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ABSTRACT

Biomass is a carbon-neutral renewable energy resource. Biochar produced from biomass pyrolysis exhibits pre-
ferable characteristics and potential for fossil fuel substitution. For time- and cost-saving, it is vital to establish
predictive models to predict biochar properties. However, limited studies focused on the accurate prediction of
HHV of biochar by using proximate and ultimate analysis results of various biochar. Therefore, the multi-linear
regression (MLR) and the machine learning (ML) models were developed to predict the measured HHV of bio-
char from the experiment data of this study. In detail, 52 types of biochars were produced by pyrolysis from rice
straw, pig manure, soybean straw, wood sawdust, sewage sludge, Chlorella Vulgaris, and their mixtures at the tem-
perature ranging from 300 to 800°C. The results showed that the co-pyrolysis of the mixed biomass provided an
alternative method to increase the yield of biochar production. The contents of ash, fixed carbon (FC), and C
increased as the incremental pyrolysis temperature for most biochars. The Pearson correlation (r) and relative
importance analysis between HHV values and the indicators derived from the proximate and ultimate analysis
were carried out, and the measured HHV was used to train and test the MLR and the ML models. Besides,
ML algorithms, including gradient boosted regression, random forest, and support vector machine, were also
employed to develop more widely applicable models for predicting HHV of biochar from an expanded dataset
(total 149 data points, including 97 data collected from the published literature). Results showed HHV had strong
correlations (|r| > 0.9, p < 0.05) with ash, FC, and C. The MLR correlations based on either proximate or ultimate
analysis showed acceptable prediction performance with test R2> 0.90. The ML models showed better perfor-
mance with test R2 around 0.95 (random forest) and 0.97–0.98 before and after adding extra data for model con-
struction, respectively. Feature importance analysis of the ML models showed that ash and C were the most
important inputs to predict biochar HHV.
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1 Introduction

Thermochemical conversion of biomass is one of the optional pathways to overcome the energy crisis,
environmental pollution, and sustainable development issues of the world. There are about 13 billion tons of
biomass resources per year on the planet that can be used [1]. Significant momentum has been attained in the
use of renewable biomass as an alternative to traditional fossil fuels in the energy application fields [2].
However, the characteristics of raw biomass, such as high moisture content, large volume, low energy
density, and low combustion calorific value, are several significant problems upon its use as fuel. As a
solid product produced by the thermochemical conversion of biomass at temperatures below 900°C and
oxygen-limited environment. Biochar has excellent potential for application in the energy storage [3], and
biochar has a lower moisture content, higher energy density, higher stability, and more accessible
transportation than biomass. Moreover, it is necessary to grasp the fuel properties (i.e., higher heating
value (HHV)) of biochar for its application in the energy field. Generally, the basic principles of HHV
analysis were straightforward, and they could be experimentally determined by the integrated system
offered by the manufacturers. The HHV of the biochar samples can be determined by measuring the
enthalpy difference of the sample before and after the reaction in an adiabatic oxygen bomb. However,
the use of instruments to determine the properties of biochar has some disadvantages, such as high cost
and time-consuming. Therefore, it is necessary and economical to develop the HHV prediction model
based on some common characteristic indexes.

The ultimate and proximate results have been used to predict the carbon sequestration potential
(stability) [4] and HHV [5]. And a large number of traditional multi-linear regression (MLR) models have
been built and studied to predict the HHV of municipal solid waste, coal, biomass, etc. [6]. Mateus and
coworkers developed a highly accurate HHV linear regression prediction model (R2=0.9997) based on
the ultimate analysis of bio-oil produced by liquefaction [7]. In addition to the traditional MLR method
widely used by researchers to predict HHV, many researchers have used artificial intelligence algorithm
technology to predict HHV. These artificial intelligence algorithms can do well with both linear and
nonlinear relationships between the input and target variables. Samadi and coworkers used the gradient
boosting regression (GBR) algorithm to predict the HHV of biomass according to different training
parameters (i.e., stochasticity, tree size, and learning rate), and the obtained model had good prediction
performance (R2=0.93) [8]. Xing and coworkers [9] trained biomass HHV prediction models using
empirical correlation, random forest (RF), support vector machine (SVM), and artificial neural network
algorithms respectively by proximate and ultimate analysis data. Between the two types of data models of
proximate analysis and ultimate analysis, RF (R2=0.962) and SVM (R2=0.953) have showed satisfactory
predictive performance.

However, the studies focused on the prediction of HHV from the basic properties of biochar are limited.
In addition, as a kind of solid fuel, biochar is very different from other natural materials, which impedes the
application of existing models to predict the HHV of biochar. In this light, the aim of this research was to
develop accurate models for the prediction of the HHV of biochar through GBR, RF, SVM algorithm,
and linear regression method. In this study, 52 biochar samples were obtained from our experiments to
explore the relationship between biochar characteristics and establish the HHV prediction models. Then,
models were optimized by adding 97 data points from the published studies into the initial sample
dataset. Finally, the predictive performance measures and relative importance analysis were conducted to
evaluate the models.

2 Materials and Methods

2.1 Materials and Sample Preparation
A total of 52 biochar samples were produced through the pyrolysis process under various conditions

from four different representative biomass species, including agricultural residues, algae, animal manure,
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and sludge. The rice straw (RS), pig manure (PM), soybean straw (SS), and wood sawdust (WD) were
collected from local farmers in Jiangxi Province, China. The Chlorella Vulgaris (CL) and sewage sludge
(SW) were provided from a biotechnology company in Shanxi Province of China and a municipal
wastewater treatment plant in Jiangxi Province of China, respectively. Two types of biomasses were
selected and mixed with a mass ratio of 1:1 to form the mixture, and the mixture was named as an
abbreviated combination of the two kinds of biomass. All six biomasses and the mixtures were pulverized
to a particle size of fewer than 350 microns and dried at 105°C for two hours to constant weight. During
pyrolysis, the biomass was placed in oxygen-free reactors, and the temperature was increased from room
temperature to target temperatures (ranged from 300 to 800°C, in 100°C intervals) with the heating rate
of 10 °C/min. The residence time at the target temperature was one hour.

2.2 Analysis of Biochar
The ash, volatile matter (VM), and fixed carbon (FC) of biochars were analyzed following the

procedures in previous study [10], which was carried out in an automatic proximate analyzer. The
elemental composition (i.e., C, H, N, and S) of biochars was determined using an ultimate analyzer
system (Elementar Analysensysteme GmbH, Vario EL III), and the O content was calculated by
difference (O = 100 −C −H −N − S − ash). The HHV of biochars was determined by an automatic
calorimeter (ZDHW-9000C, HB-Huanuo, China). About 1.0 g of the biochar sample was placed in an
oxygen bomb calorimeter filled with excess oxygen. The HHV of the biochar was obtained after
comparison with the heat capacity of the standard substance of benzoic acid (GBW130035, National
Institute of Metrology, China) before and after burning and correction of additional heating such as point
heating [11].

2.3 Model Construction
The MLR equations based on the ultimate and proximate analysis data were carried out by using Origin

2021b. In this research, three ML models (GBR, RF, SVM) were developed to predict the HHVof biochar
through the scikit-learn Python library. GBR is a powerful non-parametric method for prediction. The
algorithm principle of GBR is to train a new prediction tree in turn, and learn errors from the previous
tree (n – 1) to get a new tree (n) with lower prediction errors [8,12,13]. RF has statistical advantages such
as the low risk of overfitting and fewer parameters to be specified and can be used to deal with nonlinear
and linear relationships between variables [14]. SVM is a ML algorithm that uses the nonlinear kernel
function to map the initial training samples to the high-dimensional feature space, thus transforming the
problem from nonlinear to linear and obtaining the optimal solution [9]. All of the input data were
normalized according to the studies of Li et al. [15,16]. The ratio of the training dataset to the test dataset
was 8:2, and cross validation was carried out to avoid bias in the training process. The performance of
MLR and ML models in this study was evaluated in terms of coefficient of determination (R2), mean
absolute error (MAE), and root mean square error (RMSE). The calculations of R2, MAE, and RMSE are
defined as follows:

R2 ¼ 1�
Pn

i¼1 ðHHVexperimental;i � HHVpredicted;iÞ2Pn
i¼1 ðHHVexperimental; i � HHVaverage

experimetal; iÞ2

MAE ¼ 1

n

Xn
i¼1
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����
����
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
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where HHVexperimental, HHVpredicted, and HHVaverage
experimental are the experimental, predicted, and the average of

experimental values of the HHV, respectively, and n is the number of sample data points used for the
regression analysis. MAE and RMSE could estimate the value of error between the experimental and
predicted HHV. And R2 can be used to determine the degree of goodness of the proposed correlations.
The higher the R2 and lower the RMSE and MAE meant the better the model accuracy [15,17].

3 Results and Discussion

3.1 Biochar Production and Characterization
Biochar is the pyrogenic carbonaceous material, and the formation of biochar is a process of continuous

decomposition and recombination of macromolecules. With the rise of pyrolysis temperature, the category of
biochar gradually evolved from transition char to turbostratic char [18], and the stability of biochar was also
improved [19]. As shown in Fig. 1a, the yield of biochar decreases with the increase of pyrolysis temperature.
Similar results were also verified by Zhao et al. [20] that pyrolysis temperature had a significant (p < 0.05)
effect on the biochar yield. The co-pyrolysis of the biomass mixture could improve the yield of most biochar
(compared to the theoretical yield calculated by considering no interaction between biomasses), it would
provide a feasible scheme for enhancing the yield of biochar. In the data composed of ultimate analysis
(Tables 1 and S1 in supporting information), biochars derived from PM at the 400°C∼ had lower C
content than that of feedstocks, and the similar results could be found in the study of Gascó et al. [21]
Biochar derived from PM may contain aromatic carbons that were difficult to burn during the ultimate
analysis process, so its C results would be underestimated [22]. C was the main component of biochar,
with the content ranged from 11.38% to 85.17%. The C content of biochar did not increase with the
increase of pyrolysis temperature, which was different from the research results of using three lignin-like
biomass [23]. A portion of the unstable C in biochar was converted to stable C during biochar formation,
and the variation was not fixed due to the difference in the biomass composition [10,20]. O content
ranked the second in most biochar samples with the mean values 7% (Fig. 2), which was related to the
complex pyrolysis mechanism of biochar and the biochemical composition of each biomass. The loss of
O and H was mainly due to breaking weak O bonds during biochar formation [24]. S was not detected in
all samples, so the content of S of all samples below was recorded as 0. The O/C of all biochar was less
than 0.4 (Fig. 1b), meaning the half-life of these biochars O/C ≤ 0.6 can exceed 100 years [25]. The
greater stable biochar would have the more favorable storage and transport advantages in its use as fuel.

Table 1: The ultimate and proximate compositions and HHV of biomass from this study

Biomassa Ultimate analysisb (wt%) Proximate analysisb (%) HHV (MJ/kg)

C H N Oc O/C H/C Ash VM FC

PM 30.14 4.67 2.50 25.17 0.63 1.86 37.53 53.54 8.93 13.76

RS 38.44 5.46 0.73 41.83 0.82 1.70 13.55 68.04 18.41 15.61

CL 45.40 7.17 10.80 29.23 0.48 1.90 7.40 80.86 11.74 20.08

SS 42.10 5.84 2.21 43.33 0.77 1.66 6.53 73.38 20.09 18.91

SW 21.95 3.55 3.80 16.83 0.58 1.94 53.88 39.30 6.83 7.33

WD 47.74 6.07 0.30d 44.90 0.71 1.53 1.00 82.81 16.19 14.99
Notes: aThe label meant biomass: rice straw (RS), pig manure (PM), soybean straw (SS), wood sawdust (WD), Chlorella Vulgaris (CL), and sewage
sludge (SW).
bDry basis, data for SS and CL were cited from [26], and data for WD were cited from [10].
cBy difference, O = 100 −C −H −N − S − ash, S was not detected, and the content of S in all samples was recorded as 0.
dNot within the detection limits, and 0.30 was used.
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In the ternary diagram (Fig. 1c) of proximate analysis, with the rise of pyrolysis temperature, the FC of
biochar increased to close to 100%, which is the same as our previous research results [10]. As expected, ash
remains in the solid as the temperature increases despite the thermal decomposition of organic matter [27].
And VM showed a decrease with the increasing pyrolysis temperature. According to the proximate analysis
(Fig. 2), FC and Ash were the two main components of the experimental data, with mean values of 43% and
42%, respectively. CL400 had the highest VM, which was 33.83%. The HHV of some biochar (Table S1)
produced at low temperature was higher than that of biomass (Table 1), and the high energy density
would be one of the advantages for its use as solid fuel. With the increase of pyrolysis temperature, the
HHV of biochar would decrease. The average HHV of the 52 biochar samples was 16.38 MJ/kg, and the
HHV value of more than half of the samples was greater than 16.38 MJ/kg (Fig. 2). The HHV of biochar
derived from PM and SW was low, and the maximum HHV was only 12.86 MJ/kg (PM300), which was
related to their high ash content. All biochars produced by the co-pyrolysis of WD and CL have the
greater HHV than that of the theoretical value (average HHV of the biochar derived from two feedstocks
at the same temperature). These results may be caused by the changes of the ash and indicated that WD
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Figure 1: (a) The yield of biochar produced from six biomass and their mixtures. (b) The Van Krevelen
diagram of biochars. (c) Triangle plot of proximate analysis of biochars. The numbers behind the
different colored squares in the illustration represented the maximum pyrolysis temperature of biochar. (d)
The Pearson correlations between the indicators and HHV values. The blue and red circles represent the
positive and negative correlation, respectively. The label meant biomass: rice straw (RS), pig manure
(PM), soybean straw (SS), wood sawdust (WD), Chlorella Vulgaris (CL), and sewage sludge (SW).
Mixed biomass was abbreviated by the two forms of biomass
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and CL had a synergistic effect in the process of co-pyrolysis [28]. Biochar derived by biomass mixture had
higher HHV than the theoretical HHV of mixed-biomass biochar, it would provide a feasible scheme for
improving the HHV of biochar. Pyrolysis of biomass is a process in which char gradually evolves into
pure carbon, and as this process occurs (the increase of temperature), the C–H, C–O, and O–H contained
in the biochar were gradually eliminated, and the energy structure of the biochar becomes stable with
aromatic resonances and π–π stacking of graphitic sheets [27].

The Pearson correlation coefficients (r) between the basic experimental data were shown in Fig. 1d.
HHV had significant correlations (|r| > 0.36, p < 0.05) with other indicators except VM, and H/C. HHV
positively (0.44 < r < 0.94, p < 0.05) correlated with FC, C, H, N and O and negatively (−0.96 < r <
−0.48, p < 0.05) correlated with ash, VM/FC and H/C. These result were generally in consistent with the
results of previous studies [29,30]. In particular, HHV was strongly (|r| > 0.9, p < 0.05) correlated with
ash (r = −0.97, p < 0.05), FC (r = 0.90, p < 0.05), and C (r = 0.94, p < 0.05). Therefore, lower ash content
and higher C and FC contents of biomass mean higher biochar HHV.

3.2 HHV Prediction Using Data of This Study
3.2.1 HHV Prediction by MLR Equations for Biomass and Coal Developed in Previous Studies

Many models had been developed in the published studies for the prediction of HHV of biomass and
coal, among them the Dulong formula (HHVDulong = 0.3383 ×C + 1.443 ×H − 0.1804 ×O + 0.0942 × S)
and the Milne formula (HHVMilne = 0.3410 ×C + 1.322 ×H − 0.1200 ×O − 0.1200 ×N − 0.0153 × ash)
were widely used for biomass and coal, respectively [31,32]. In this study, the HHV of biochar (test
dataset, n = 11) was calculated according to the Dulong formula and the Milne formula, and the
performance of predicted equations is shown in Figs. 3a and 3b. Most of the predicted data were within a
20% margin of error. There were some data predicted by the Dulong formula and the Milne formula
mapped outside of the region, indicating whose error was more than 20%. Compared with the Dulong
formula, the Milne formula introduced ash for HHV calculation, and its prediction performance
(R2=0.9204, MAE = 0.1280, RMSE = 1.9053) was better than that of the Dulong formula (R2=0.8892,
MAE = 0.1471, RMSE = 2.2483). Although the Milne formula predicted HHV by combining the results of
ultimate analysis and proximate analysis, one of the predicted results of the Milne formula was still
outside the prediction error range of 20%. The proximate analysis results from various test methods [22]
and the thermal behaviors differences among biomass, coal, and biochar [33] may be the two major
reasons for the inaccurate prediction results of these [34]. It is necessary to build the prediction model
based on the basic property data to predict the biochar HHV more accurately.
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3.2.2 Biochar HHV Prediction by MLR Equations Constructed by This Study
As shown in Table 2, Eq. (5) had the best prediction performance (training R2=0.9327, trainingMAE =

0.0876, training RMSE = 1.8385) among the equations based on the training dataset containing ultimate and
proximate compositions. And all equations (only except for Eq. (2), test R2>0.9191) had good generalization
ability (test R2>0.9204) compare with that of the Dulong formula (test R2=0.8892) and the Milne formula
(test R2=0.9204). Compared with the test predictive performance of Eq. (1) (test R2=0.9449, test MAE =
0.0812, test RMSE = 1.5848), the test predictive performance of Eq. (3) (test R2 = 0.9529, test MAE =
0.0779, test RMSE = 1.4656) with the additional introduction of H as a new independent variable was
slightly improved. This was the same as the result of Pearson correlation analysis (Fig. 1d). H had a
significantly weak correlation (r = 0.37, p < 0.05) with HHV. The range of the experimental proximate
analysis data used as the independent variable for the development of models was 1.87% ≤ ash ≤
86.11%, 3.17% ≤ VM ≤ 54.22%, and 6.00% ≤ FC ≤ 91.99% (Fig. 2), and these equations are based on
the proximate analysis and had good training predictive performance (training R2>0.9). The equations
(Eqs. (7)–(9), training R2=0.9215) had a stronger correlation than the monadic equation (Eq. (6), training
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R2 = 0.9207) of ash, which was the same as the conclusion of Qian et al. [5]. Eq. (10), which was composed of
ash and VM/FC, had the good test predictive ability of HHVand was a little bit worse than Eq. (6) with lower
test R2 (0.9694 vs. 0.9726), test MAE (0.0612 vs. 0.0587), and test RMSE (1.1816 vs. 1.1184). In Eqs. (11)
and (12), ash, FC, and C were strongly correlated (|r| > 0.9, p < 0.05, Fig. 1d) with HHV, and their training
predictive performance was not improved compared with Eqs. (5) and (10) (Table 2).

The comparison of Eqs. (5) and (12) between predicted and experimental HHV is shown in (Figs. 3c and
3d). The data points were basically distributed around the Y = X equation line, and there was no outlier
outside 20% error. Though the same test MAE of 0.0741 was achieved from both Eqs. (5) and (12) had
the higher test R2 and lower test RMSE than that of Eq. (5), expressing better prediction and
generalization ability. It could also be seen that the generalization ability of each equation was different,
and its prediction in the test dataset and the training dataset would also show different amplitude changes.

3.2.3 Biochar HHV Prediction by ML Models Constructed in This Study
The performance of the ML models was validated with the test dataset shown in Fig. 4. Obviously, the

training data and test data were distributed around the Y = X function graph, which intuitively illustrated the
accuracy and reliability of the three ML models. Compared with the MLR prediction models (Eqs. (5) and
(10), Table 2), the predictive performance of the training dataset was enhanced when three ML algorithms
were applied to predict the HHV of biochar. In the training dataset, the GBR model had great predictive
ability (R2=1.00, MAE = 0.22, RMSE = 0.24). In the test dataset, the lower R2 (0.93) of the GBR model is
found with MAE = 1.33, and RMSE = 1.74. The modeling process of the GBR algorithm based on boost
theory was a process in which the prediction error decreases continuously. In the study of Samadi et al.
[8], the prediction performance of HHV prediction model based on GBR (R2=0.93) algorithm was better
than that of models of genetic programming (R2=0.90) and artificial neural networks (R1

2=0.88,
R2

2=0.89). For the RF model, the training dataset also showed good predictive performance with
R2=0.98, MAE = 0.68, and RMSE = 0.88. Moreover, the better performance of the RF model was found
in the test dataset with R2=0.95, MAE = 1.12, RMSE = 1.45. The excellent prediction performance of the
RF model was related to the principle of its algorithm. As a ML algorithm that adopted an integrated
learning method, RF had better robustness in the learning process and a lower risk of overfitting and
noisy data than other ensemble learning models [9].

Table 2: Correlations used for predicting the HHVof biochar based on ultimate and proximate analysis

No. Equation R2

(training)
MAE
(training)

RMSE
(training)

R2

(test)
MAE
(test)

RMSE
(test)

1 HHV = 0.2927 ×C + 0.7160 ×N + 1.1734 0.9086 0.1021 2.1430 0.9449 0.0812 1.5848

2 HHV = 0.2824 ×C + 0.2192 ×O + 1.9277 0.9020 0.1036 2.2191 0.9191 0.0995 1.9212

3 HHV = 0.2849 ×C + 0.2981 ×H + 0.6628 ×N + 0.8652 0.9101 0.0966 2.1255 0.9529 0.0779 1.4656

4 HHV = 0.2715 ×C + 0.7361 ×N + 0.2271 ×O + 0.4219 0.9327 0.0883 1.8395 0.9402 0.0781 1.6514

5 HHV = 0.2700 ×C + 0.0672 ×H + 0.7239 ×N +
0.2246 ×O + 0.3606

0.9327 0.0876 1.8385 0.9441 0.0741 1.5965

6 HHV = −0.2667 × ash + 27.5465 0.9207 0.0919 1.9962 0.9726 0.0587 1.1184

7 HHV = −0.2692 × ash − 0.0276 × VM + 28.0573 0.9215 0.0869 1.9856 0.9681 0.0620 1.2063

8 HHV = −0.2416 × ash + 0.0276 × FC + 25.3000 0.9215 0.0869 1.9856 0.9681 0.0620 1.2063

9 HHV = 0.2692 × FC + 0.2416 × VM + 1.1357 0.9215 0.0869 1.9856 0.9681 0.0620 1.2062

10 HHV = −0.2562 × ash − 0.8357 × VM/FC + 27.5827 0.9246 0.0770 1.9460 0.9694 0.0612 1.1816

11 HHV = −0.2651 × ash − 0.0018 ×C + 27.3949 0.9200 0.0928 2.0049 0.9684 0.0613 1.2000

12 HHV = −0.2930 × ash + 0.1080 × FC − 0.1479 ×C +
30.6912

0.9239 0.0890 1.9560 0.9578 0.0741 1.3870
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In the analysis of relative importance (RI), FC, ash, and C were the main influencing features among
studied factors (Fig. 5). FC (RI = 0.3569) and ash (RI = 0.4993) were the most important features in HHV
prediction based on GBR and RF, respectively. This result was consistent with the Pearson correlation
analysis results in Section 3.1. The C of biochar was the main component of its ultimate composition,
and C was the main energy supplier in the combustion process of biochar. FC and ash content had highly
positively correlation (r = 0.90, p < 0.05, Fig. 1d) and negatively correlation (r = −0.97, p < 0.05, Fig. 1d)
with HHV, respectively. However, the relative importance of all features is not completely consistent with
the results of Pearson correlation analysis, especially the contribution of O to HHV in the GBR (RI =
0.0013) and RF (RI = 0.0035) models. The reason may be that Pearson correlation is the linear correlation
between each feature and HHV, while the relative importance obtained from the ML model included both
the linear and nonlinear correlations [35]. In order to improve the generalization ability and broaden the
applicability of the ML models, the wider range of dataset would help improve the model.
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Figure 4: Predicted data vs. the experimental data based on the GBR (a), RF (b), and SVM (c) models with
training and test dataset. The red line in the graph is the plot of Y = X, and the points on the line meant that the
predicted and experimental values were the same
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3.3 Optimized HHV Prediction by Additional Dataset
It is worth noting that ML algorithms are data-driven artificial intelligence algorithms. In the

application of regression prediction, the more amount of input data, the broader the applicability of the
model, and the better the prediction. In addition, the results of the properties of biochar from varied
measuring instruments can lead to a significant difference. The models in Section 3.2 showed good
prediction performance, but few numbers and small variation intervals of the dataset had been used to
develop the models. These characteristics of the dataset would lead to the weak generalization ability of
the models. Therefore, new models were built after introducing additional data points from previous
studies. The statistical analysis of the new merged input dataset (n = 149) was shown in Fig. 6 and
Table S3. Compared with the original statistical results previous dataset (n = 52, Fig. 2), the average
HHV value increased to 21.27 MJ/kg, which is 4.89 MJ/kg higher. The variation interval expanded from
5–28 MJ/kg (Fig. 2) to 5–35 MJ/kg (Fig. 6).

Figure 5: Relative contributions of each feature in GBR (a) and RF (b) algorithm
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Figure 6: Boxplot of variables related to biochar characteristics (n = 149). Each data index in the dataset is
evenly divided into quartiles based on 25% of each part
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The best prediction performance of the MLR models developed from the new dataset was not greatly
improved compared with the equations in Table 2. The best equation was Eq. (15) with training R2=
0.9284, training MAE = 0.0654, and training RMSE = 1.8626 (Table 3), but the applicability of the model
was reduced (test R2= 0.8749, test MAE = 0.0857, test RMSE = 2.5070) compared with equations in
Table 2. However, for the ML models, the GBR, RF, and SVM models all showed good prediction
performance, where training R2 was 1.00, 0.99, and 0.98 (Fig. 7), respectively. The GBR algorithm
model had the best performance with R2=1.00, MAE = 0.32, and RMSE = 0.37 and R2=0.98, MAE =
0.83, and RMSE = 1.08 for the training and test datasets, respectively. Overall, the predictive performance
of the expanded dataset (n = 149) was better than the original dataset (n = 52), which showed a sizeable
dataset could generally represent better prediction performance. Fig. 8 described the relative contributions
of each feature based on GBR and RF models. The relative importance of C in both GBR and RF models
was the major one with values of 0.7087 and 0.8834, respectively. As a solid product of biomass by
thermochemical conversion, the HHV of biochar mainly came from the combustion fracture of the C–H
bond, and the contribution of O, H, and N to the HHV of biochar was limited [9]. Ash was the second
most important feature of the two models, with values of 0.2343 and 0.0699, respectively. It also can be
found that the third important feature of the two models was not the same, but the relative importance of
the two features was lower than 0.02 that can be negligible.
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Figure 7: Predicted data vs. the experimental data based on the GBR (a), RF (b), and SVM (c) models with
the expanded dataset (n = 149). The red line in the graph was a plot of Y = X, and the points on the line meant
that the predicted and experimental values were the same
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4 Conclusions

Biochars produced from a wide range of biomass were characterized. Compared with biochar from the
pyrolysis of individual biomass, biochar with higher yield and HHV could be obtained by the pyrolysis of
biomass mixtures. Pyrolysis temperature and biomass mixture can affect the biochar yield and properties.
Moreover, the MLR and ML prediction models were successfully developed to predict the HHV of
biochar based on 52 experiment data. ML approaches showed better prediction ability (training R2 ≥
0.96) of the biochar HHV prediction compared with MLR (training R2 < 0.94). The HHV of biochar (test
dataset) was successfully predicted from the ultimate and proximate analysis with the GBR algorithm
with R2 = 0.98, MAE = 0.83, RMSE = 1.08 trained by the experimental training dataset. The RF and SVM
models also had a similarly good performance of the HHV prediction with the R2 = 0.97, MAE = 0.93,
RMSE = 1.22 and R2=0.97, MAE = 0.93, RMSE = 1.23, respectively. With the expanded datasets (n =
149), the predictive performance of ML models was improved. Feature importance analysis showed that
ash and C had the highest relative importance to HHV prediction, while VM and FC had limited effects.
The ML approaches can predict the HHV of biochar with high accuracy and play an important role in the
development of biochar fuel applications.
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Table 3: Correlations used for predicting the HHV of biochar using the expanded dataset (n = 149)

No. Equation R2

(training)
MAE
(training)

RMSE
(training)

R2

(test)
MAE
(test)

RMSE
(test)

13 HHV = 0.3506 × C + 0.2808 ×H + 0.0429 × N + 0.0554 ×O −
0.2443

0.9207 0.0647 1.9600 0.8535 0.0854 2.7134

14 HHV = −0.0817 × ash + 0.2716 × C + 7.9440 0.9211 0.0678 1.9541 0.8591 0.0916 2.6610

15 HHV = −0.0833 × ash − 0.0327 × FC + 0.2945 ×C + 8.1337 0.9284 0.0654 1.8626 0.8749 0.0857 2.5070

Figure 8: Relative contributions of each feature in GBR (a) and RF (b) algorithm
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Appendix

Table S1: Ultimate and proximate composition and HHVof biochars from this study

Samples Yield (%) Ultimate analysisa (wt%) Proximate analysisa (%) VM/FC HHV
(MJ/kg)

C H N Ob Ash VM FC

PM300 61.44 35.60 3.25 2.97 2.54 55.64 26.77 17.59 1.52 12.86

PM400 56.97 22.04 0.96 1.98 10.19 64.84 14.70 20.46 0.72 9.44

PM500 54.19 23.96 0.35 1.88 5.37 68.45 10.31 21.24 0.49 8.89

PM600 52.38 23.65 0.30c 1.69 2.49 71.88 7.96 20.16 0.39 8.61

PM700 50.40 24.60 0.30c 1.24 1.95 71.92 6.75 21.33 0.32 7.66

PM800 49.81 24.17 0.30c 0.74 0.61 74.19 3.17 22.64 0.14 8.28

RS300 49.88 48.11 3.45 1.41 19.49 27.55 29.43 43.03 0.68 18.69

RS400 41.01 47.08 2.53 1.31 16.30 32.79 18.55 48.66 0.38 17.13

RS500 37.34 47.84 1.64 1.15 5.86 43.52 12.55 43.93 0.29 17.83

RS600 34.60 49.83 0.95 1.03 11.35 36.85 8.39 54.76 0.15 16.10

RS700 33.88 48.72 0.60 1.03 10.56 39.10 5.86 55.04 0.11 17.43

RS800 30.53 47.50 0.42 1.13 8.76 42.20 5.86 51.94 0.11 15.37

CL400 37.28 55.92 3.52 9.85 12.84 17.87 33.83 48.30 0.70 22.37

CL500 29.49 56.28 2.69 10.03 7.11 23.90 20.28 55.82 0.36 21.62

CL600 27.56 57.45 3.13 7.85 4.58 26.99 16.97 56.04 0.30 21.32

CL700 24.67 57.74 3.23 6.95 3.65 28.44 12.11 59.46 0.20 20.86

SS400 38.61 54.48 3.54 3.21 17.73 21.06 31.21 47.73 0.65 20.52

SS500 33.94 53.93 3.14 2.95 14.91 25.08 19.96 54.96 0.36 20.95

SS600 33.00 60.74 2.34 2.64 6.23 28.05 22.34 49.61 0.45 22.21

SS700 30.41 59.73 2.63 2.02 4.67 30.97 12.81 56.22 0.23 14.50

SW400 80.13 13.63 2.17 2.77 7.06 74.39 19.24 6.37 3.02 5.93

SW500 74.69 11.76 1.83 2.18 3.62 80.62 12.68 6.70 1.89 4.96

SW600 70.91 11.78 1.17 1.76 0.69 84.62 9.39 6.00 1.57 4.73

SW700 70.20 11.38 0.97 1.36 0.19 86.11 6.61 7.28 0.91 4.47

WD400 25.71 68.74 3.86 1.60 22.15 3.65 32.33 64.02 0.50 26.02

WD500 22.58 80.59 3.90 1.23 10.19 4.09 16.83 79.07 0.21 28.48

WD600 21.90 84.82 3.96 1.14 5.24 4.85 9.96 85.19 0.12 20.87

WD700 20.62 85.17 3.95 1.47 3.95 5.47 5.26 89.27 0.06 20.44

CLSS400 37.08 55.25 3.73 7.13 13.67 20.23 30.35 49.42 0.61 23.71

CLSS500 30.33 55.00 3.51 6.56 10.52 24.42 19.05 56.53 0.34 22.82

CLSS600 29.39 59.69 3.51 5.52 4.78 26.51 12.91 60.58 0.21 21.40

CLSS700 28.31 59.69 3.18 4.17 5.02 27.94 11.52 60.54 0.19 21.32

SWCL400 48.00 23.99 2.14 4.69 8.73 60.45 27.50 12.04 2.28 10.76

SWCL500 48.93 21.40 3.45 4.07 6.13 64.96 16.27 18.77 0.87 10.20
(Continued)
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Table S1 (continued)

Samples Yield (%) Ultimate analysisa (wt%) Proximate analysisa (%) VM/FC HHV
(MJ/kg)

C H N Ob Ash VM FC

SWCL600 40.09 25.03 2.57 3.67 1.78 66.96 13.00 20.05 0.65 10.56

SWCL700 28.75 18.00 2.66 1.98 1.11 76.26 6.76 16.98 0.40 7.28

SWSS400 52.54 22.27 3.27 2.16 9.56 62.74 21.38 15.87 1.35 10.13

SWSS500 45.46 29.27 3.80 2.44 1.88 62.62 15.40 21.98 0.70 11.35

SWSS600 36.19 26.16 3.22 1.67 1.96 67.00 8.79 24.21 0.36 10.99

SWSS700 49.33 26.91 2.72 1.47 0.34 68.57 9.87 21.56 0.46 10.73

SWWD400 51.94 25.14 3.24 1.68 5.70 64.25 18.43 17.32 1.06 9.60

SWWD500 43.94 25.06 2.91 1.57 3.78 66.68 11.30 22.02 0.51 10.62

SWWD600 38.90 23.59 2.80 1.29 4.79 67.54 7.45 25.01 0.30 10.30

SWWD700 41.38 27.80 3.43 0.99 0.26 67.53 4.80 27.67 0.17 10.08

SSWD400 34.06 64.15 3.74 2.28 15.44 14.40 28.37 57.23 0.50 21.60

SSWD500 27.15 67.57 3.51 2.20 10.75 15.98 16.28 67.75 0.24 23.67

SSWD600 27.22 69.31 3.24 2.02 6.95 18.49 10.14 71.37 0.14 25.14

SSWD700 23.74 71.57 3.39 1.67 4.90 18.48 7.44 74.08 0.10 25.35

CLWD400 34.32 63.54 3.74 6.51 15.31 10.91 32.55 56.54 0.58 26.54

CLWD500 28.48 67.40 3.61 6.06 9.33 13.61 15.68 70.71 0.22 26.53

CLWD600 26.53 70.70 3.55 5.25 5.98 14.52 9.96 75.52 0.13 26.79

CLWD700 24.66 70.58 3.36 4.49 5.66 15.91 6.50 77.59 0.08 26.00
Notes: aDry basis.
bBy difference, O = 100 – C – H – N – S – ash, S was not detected, and the content of S in all samples was recorded as 0.
cNot within the detection limits, and 0.30 was used.

Table S2: The statistical analysis of the parameters involved in the machine learning model of HHV

Count Mean Standard deviation Min 25% c 50% d 75% e Max

C a 52 44.93 21.27 11.38 24.49 48.41 59.98 85.17

H a 52 2.68 1.14 0.30 2.16 3.20 3.51 3.96

N a 52 3.04 2.33 0.74 1.45 2.02 4.10 10.03

O b 52 7.20 5.32 0.19 3.64 5.78 10.27 22.15

H/C 52 0.84 0.5 0.1 0.56 0.69 1.19 1.94

O/C 52 0.13 0.09 0.01 0.06 0.09 0.18 0.39

Ash 52 42.15 25.47 3.65 19.79 34.82 66.97 86.11

VM 52 15.27 8.40 3.17 8.69 12.86 19.42 33.83

FC 52 42.58 23.61 6.00 21.04 48.48 57.79 89.27

VM/FC 52 0.56 0.59 0.06 0.21 0.37 0.66 3.02

HHV(MJ/kg) 52 16.38 7.08 4.47 10.18 17.28 21.77 28.48
Notes: aDry basis, wt%.
bBy difference, O = 100 – C – H – N – S – ash.
cData values sorted from largest to smallest in 25% of the dataset.
dData values sorted from largest to smallest in 50% of the dataset.
eData values sorted from largest to smallest in 75% of the dataset.
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Table S3: The collected data from the published research

No. Temperature
(°C)

Ultimate analysis (wt%) Proximate analysisa

(%)
VM/FC HHV Reference

C H N O H/C O/C Ash VM FC (MJ/kg)

1 350 61.40 3.60 1.00 19.00 0.70 0.23 15.00 45.80 39.20 0.86 24.10 [1]

2 350 62.70 4.40 1.10 16.50 0.84 0.20 15.30 45.60 39.10 0.86 23.10

3 350 56.60 2.90 1.10 17.60 0.61 0.23 21.70 39.50 38.80 0.98 23.80

4 650 71.10 1.30 1.00 5.80 0.22 0.06 20.90 59.20 19.90 0.34 24.00

5 650 72.10 1.30 0.90 2.80 0.22 0.03 22.90 57.50 19.60 0.34 23.00

6 650 73.20 1.20 1.10 3.50 0.20 0.04 20.90 62.90 16.20 0.26 24.40

7 350 55.50 4.20 0.90 27.10 0.91 0.37 12.30 36.70 51.00 1.39 21.60

8 350 60.40 5.20 1.10 19.20 1.03 0.24 14.20 40.00 45.90 1.15 22.10

9 350 62.10 3.00 1.00 17.80 0.58 0.21 16.20 46.80 37.00 0.79 22.30

10 650 69.20 1.20 1.00 7.20 0.21 0.08 21.40 58.30 20.40 0.35 24.70

11 650 71.20 1.00 1.00 6.70 0.17 0.07 20.10 62.20 17.70 0.28 25.10

12 650 71.40 1.10 1.20 4.60 0.18 0.05 21.80 59.30 19.00 0.32 23.50

13 350 62.00 4.70 1.10 16.90 0.91 0.20 15.20 44.20 40.60 0.92 24.60

14 350 62.90 4.60 1.10 15.40 0.88 0.18 16.00 47.10 36.90 0.78 24.60

15 350 64.60 4.30 1.10 13.40 0.80 0.16 16.60 50.40 33.00 0.65 24.30

16 650 71.80 1.60 1.00 5.10 0.27 0.05 20.50 59.40 20.00 0.34 24.80

17 650 68.80 1.40 1.10 7.40 0.24 0.08 21.40 56.10 22.50 0.40 24.10

18 650 72.50 1.30 1.10 3.00 0.22 0.03 22.00 61.80 16.20 0.26 25.90

19 350 67.30 4.50 0.00 27.50 0.80 0.31 0.80 48.60 50.70 1.04 27.70

20 350 63.50 5.30 0.10 30.00 1.00 0.35 1.20 50.80 48.00 0.94 26.70

21 350 68.40 4.60 0.00 25.80 0.81 0.28 1.20 54.50 44.20 0.81 27.60

22 650 90.40 2.20 0.10 5.90 0.29 0.05 1.40 90.50 8.10 0.09 33.60

23 650 89.80 2.20 0.10 5.90 0.29 0.05 2.10 90.40 7.50 0.08 33.60

24 650 90.00 2.00 0.10 5.90 0.27 0.05 2.00 91.30 6.70 0.07 33.90

25 350 71.40 4.50 0.00 22.70 0.76 0.24 1.40 57.90 40.70 0.70 27.60

26 350 70.60 5.50 0.10 22.60 0.93 0.24 1.20 56.40 42.40 0.75 27.80

27 350 71.40 4.50 0.00 22.70 0.76 0.24 1.40 60.20 38.40 0.64 27.10

28 650 92.80 1.70 0.00 3.30 0.22 0.03 2.20 89.00 8.80 0.10 33.30

29 650 87.90 2.10 0.10 7.20 0.29 0.06 2.80 88.50 8.80 0.10 33.20

30 650 90.20 1.80 0.00 6.40 0.24 0.05 1.50 89.40 9.10 0.10 33.10

31 350 70.10 5.10 0.10 23.40 0.87 0.25 1.20 54.60 44.10 0.81 27.70

32 350 76.40 5.00 0.10 17.20 0.79 0.17 1.30 65.70 33.00 0.50 28.70

33 350 67.40 5.90 0.10 25.20 1.05 0.28 1.50 55.90 43.60 0.78 28.90

34 650 90.20 1.80 0.00 6.50 0.24 0.05 1.50 89.00 9.50 0.11 33.70

35 650 87.10 1.80 0.00 9.30 0.25 0.08 1.80 89.20 9.10 0.10 33.70

(Continued)
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Table S3 (continued)

No. Temperature
(°C)

Ultimate analysis (wt%) Proximate analysisa

(%)
VM/FC HHV Reference

C H N O H/C O/C Ash VM FC (MJ/kg)

36 650 87.40 1.80 0.00 9.60 0.25 0.08 1.20 89.10 9.70 0.11 33.40

37 250 50.80 5.20 1.30 37.30 1.23 0.55 5.00 38.50 56.50 1.47 19.85 [2]

38 300 57.00 4.14 2.09 29.59 0.87 0.39 6.80 47.40 45.80 0.97 21.58

39 350 64.70 4.05 1.30 21.25 0.75 0.25 8.30 61.50 30.20 0.49 25.54

40 500 71.29 3.38 1.42 13.31 0.57 0.14 10.60 69.60 19.80 0.28 27.25

41 600 72.25 2.47 1.45 12.33 0.41 0.13 11.50 76.40 12.10 0.16 26.59

42 250 52.95 5.71 2.85 31.65 1.29 0.45 6.70 36.00 57.30 1.59 21.77

43 300 56.83 5.17 2.99 25.47 1.09 0.34 9.40 43.70 46.90 1.07 23.07

44 350 64.93 4.54 2.42 16.78 0.84 0.19 11.30 56.40 32.30 0.57 26.01

45 500 63.78 3.09 3.15 15.74 0.58 0.19 14.20 61.80 24.00 0.39 23.93

46 600 68.05 2.38 2.92 10.35 0.42 0.11 16.30 66.40 17.30 0.26 25.10

47 250 36.60 3.70 1.50 34.70 1.21 0.71 22.90 22.90 54.20 2.37 13.00

48 300 41.49 3.23 1.86 24.57 0.93 0.44 28.70 25.40 45.90 1.81 15.13

49 350 41.80 3.00 2.10 18.90 0.86 0.34 33.40 35.50 31.10 0.88 15.54

50 500 45.25 2.15 1.40 10.89 0.57 0.18 40.00 38.90 21.10 0.54 15.34

51 600 45.11 1.44 1.42 9.33 0.38 0.16 42.70 45.70 11.60 0.25 15.56

52 250 52.30 5.00 5.00 28.20 1.15 0.40 9.30 32.60 58.10 1.78 20.93

53 300 53.57 3.69 5.41 24.34 0.83 0.34 12.80 43.10 44.30 1.03 20.23

54 350 57.00 3.19 5.30 15.91 0.67 0.21 18.40 48.90 32.70 0.67 22.50

55 500 60.35 2.44 4.16 11.25 0.49 0.14 21.80 56.60 21.60 0.38 22.23

56 600 56.60 2.02 3.86 8.22 0.43 0.11 29.30 57.00 13.70 0.24 20.61

57 350 51.91 3.17 0.72 12.62 0.73 0.18 31.55 24.24 44.21 1.82 21.34 [3]

58 450 52.90 2.58 0.71 8.95 0.59 0.13 34.84 16.33 48.83 2.99 21.53

59 550 53.83 2.25 0.73 7.28 0.50 0.10 35.88 11.23 52.89 4.71 21.61

60 650 54.78 2.19 0.67 5.79 0.48 0.08 36.55 11.23 52.22 4.65 21.70

61 750 55.53 1.29 0.61 3.43 0.28 0.05 39.09 11.26 49.65 4.41 20.95

62 550 66.13 2.81 2.13 9.43 0.51 0.11 19.78 15.15 65.37 4.31 26.20

63 650 67.33 2.35 1.96 7.81 0.42 0.09 20.54 11.29 68.17 6.04 26.31

64 750 69.85 1.79 1.69 6.65 0.31 0.07 20.01 14.89 65.10 4.37 26.39

65 550 69.31 2.27 1.61 6.41 0.39 0.07 20.29 10.62 69.09 6.51 25.63

66 550 80.97 3.35 0.91 8.53 0.50 0.08 6.24 16.23 77.53 4.78 31.78

67 550 86.85 3.39 0.35 7.82 0.47 0.07 1.59 16.98 81.43 4.80 33.75

68 650 90.68 2.75 0.34 5.02 0.36 0.04 1.21 10.14 88.65 8.74 34.48

69 750 91.64 2.25 0.51 4.12 0.29 0.03 1.48 7.32 91.20 12.46 34.60

70 550 89.33 3.03 0.37 6.13 0.41 0.05 1.49 13.31 85.20 6.40 34.48

(Continued)
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Table S3 (continued)

No. Temperature
(°C)

Ultimate analysis (wt%) Proximate analysisa

(%)
VM/FC HHV Reference

C H N O H/C O/C Ash VM FC (MJ/kg)

71 550 81.24 2.90 1.52 8.68 0.43 0.08 5.61 14.61 79.78 5.46 31.80

72 550 48.50 2.52 1.37 15.87 0.62 0.25 31.69 30.28 38.03 1.26 18.37

73 650 49.83 1.74 1.24 13.66 0.42 0.21 33.48 22.32 44.20 1.98 18.13

74 750 49.29 1.34 1.20 11.20 0.33 0.17 36.92 18.93 44.15 2.33 17.56

75 550 66.34 2.75 1.91 11.84 0.50 0.13 17.13 18.63 64.24 3.45 25.96

76 550 52.44 1.94 1.43 11.10 0.44 0.16 33.03 21.16 45.81 2.16 18.81

77 650 51.77 1.86 1.41 11.70 0.43 0.17 33.21 20.77 46.02 2.22 18.79

78 750 50.74 1.43 1.33 10.06 0.34 0.15 36.39 16.69 46.92 2.81 17.94

79 300 47.15 4.52 0.65 23.98 1.15 0.38 22.53 31.28 46.19 1.48 19.60 [4]

80 400 54.33 2.06 0.64 8.11 0.45 0.11 24.54 38.55 36.91 0.96 21.01

81 500 57.35 1.48 0.63 8.08 0.31 0.11 30.97 61.43 7.60 0.12 22.02

82 300 46.16 4.51 0.68 27.19 1.17 0.44 18.04 33.26 48.70 1.46 18.31

83 400 52.13 2.67 0.63 12.64 0.61 0.18 29.66 47.42 22.92 0.48 21.53

84 500 58.41 1.75 0.77 5.27 0.36 0.07 32.22 55.10 12.68 0.23 23.41

85 300 46.14 3.83 0.44 23.33 1.00 0.38 23.51 31.78 44.70 1.41 17.60

86 400 54.56 2.25 0.50 9.16 0.49 0.13 31.82 50.77 17.41 0.34 21.11

87 500 56.28 1.36 0.63 7.74 0.29 0.10 32.91 58.37 8.72 0.15 22.64

88 350 55.80 4.29 2.60 18.73 0.92 0.25 24.20 23.20 53.50 2.31 20.90 [5]

89 700 56.67 0.94 1.51 4.13 0.20 0.05 39.50 34.70 27.70 0.80 18.97

90 350 53.32 4.05 3.64 15.70 0.91 0.22 28.70 23.50 47.90 2.04 20.39

91 700 52.41 0.91 1.70 7.20 0.21 0.10 44.00 36.30 19.80 0.55 17.23

92 350 51.07 0.38 4.45 15.63 0.09 0.23 30.70 27.00 42.30 1.57 19.03

93 700 45.91 0.20 2.07 10.53 0.05 0.17 46.20 35.50 18.30 0.52 14.75

94 350 51.51 0.49 3.54 11.10 0.11 0.16 32.50 17.70 49.80 2.81 21.12

95 700 44.06 0.07 2.61 4.03 0.02 0.07 52.90 33.80 13.40 0.40 15.07

96 350 49.28 0.36 4.07 15.40 0.09 0.23 34.80 23.10 42.10 1.82 17.28

97 700 44.77 0.09 1.94 5.80 0.02 0.10 49.90 29.20 20.80 0.71 14.45
Note: aAll data exclude the influence of moisture content and follow FC + VM + ash = 100.
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Table S4: The statistical analysis of the parameters involved in the machine learning model of HHV

Count Mean Standard deviation Min 25% b 50% c 75% d Max

Ca 149 56.91 18.94 11.38 48.50 56.83 69.31 92.80

Ha 149 2.74 1.36 0.07 1.79 2.75 3.61 5.9

Na 149 1.95 1.88 0.00 0.09 1.41 2.28 10.03

Oa 149 11.33 7.94 0.19 5.70 9.30 15.74 37.30

H/C 149 0.65 0.42 0.02 0.31 0.58 0.86 1.94

O/C 149 0.16 0.12 0.01 0.06 0.13 0.23 0.71

Ash 149 27.12 21.61 0.80 11.50 21.80 35.88 86.11

VM 149 29.50 20.16 3.17 12.68 22.34 44.20 91.20

FC 149 43.41 22.86 6.00 22.02 45.70 58.30 91.30

VM/FC 149 1.24 1.76 0.06 0.28 0.64 1.46 12.50

HHV(MJ/kg) 149 21.27 7.02 4.47 17.56 21.61 25.90 34.60
Notes: aDry basis, wt%.
bData values sorted from largest to smallest in 25% of the dataset.
cData values sorted from largest to smallest in 50% of the dataset.
dData values sorted from largest to smallest in 75% of the dataset.
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