CGA metabolic pathway in plants under environmentally stressed conditions.
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1 Introduction

Phenylpropanoids (PPs) are secondary metabolites important for plant development. They play essential
roles in different physiological processes including photosynthetic activity, hormonal regulation, nutrient
mineralization, metabolism and reproduction [1]. Plant PPs are also vital for the resistance to abiotic
stresses [2,3]. In their living habitat, plants are constantly exposed to several constraints such as heavy
metals, cold, heat, drought, ultraviolet radiation, salinity, etc., which are detrimental to their productivity
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[4,5]. To survive, plants develop tolerance to the stresses, and this evolution process results in the
accumulation of PPs in different tissues as a response to the harmful conditions [6]. PPs are composed of
different compounds including flavonoids, coumarins, monolignols, stilbenes and various phenolic acids
[7]. Among the latter, chlorogenic acid (CGA) is the most abundant metabolite found in many plants like
Coffea arabica, Solanum lycopersicum, Malus domestica, Solanum tuberosum, etc. [8]. CGA possesses
numerous bio-medical, pharmacological and phytoprotective properties such as antioxidant, antiseptic,
antibacterial, and anti-inflammatory [9]. These various properties confer CGA the potentiality to be
involved in plant tolerance to environmental stresses. Because of its beneficial effects, CGA is receiving
more attention. Currently, studies have focused on the biosynthesis of this phenolic acid in plants.
However, the mechanism for regulating CGA synthesis under environmental stresses is still not well
understood.

Plants emerge from green algae passing through bryophytes (liverworts and mosses), ferns,
gymnosperms and end with angiosperms [10]. As they evolve, CGA is synthesized and
accumulated, giving them the ability to counter the harmful effects of the unfavorable
environments. Previous research has reported that the synthesis of PPs in plants during evolution
begins in green algae until the appearance of key enzymatic genes responsible for their
accumulation in angiosperms [11]. The metabolic evolution of various phenylpropanoid derived
compounds like rosmarinic acid [12], flavonoid [13] and lignin [14] has been studied; however, the
evolution of the CGA pathway has not yet been reviewed. Therefore, a thorough understanding of
how CGA pathway is genetically controlled during plant evolution under stress conditions is
important for agricultural production.

Here, the review summarized recent knowledge regarding the metabolic pathway of CGA in
plants. Moreover, the evolutionary analysis of CGA-related genes from algae to angiosperm is
surveyed in order to provide a broader view on how this metabolic system originated and developed
across evolution. Furthermore, the expression profile of the key enzymatic genes under different
abiotic stresses and plant tissues was investigated in an attempt to show their roles in plant
resistance mechanisms.

2 Structure, Compositional Diversity and Biosynthetic Pathway of CGA

Classically, CGAs (C16H18O9) are esters produced from cinnamic acid (p-coumaric, caffeic, ferulic
acids) and quinic acid (Fig. 1). Due to these various compositions of CGAs, they are also referred to as
p-coumaroylquinic acids, caffeoylquinic acids and feruloylquinic acids [15]. CGA exists in different
forms of isomers but the most frequent are those derived from caffeoylquinic acids which consist of four
different subgroups. The first subgroup, the mono caffeoylquinic acid (monoCQA) is composed of
chlorogenic acid, neochlorogenic acid and cryptochlorogenic acid. The second subgroup includes the
dicaffeoylquinic acids (diCQA), while the third concerns the tri-caffeic acid (triCQA) and the last one is
specific to the tetra-caffeic acid (tetraCQA) [16]. Among these various isomers, chlorogenic acid
(5-CQA) is abundantly found in plants. Moreover, a mixture of ferulic and caffeic acids (caffeoyl-
feruloylquinic acid) and of sinapic and caffeic acids (caffeoyl-sinapoylquinic acid) have been found in
Coffea arabica [17].

CGA is synthesized through the general pathway of PPs under the action of various enzymatic genes.
First, trans-cinnamic acid is produced from L-phenylalanine through deamination by phenylalanine
ammonia-lyase (PAL) [18]. The isoforms of PAL designated PAL1-PAL4 were found to be responsible for
different branches in the pathway [19]. Furthermore, trans-cinnamic acid is transformed into
p-Coumaroyl Coenzyme A by cinnamate 4-hydroxylase (C4H) and 4-coumarate CoA ligase (4CL). In the
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next synthetic step, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT)
translates p-coumaroyl-CoA to p-Coumaroyl quinic acid, followed by hydroxylation via coumarate
3-hydroxylase (C3H) to synthesize CGA [16]. Another proposed route showed that CGA can be
generated from caffeoyl-coenzyme A in a process of catalysis by hydroxycinnamoyl-CoA quinate
hydroxycinnamoyl transferase (HQT) [8]. Caffeoyl-coenzyme A also reacts with the enzyme caffeoyl-
CoA 3-O methyltransferase (ccoAOMT) to form CGA [20]. These metabolic pathways were identified in
different plants such as Cynara cardunculus, Solanum melongena, Prunus domestica, Nicotiana tabacum,
and Coffea arabica [21]. Moreover, another route has been described in sweet potato, showing that CGA
can originate from caffeoyl-D-glucose catalyzed by hydroxycinnamoyl D-glucose: quinate
hydroxycinnamoyl transferase (HCGQT) [22]. So far, several studies have reviewed different routes of
PPs pathway that result in CGA synthesis in plants [23,24]. However, among the principal described
routes, only two were predominant in most plant species (Fig. 2).

The biosynthesis of CGA is mostly regulated by DNA-binding proteins transcription factors MYB,
ERF, WRKY, etc. [25]. These proteins activate the transcription of the functional key genes PAL, C4H,
4CL, C3H, HCT, HQT and ccoAOMT that are actively involved in the synthesis pathway. MYB has
been shown to be the largest family of transcription factors which regulate the function of various

Figure 1: Chemical structures of CGA
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genes in plants. It activated the promotor of PAL in Daucus carota [26], HQT in Helianthus annuus [27]
and HCT in Solanum lycopersicum [28], resulting in an increased accumulation of CGA in these plants.
ERF bounds to the GCC-box homolog and activates the promoter of PAL in Daucus carota [29].
Another study reported that the overexpression of ERF increased phenolic acid content in Salvia
miltiorrhiza, but its silencing reduced the level of this acid [30]. Moreover, WRKY transcription factor
was found to regulate the synthesis of CGA in Populus trichocarpa by activating the promoter of the
HCT gene [31].

3 Evolutionary Analysis of CGA Synthesis Pathway

The origin of PPs metabolism can be traced back to algae with a number of genes in primitive green
algae, indicating an early evolution of this metabolic pathway in plants [32]. Since then, algae have
evolved into bryophytes, gymnosperms and angiosperms [33]. The evolution of various PPs has been
previously shown in each of these different plant clades [12–14]. Here, bioinformatic analyzes were
performed to predict the metabolic evolution of key genes essential for CGA synthesis (Fig. 3).
Eleven genes including PAL1-PAL4, C4H, 4CL1, 4CL2, C3H, HCT, HQT and ccoAOMT were found
related to the pathway across 37 plant species composed of 6 groups, namely algae, liverworts,
mosses, ferns, gymnosperms and angiosperms. The protein sequences of these genes were compared
with those of Arabidopsis thaliana except HQT, which was compared to Nicotiana tabacum due to
the lack of this gene in the genome of Arabidopsis thaliana. The analysis of the Heatmap revealed
the presence of most of the predicted genes in all plant groups, with different homology coefficients.
Only a few genes have been detected in algae such as Klebsormidium flaccidum and Spirogloea

Figure 2: Biosynthetic pathway of CGA. PAL: phenylalanine ammonia-lyase, C4H: cinnamate 4-hydroxylase,
4CL: 4-coumarate CoA ligase, HCT: hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase,
C3H: coumarate 3-hydroxylase, HQT: hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase

242 Phyton, 2022, vol.91, no.2



muscicola, suggesting that the ability of plants to produce CGA begins in algae; thus enabling them to
cope with the ever-changing environmental constraints during their development. The genes acquired
earlier a similarity of protein sequence with their plant counterparts; however, the CGA synthesis
pathway in algae remains incomplete. Gene homologies in liverworts, mosses, ferns, gymnosperms
and angiosperms were higher than those in algae, indicating various changes in the metabolic
pathways during plant development and therefore an evolution of the key genes from algae to
angiosperms. For example, the protein sequences of genes in the angiosperms Brassica rapa and
Dioscorea esculenta were more similar to those of Arabidopsis thaliana and Nicotiana tabacum
compared to the sequences in the algae Mesotaenium endlicherianum and Chara braunii. Most of the
CGA-related genes were present in angiosperms; we assumed that as plants evolve from the aquatic
environment of algae to terrestrial angiosperm plants, the synthetic pathway of CGA also evolves and
becomes complete in angiosperms. This could be explained by the long-term exposure of the
angiosperm plants to various environmental stresses, which would stimulate the expression of most of
the key genes, resulting in the completion of the synthetic pathway in angiosperms and probably to a
high accumulation of CGA. A study reported the ability of angiosperm plants to accumulate CGA,
which may be strongly correlated to the expression of the functional genes in their biosynthetic
pathways. CGA was abundant in angiosperm species of the orders Apiales, Asterales and Dipsacales
[34]. Furthermore, analysis of the evolution of each gene showed that PAL1 and PAL2 were more
present in all the plant groups than PAL3 and PAL4, which were mostly observed in angiosperms.
Likewise, the C4H and 4CL2 genes were detected in most species, while 4CL1 was just present in
angiosperms. This indicates that PAL3, PAL4 and 4CL1 appear later in the process of CGA synthesis,
showing their importance for the completion of the metabolic pathway in angiosperms. Moreover, in
the downstream of the pathway, C3H, HCT and ccoAOMT appeared in almost all plant groups, but
exhibited a low sequence similarity in algae compared to angiosperms, indicating that these genes
have undergone evolution during the synthesis of CGA. However, HQT gene has only been detected
in angiosperm species. It appeared much later in the metabolic pathway, denoting the significant role
of this gene for the synthesis of CGA. Numerous studies have revealed the strong correlation between
the HQT gene and CGA metabolism [35,36]. For example, the upregulation of HQT significantly
increased the content of CGA in Lonicera macranthoides [21], while its silencing reduced the content
in Lonicera japonica [24]. Further studies could help to better understand the metabolic evolution of
CGA-related genes in plants.

4 CGA Role in Plant Tolerance to Abiotic Stresses

Plant stresses have increased recently due to environmental disturbances caused by climate change
[18]. Abiotic stresses including heavy metals, UV radiations, temperature, drought and salinity
adversely affect the growth and development of plants [37]. They trigger the generation of reactive
oxygen species (ROS), which affect cell membranes, proteins, nucleic acids and lipids leading to cell
death [38]. In response to these stresses, the biosynthesis of CGA usually increases in plants. CGA
facilitates the plant stress-responsive mechanisms to counteract the effects of challenging
environments. It scavenges the overproduced ROS, and reduces cell membrane peroxidation, hence
protecting the cells from oxidative stresses. A brief summary of the role of CGA in plants under
abiotic stresses is provided in Tab. 1.
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Figure 3: Heatmap describing the evolution of CGA synthesis pathway across different plant species. PAL:
Phenylalanine ammonia-lyase, C4H: cinnamate 4-hydroxylase, 4CL: 4-coumarate CoA ligase, C3H:
coumarate 3-hydroxylase, HCT: hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl
transferase, HQT: hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase, ccoAOMT: caffeoyl-
CoA 3-O methytransferase

Table 1: Summary table describing the role of CGA in plants under abiotic stresses

Species Stress
type

Response of endogenous CGA Reference

Pteris vittata Heavy
metal

Increased accumulation of CGA content in Pteris vittata planted
in soil contaminated with heavy metals

[39]

Zea mays Heavy
metal

Enhanced level of CGA in Zea mays subjected to Cd, Cu and Pb
stresses

[40]

(Continued)
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4.1 Cold and Heat Stresses
Temperature is an environmental factor important for plant growth. However, below or beyond the

optimum degree, temperature can trigger a thermal stress, which will affect the plant physiological
processes [54,55]. Chilling (0–20°C) directly impacts the plasma membrane, affecting its fluidity and
stability. The plasma membrane undergoes a transition from its liquid state to a rigid gel phase resulting
in the rigidity of the membrane. This is enhanced at freezing temperatures (<0°C) by the formation of ice
crystals in the intracellular and extracellular spaces of plant tissues [56]. In tropical regions, the plasma
membrane is also the first organ affected by heat stress. It undergoes a transition from the crystalline
liquid phase to the fluid phase [57]. An extremely high temperature can cause instant cell death [58].
Cold and heat stresses negatively impact photosynthesis and electron transport reactions, which affect the
cells’ structural components, thus changing different cellular metabolisms and subsequently leading to

Table 1 (continued)

Species Stress
type

Response of endogenous CGA Reference

Vaccinium
corymbosum

Heavy
metal

High accumulation of CGA under Al and Cd stresses in
Vaccinium corymbosum

[41]

Hordeum
vulgare

UV
light

Blue light induced the accumulation of CGA in barley [42]

Daucus carota UV
light

Increased CGA content under UV radiation, especially UVB and
UVC

[43]

Daucus carota UV
light

Elevated concentration of CGA in carrot under UV-B light
exposure

[26]

Lens culinaris Heat Marked elevation of CGA level in lentil sprouts induced at 4°C
and 40°C

[44]

Festuca
trachyphylla

Heat Increase in the contents of various phenolic acids under heat
stress in Hard Fescue

[45]

Nicotiana
tabacum

Cold High accumulation of CGA in tobacco after 6 and 12 h of chilling
treatment

[46]

Prunus persica Cold Chilling injury induced enhanced levels of CGA and neo-CGA in
peach fruit

[47]

Asparagus
aethiopicus

Salinity Increased accumulation of CGA in Asparagus aethiopicus plants
subjected to saline stress conditions

[48]

Amaranthus
tricolor

Salinity Increment of CGA content in amaranth under moderate and
severe salt stress compared to the control condition

[49]

Echinacea
purpurea

Salinity CGA quantity significantly affected by salinity stress in roots of
Echinacea purpurea

[50]

Achillea
pachycephala

Drought Drought stress increased CGA amount in Achillea pachycephala [51]

Chrysanthemum
morifolium

Drought CGA enhanced the antioxidant capacity of Chrysanthemum
under water stress

[52]

Cynara
cardunculus

Drought CGA level in globe artichoke increased during water shortage [53]
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severe losses of crop yield [59,60]. CGA has been shown to be an excellent antioxidant in cell detoxification
under thermal stress. It confers thermotolerance to plants by scavenging the generated ROS due to cold and
heat stresses. The accumulation of CGA occurs at a temperature threshold where stress begins to be harmful
to plant [18]. For example, significant increases of CGA content were observed at 6 and 12 h after chilling
stress (4°C) in Nicotiana tabacum [46], and 2 h after heat stress (50°C) in Nicotiana langsdorffii [61].

4.2 UV-Light and Heavy Metal Stresses
The exposure of plants to UV radiations and heavy metals causes the generation of harmful ROS

resulting in retarded growth. Under these stress conditions, plants develop a resistance strategy, consisting
in the production of the antioxidant CGA, which reacts in the process of detoxifying cells [62]. It has
been reported that the content of CGA in Vaccinium corymbosum significantly increased after UV-B
radiation [63]. In addition, Dresler et al. found a high accumulation of CGA in Echium vulgare induced
by heavy metal stress [64]. This phenolic compound possesses hydroxyl and carboxyl groups that allow it
to bind heavy metals and protect plants from oxidative stresses [40]. It not only acts as a scavenger of
ROS but also as a metal chelator and sunscreen in the epidermal layer of tissues to block UV rays, hence
protecting plants from the harsh effects of such hostile environments [18,65].

4.3 Drought and Salinity Stresses
As an abiotic factor, drought is the major threat that causes changes in plant biological processes [66]. It

occurs when the available water in the soil is reduced to a critical level, affecting the transport of essential
mineral nutrients such as potassium, nitrogen, calcium and phosphorus to other parts of the plant. During
water deficiency, leaves close their stomata, causing a drop in their conductance, and therefore a decrease
of transpiration and photosynthesis activity [2,3]. Salinity stress induces osmotic stress and ion toxicity.
Osmotic stress occurs when the level of salt around plant roots is increased to a high level, causing water
deficit in the roots and suppression of shoot growth shortly after exposure [67]. Long-term exposure of
plants to high salinity triggers ionic stress due to an excessive accumulation of Na+ and Cl− ions in the
cell cytoplasm which results in a leaf senescence, decreased crop yield and ultimately plant death [68].
CGA biosynthesis and accumulation under salinity and drought stresses play a detoxifying role,
protecting plants from oxidative damages, thus improving antioxidant activities. CGA has been reported
to participate in a resistance mechanism of Malus domestica leaves exposed to an oxidative stress [69].
Under drought, CGA has the capacity to reduce the detrimental effects of ROS on plant metabolism by
increasing photosynthetic activity [53]. Various studies have also reported the strong antioxidant
properties of CGA in removing ROS under high salinity stress in Thymus daenesis [70] and Lonicera
japonica [71].

5 Expression Profile of CGA Pathway Genes under Abiotic Stress

Transcriptome data from Arabidopsis thaliana were collected to trace the potential role of CGA-related
genes in tolerance to abiotic factors. All the key genes exhibited different expression patterns in a specific
manner for UV, drought, salinity, cold and heat stresses (Fig. 4). No expression was observed for these
genes under hypoxia stress. CGA might not be involved in the response of Arabidopsis thaliana plants to
the stress of hypoxia. To date, no study has reported the involvement of CGA in reducing hypoxia stress
in Arabidopsis thaliana. Above, it was noticed that the PAL3 and PAL4 genes appeared later in the
process of CGA synthesis, thus showing the importance of these genes for a complete metabolic pathway.
However, under stress conditions, PAL3 and PAL4 exhibited lower levels of expression than PAL1 and
PAL2. This could be explained by the fact that in hostile living environments, PAL1 and PAL2 genes get
activated earlier with the generation of the first ROS and keep expressing throughout the development
cycle, thus helping plants to resist altered environments. However, PAL3 and PAL4 were not expressed
until later in angiosperms. Hence, there was a higher expression of PAL1 and PAL2 compared to that of
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PAL3 and PAL4. An example is shown with the Arabidopsis thaliana genes AtPAL1 and AtPAL2, which were
more responsive to temperature stress [72]. Concerning the 4CL gene family, it was observed that 4CL1
appeared later in the metabolic evolution of CGA than 4CL2. The transcript abundance of 4CL1 was
higher than that of 4CL2 under stress conditions. It could be speculated that 4CL1 accumulates rapidly
and might be more sensitive to environmental constraints. This finding is consistent with a previous study
[73]. Moreover, the C4H, ccoAOMT and HCT genes exhibited high expression levels compared to C3H,
which showed an extremely low accumulation under almost all stress conditions. This suggests that the
C3H gene may not function for the tolerance of Arabidopsis thaliana plant to abiotic stresses. This was
not the case for C3H in Pyrus betulaefolia and Aegilops tauschii, which were sensitive to salt and
drought stresses, respectively [74,75]. Under UV, drought, salt and heat stresses, the ccoAOMT gene
displayed the highest level of expression. It was followed by PAL1 and 4CL1 under UV stress and HCT
under drought, salt and heat stresses; PAL2 and C4H genes were most induced in cold stress. Further, the
downstream genes C3H, HCT and ccoAOMT, responsible for CGA production, were less expressed under
cold conditions compared to the other stresses. This indicates that these resistance genes accumulate
slowly under low temperature. Various studies reported the down-regulation of the C3H, HCT and
ccoAOMT genes during plant adaptation to cold stress [76,77]. We hypothesize that the Arabidopsis
thaliana cold resistance genes could also originate from another route in the general phenylpropanoid
pathway, parallel to that of the CGA and responsible for the flavonoid synthesis.

Most of the CGA-related genes were relatively highly expressed in almost all tissues other than pollen,
where the genes exhibited an extremely low expression level (Fig. 5). The PAL1 and PAL2 genes were mostly
expressed in roots, whereas PAL3 and PAL4 showed the highest expression levels in shoots and siliques,
respectively. These results do not correspond to those of Tohge et al. who demonstrated that in
Arabidopsis thaliana AtPAL1, AtPAL2 and AtPAL3 were expressed in the stems, while AtPAL4 was
strongly expressed in the seeds [78]. 4CL1 was high in stems, whereas 4CL2 and C4H transcript
accumulated highly in roots, which is consistent with a previous report [79]. The ccoAOMT gene was
markedly high in the endosperm and HCT in roots and leaves. In contrast, the C3H gene exhibited a
specific expression pattern in flowers. The ability of key genes to catalyze major enzymatic reactions in
the CGA metabolic pathway makes them suitable candidate genes for plant resistance mechanisms.

6 Conclusion and Prospects

Abiotic stresses affect growth and development of plants over evolutionary time. The plant’s resistance
mechanisms against these factors induce the production of CGA, which antioxidant properties improve the
plant’s ability to overcome the hostile environments (Fig. 6). The overexpression of the CGA-related genes
4CL, PAL, HCT, C3H, C4H and ccoAOMT increases the plant’s resistance to abiotic stresses. The present
review showed compelling evidence for the metabolic evolution of the CGA pathway, which evolved
from algae until the appearance of the complete pathway observed in angiosperm land plants. The key
genes evolved with plant growth and development and some of them were more stress-responsive. The
ccoAOMT gene was highly expressed in almost all stresses, while PAL2 and C4H were more specific to
cold stress.

In addition to the number of papers on the evolution of different polyphenols, further investigations are
needed for understanding the evolution of the CGA metabolic pathway in plants under the ever-changing
environmental constraints.
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Figure 4: Expression profiles of CGA-related genes under abiotic stress among 515 transcriptome data of
Arabidopsis thaliana. The number in bracket indicates the number of transcriptomes. X axis represents
different abiotic stress treatments and Y axis represents gene expression level in FPKM (fragments per
kilobase of exon model per million reads mapped). The box plots represent the gene expression level in
different transcriptome samples. Horizontal and vertical lines from top to bottom in the plots represent
maximum value, upper whisker, upper quartile, median, lower quartile, lower whisker and minimum
value, respectively. PAL: Phenylalanine ammonia-lyase, C4H: cinnamate 4-hydroxylase, 4CL: 4-
coumarate CoA ligase, C3H: coumarate 3-hydroxylase, HCT: hydroxycinnamoyl-CoA shikimate/quinate
hydroxycinnamoyl transferase, ccoAOMT: caffeoyl-CoA 3-O methytransferase

248 Phyton, 2022, vol.91, no.2



Figure 5: Expression profiles of CGA-related genes in different tissues among 1122 transcriptome data of
Arabidopsis thaliana. The number in bracket indicates the number of transcriptomes. X-axis represents plant
tissues and Y-axis represents gene expression level in FPKM (fragments per kilobase of exon model per
million reads mapped). The box plots represent the gene expression level in different transcriptome
samples. Horizontal and vertical lines from top to bottom in the plots represent maximum value, upper
whisker, upper quartile, median, lower quartile, lower whisker and minimum value, respectively. PAL:
Phenylalanine ammonia-lyase, C4H: cinnamate 4-hydroxylase, 4CL: 4-coumarate CoA ligase, C3H:
coumarate 3-hydroxylase, HCT: hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl
transferase, ccoAOMT: caffeoyl-CoA 3-O methytransferase
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