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ABSTRACT

In this paper, we propose a neoteric and high-efficiency single image dehazing algorithm via contrast enhancement
which is called STRASS (Spatio-Temporal Retinex-Inspired by an Averaging of Stochastic Samples) dehazing, it is
realized by constructing an efficient high-pass filter to process haze images and taking the influence of human vision
system into account in image dehazing principles. The novel high-pass filter works by getting each pixel using RSR
and computes the average of the samples. Then the low-pass filter resulting from the minimum envelope in STRESS
framework has been replaced by the average of the samples. The final dehazed image is yielded after iterations of the
high-pass filter. STRASS can be run directly without any machine learning. Extensive experimental results on data-
sets prove that STRASS surpass the state-of-the-arts. Image dehazing can be applied in the field of printing and
packaging, our method is of great significance for image pre-processing before printing.
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1 Introduction

In recent years, the printing industry has increasingly pursued the concept of green printing. Green
printing refers to a printing method that produces less pollution, saves resources and energy, and has little
impact on the ecological environment during the printing process. Clearing the image before printing
improves the visual perception of the image, which can obtain high-quality and high-definition prints. In
this way, the number of substandard prints can be greatly reduced during the printing process, which
means it can extremely improve production efficiency, production quality, and reduce the production of
printed products cost. However, there are many suspended particles in the air such as water droplets,
aerosols, dust particles in haze weather. The radius of these suspended particles is much larger than air
molecules, and they have stronger shading properties. Therefore, before the scene light reaches the
camera system, part of the light is attenuated in the air and be scattered or refracted by the suspended
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particles. As the result, the images captured in haze are often accompanied by quality degradation, which
weakens the visibility of the target in the scene, and affects the normal work of subsequent computer
image processing tasks. Therefore, image defogging technology is very important for both computer
vision and green printing.

The first works of image dehazing began in the late 1990s and early 2000. To establish these dehazing
models, one needs to combine several inputs composed of one or more images associated or not with other
data. It was only barely a decade ago that the very first works with only one image input were developed.
From this moment, most of the advanced algorithms are based on a single entry [1]. It can be roughly
divided into two categories: algorithms that solve the problem on the basis of a physical model [1–7] and
on the basis of image enhancement [8–17]. In recent years, dehazing algorithms using advanced filters
with millions of parameters (deep neural network) are proposed [18–25]. However, these state-of-the-arts
artificial intelligence algorithms cannot be perceived by human visual system (HVS). Hence, we try to
propose a model that is close to the HVS, which is simple for human to understand.

In this paper, we mainly concern this question as follows: is it possible to propose an easy-to-understand
dehazing algorithm similar to the HVS model? To solve this question, we benefit much from the random
spray retinex (RSR) [26] and STRESS [27]. The idea is to build an image enhancement algorithm which
is similar to STRESS model. HVS can be seen as an optical system and is affected by background
illumination, texture complexity, and signal frequency. Based on the fact that different regions represent
different local characteristics, we usually define this psychophysiological phenomenon as the
characteristics of color perception in different local areas. Therefore, our eyes will gradually adapt to the
local environment [28]. This observation is crucial since haze density changes proportionally with the
depth of objects in the scene. In order to achieve image dehazing, we need to incorporate a local contrast
property in our algorithm.

Note that in the definition of the Retinex algorithm, STRESS can be seen as a high-pass filter. Since the
new 2-D pixel sprays will supersede the original path immediately, we regard STRESS as a heuristic for the
dehazing problem [29]. Hence, the key is to choose a suitable filter that enhances the visibility of the image.
To this end, we build a series of high-pass filters from RSR and STRESS. These high-pass filters are derived
from well-known smoothing filters such as the mean filter, the median filter or the mode filter. In this article,
we propose a practically meaningful image dehazing algorithm via contrast enhancement, called STRASS.
Our method is different from the previous algorithms which were built from Retinex [15] or Retinex-inspired
[29,30,31] approaches. Most of these methods are based on a different function composition, and
reconstructed the dehazing model from the lightness formula. The core idea of the STRASS algorithm is
similar to the principle of Retinex, while considering the influence of the human visual system. The
algorithm takes one or more haze images as input, and a clear image can be obtained after a series of
high-pass filtering operations. Experiments on the datasets of NTIRE 2019 and NTIRE 2020 show that
STRASS outperforms the state-of-the-art, especially in practical applications and is easy to use. The
contributions of our work are summed up as follows:

1) We implement a novel contrast enhancement algorithm called STRASS, which is realized by
constructing an efficient high-pass filter to process haze images and taking the influence of human
vision system into account in image dehazing principles. STRASS can be run directly without
any machine learning, so our algorithm is more superior for practical applications. The advantage
of STRASS is that it does not require complex training processes and high-cost computer equipment.

2) We design novel high-pass filters to recover image structures. The purpose of filter design is to
enhance some useful image details while reducing most of the noises in image. The innovation of
the proposed high-pass filter is that it improves the original low-pass filter and replaces the
minimum envelope value in STRESS framework with a novel mean filter.
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3) We compare the effectiveness and practical application of STRASS on both NTIRE 2019 and NTIRE
2020 datasets. The experiment results demonstrate that our proposed algorithm is superior to the
state-of-the-arts in these two aspects.

2 Related Work

Nowadays, more and more algorithms are developed to solve dehazing problems. These methods can be
generally classified into three aspects.

2.1 Dehazing via Multi-Image Correlation
In the early proposed algorithms, most of them exploit sophisticated solutions and need to be associated

with other data of the image to achieve the fulfillment of the task. Although these methods cannot easily solve
the problem of dehazing in a short time, they can be understood by humans. The work [32] did not assume
that the atmospheric reflection coefficient is known, but used images taken from scattering media to predict
absolute depth maps. Narasimhan et al. [33] took the same method to solve the dehazing task. They made full
use of the differences between multiple images, so they could better estimate the attributes of haze images.
This method is effective for both grey and color images, but the deep segmentation needs to be manually
provided by the user. In addition, Caraffa et al. [34] proposed a new algorithm based on multiple images
for dehazing and 3D image reconstruction tasks [35].

An alternative form of algorithm works on polarizing filters [36,37]. Schechner et al. [36] established the
relationship between the image formation process and the polarization effect of atmospheric light. They first
acquired multiple images of the same scene by using different polarization filters, and then used the measured
polarization degree to remove the haze. Shwartz et al. [37] exploited a blind method to retrieve the necessary
parameters by using polarizing filters before restoring the haze-free image.

All the methods mentioned above are based on capturing multiple images in the same scene and
studying the internal connections between them. However, the real scene usually has only one image.
Therefore, this type of method cannot be applied well in real scenes.

2.2 Dehazing via Prior Knowledge
Many previous image dehazing methods have developed a variety of image prior knowledge, which is

an experience (or a rule) discovered through a large number of experiments. Two assumptions are presented
where the atmospheric light has the brightest value and the reflection of scene has the maximum contrast.
Since they have not taken the physical principle of haze formation into consideration, color distortion
usually occurs in the real image. Similarly, Tarel et al. [8] used maximum contrast priors in their work
and considered that air light is normalized. Kratz et al. [2] first assumed that the scene reflection and air
light were statistically independent, and then solved the dehazing equation under this premise. He et al.
[1] found that most outdoor images have some pixels whose intensity has very low values on a channel.
This method cannot achieve ideal results when dealing with sky areas. Meng et al. [10] stretched the
concept of dark channel prior and provided a new extension for transmission map. Fattal [4] proposed the
color line in a local region of the image and derived a mathematical model to explain it. Color line prior
algorithm has obtained more successful results than previous methods. Berman et al. [5] used many
different colors to replace the color of the haze image, and proposed a dehazing algorithm based on haze-
line prior. Their algorithm can avoid artifacts in many state-of-the-art methods. Ancuti et al. [9] bring
forward a global contrast enhancement method with a new dehazing algorithm based on the Gray-world
color constancy. Galdran et al. [15] provided a rigorous mathematical proof on the duality relationship
between image dehazing and separation problem of non-uniform lighting. Their methods do not rely on
the physical meaning of the haze model.
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Research [11] used the fusion principle to recover the fog-free image. Choi et al. [11] proposed a
dehazing method based on image Natural Scene Statistics (NSS) and haze perception statistical features,
and this method is then defined as DEFADE scheme. DEFADE was tested on darker images and denser
foggy images, which obtained better results than state-of-the-art dehazing algorithms. Cho et al. [6]
mixed the model-based method and the fusion-based method to perform the dehazing task, and then
clarified the input image at the pixel level. However, these methods require adjustment and fusion
different parameters of the image.

The effectiveness of the above methods largely depends on the accuracy of the proposed image prior
knowledge. When the prior conditions do not match with the real image scene, the ideal dehazing effect
cannot be obtained. Therefore, these methods tend to cause undesirable phenomenon such as color distortions.

2.3 Dehazing via Machine Learning
With the wide adhibition of CNN (Convolutional Neural Networks) in the field of image processing,

methods based on machine learning are gradually used in the research of single image dehazing. This
type of method generally learns the parameters of the network model through supervision, or directly
outputs a clear image using an end-to-end network. Among this category, we can mention the work of
[18–22,38]. Cai et al. [18] proposed a dehazing algorithm based on convolutional neural networks, which
combines traditional prior knowledge with deep learning in an end-to-end form. In 2017, Ancuti et al.
[39] designed an effective color correction algorithm for underwater images. He et al. [23,28] proposed a
pyramid deep network in 2018, which completed the dehazing task by learning the features of haze
image at different scales. Guo et al. [24] won the NTIRE Dehazing Challenge in 2019 by developed two
novel network architectures called At-DH and AtJ-DH. More advanced techniques in these architectures
can be found in [40,41].

All of the above methods are different from prior-based methods. Deep learning-based methods are
usually divided into two types: One is to embed prior knowledge into the deep network to guide the
network; The other is to design an end-to-end network directly outputs clear images through feature learning.

3 Proposed Method

3.1 Mathematical Description of Retinex and RSR
In order to fully understand the algorithm that we have developed, we introduce it from the origin and

the relationship with human visual system (HVS). The ability of HVS to perceive the color of a local area is
closely related to the surrounding scene. It is not independent of the visual scene, which is strongly affected
by the image content of other surrounding areas. The first mathematical model to represent the human visual
system (HVS) was Land et al. [28]. Their Retinex algorithm can perfectly explain how HVS perceives colors.
The model is based on three assumptions and has an intuitive representation of the brightness of the image.
When we use the Retinex algorithm to process RGB images, we need to superimpose the brightness value of
each pixel in the three channels of R, G, and B to get the final enhanced image. The principle of the Retinex
algorithm depends on several important parameters: threshold, number of paths and iterations. Studies in [26]
show that the Retinex algorithm calculates the intensity of through the following function to obtain the
normalized value of brightness:

LðiÞ ¼ 1

N

Xnk
k ¼ 1

Ynk�1

tk ¼ 1

dkðRtk Þ (1)

We consider a RGB image and a collection of N paths γ1, …, γNcomposed by ordered chains of pixels
strating in jk and ending in i(target pixel). nk is the number of pixels traversed by the kth path γk
and tk ¼ 1 . . . nk � 1 is the parameter of nk k ¼ 1 . . . N We denote two consecutive pixels different
from γk in the path as ckðtkÞ ¼ xtkand ckðtk þ 1Þ ¼ xtkþ1 . Then the intensity values xtk and xtkþ1 in the three
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channels of RGB can be expressed as Iðxtk Þ and Iðxtkþ1Þ. Therefore, we express the ratio of them as
Rtk ¼ ðIðxtk Þ=Iðxtkþ1Þ, where δk is an identity function, when tk = 0, δk(R0) = 1 For tk = 1, …, nk − 1, the
formula is shown as follows:

dkðRtk Þ ¼

Rtk if 0,Rtk , 1� e
1 if 1� e,Rtk , 1þ e

Rtk if 1þ e � Rtk � 1þ EQtk�1
mk ¼ 0

dkðRmk Þ
1Qtk�1

mk ¼ 0
dkðRmk Þ

if Rtk .
1þ eQtk�1

mk ¼ 0
dkðRmk Þ

8>>>>>>><
>>>>>>>:

(2)

where, the first and third formulas perfectly apply the ratio chain property. The second formula is suitable for
the following situations: When the intensity value between two adjacent pixels changes slightly,
dkðRtk Þ ¼ 1is equivalent to a threshold because it keeps the product of ratios constant. Finally, when
dkðR1ÞdkðR2Þ . . . dkðRtk�1ÞRtk . eþ 1, the fourth formula resets the product chain to 1, so that other pixels
can refer to it. Therefore, Eq. (2) realized the application of the ratio threshold reset mechanism. For such
values of ε, the difference between Retinex with and without threshold has an upper bound which has
negligible effects for the final lightness computation, ε > 0 being a fixed threshold.

In the construction of our dehazing framework, we neglect the threshold mechanism which allows us to
simplify the significant mathematical formulation of the lightness Retinex in Eq. (1) as the following:

LðiÞ ¼ 1

N

XN
k¼1

IðiÞ
IðxHk Þ

(3)

where xHk is the pixel with the highest intensity in each path.

It is essential to find that the path is not fully applicable to every situation, especially when using Retinex
model to analyze the locality of color perception. We know that image is a two-dimensional plane, but path is
one-dimensional. Therefore, the path only extracts information in its specific direction, and does not travel
the local neighborhood of each pixel practically. In this work, we adopt the random spray Retinex (RSR)
method to solve this problem, replacing the path with the random spray of pixels, so as to achieve the
purpose of traveling each pixel. The modified pixel can be expressed by the following polar coordinates:

jx ¼ ix þ f ðqÞcosðhÞ
jy ¼ iy þ f ðqÞsinðhÞ

�
(4)

where jx, jy represents the polar coordinates corresponding to pixel i,f:ℝ+→ℝ+, ρ∈ RANDn[0, R] and θ∈
RANDn[0, 2π]. f(ρ) represents the different radial density functions, where each different function randomly
selects different pixels around i to form different types of “spray” shapes, and each “spray” has different local
filtering characteristics.

3.2 The STRASS Framework
In this part, we will explain our defogging algorithm in detail and define it as STRASS: “Spatio-

Temporal Retinex-Inspired by an Averaging of Stochastic Samples”. Our idea is to use the random
sampling method mentioned in RSR to select pixels randomly from these local areas. The main idea
behind the construction of our framework is very similar to the core idea of STRESS, replacing the
current pixel value by constructing a weighted average of a high-pass filter, where the original image can
be enhanced in contrast within a certain range.
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We assume that the radial density function is an identity (f(ρ)=ρ,0<ρ<R) for all output values of our
framework. So, the only variable parameter is the radius that changes with the identity function. The
simulation of the random sampling procedure is shown in Fig. 1.

jx ¼ ix þ qcosðhÞ
jy ¼ iy þ qsinðhÞ

�
(5)

Fig. 1 shows the random sampling procedure. The diameter of the sample and the number of samples
collected are random, here (ix, iy) represents the central pixel, with (ix, iy) as the center, 400 samples are
randomly selected in a circle with a random sampling diameter of 40. Actually, RSR, STRESS and
STRASS share the same general form, but their difference lies essentially in the definition of this
characteristic function:

f out ¼ 1

N

XN
k¼1

f in (6)

In both STRESS and STRASS, the function f in is implemented as a high-pass filter. In the following, we
slightly modify the notation that directly derived from [26] to adopt another notation. The pixels are
randomly select M samples from a disk with radius R around the center pixel. From these samples, let us
denote xmaxi and xmini the maximum and the minimum sample respectively from M samples for a given
image unit. The following calculations are made on each channel:

xmaxi ¼ IðxHk Þ ¼ maxj21...Mxj
xmini ¼ IðxLk Þ ¼ minj21...Mxj

�
(7)

where xLk represents the pixel with the lowest intensity value traversed by each γk path and xHk represents the
pixel with the highest intensity value. xmaxi represents the maximum sample among M samples of xj, and xmini
represents the minimum sample among M samples of xj. xmaxi and xmini can also be respectively represented by

Figure 1: Simulating the random sampling procedure in Eq. (5). Here, the number of samples is M = 400,
the random sampling diameter d = 40, the current pixel i0 are ixo ¼0 iyo ¼ 40 q 2 0 20 and θ∈ [0, 2π]
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IðxHk Þand IðxLk Þ. x0 is always one of the sample points, and xmini , x0, xmaxi . From here, let us call xi,R the
statistical range of the samples:

xiR ¼ xmaxi � xmini (8)

In order to get a better estimate of the mean of the sample x̂meani , these quantities are averaged over the M
iterations:

x̂meani ¼ 1

M þ 1

XM
j¼0

xj (9)

The partial result of our High-pass filter at a given iteration is then given as:

�xHigh�Pass
i ¼

1=2 if xiR ¼ 0
0 if xi � x̂meani , 0
x0 � x̂meani

xiR
otherwise

8><
>: (10)

In Eq. (10), it is easy to note that the essential difference between the high-pass filter we invented and
the filter defined in [27] lies in two aspects. First, the third option indicates that the low-pass filter generated
by the minimum envelope has been replaced by the low-pass mean filter designed by us. Second, the
difference between the current pixel and the local filter may be negative, so the meaning of the second
option is to keep this difference always positive or null. The final output of STRASS after N iterations is
as the following:

xSTRASS ¼ 1

N

XN
i¼0

�xHigh�Pass
i (11)

3.3 Dehazing of Singular Cases
In addition to the above procedure of samples selection used for dehazing tasks, we come with a new

criterium for singular cases of haze situation such as dense haze scenes and nonhomogeneous haze scenes:

jxi � xjj.K (12)

In those cases, we introduce a new constant K where we constrain not only the selected sample to be
inside the image, but also the absolute difference between the current pixel xi in the Cartesian space and
the selected sample xj in the polar space should be greater than K. After a series of image test
experiments, we set the empirical value of K to 5 is more appropriate. The above constraint helps us to
improve the visibility of haze particular distributions.

3.4 The Association between STRASS and Dehazing
In this part, we will explain the meaning of the STRASS framework and its relationship with image

dehazing. In [27], the core idea of the STRESS algorithm is the calculation of envelopes. The maximum
envelope and the minimum envelope respectively represent the local maximum and minimum of the
reference image. Based on these two extreme values, the image is restored by recalculating each pixel,
which are constructed such that the image signal is always between the two. Calculated by the minimum
envelope or the maximum envelope, the final output of the STRESS framework will closest to an ideal
value. In [29], the author slightly modified the two formulas of envelope and conducted experiments on
STRESS and hazy images. When the haze of the image in a homogeneous state, there exists a certain
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correlation between the haze physical model and the envelope functions, which provides a strong theoretical
basis for the SRESS framework to solve the dehazing task.

Here, we replace the minimum envelope value of the sample used in [27] with the average value of the
samples which is proposed in [29]. Even if we do not formally prove the link between the structure of the
STRASS framework and image dehazing by establishing a solution of dehazing problem, this strong
connection can be intuitively perceived through the conclusions drawn in [29]. It can be seen from
Eq. (11) that the core of STRASS is to design a new high-pass filter, and replaced the characteristic
function of STRESS with a new low-pass function (see Eq.(10) option 3). Since the average value of the
sample takes into account the local features of the image, our improved method is more suitable for
actual dehazing work. The most important thing is that our new method not only reduces the noise
introduced by the envelope in STRESS, but also achieves satisfactory results when dealing with the haze
of distant objects. Thus, the average filter developed by us can solve the dehazing problem more
effectively than the minimum low-pass filter. Due to space issues, we did not elaborate effects of Stress,
which readers can refer to [27].

3.5 The Association between STRASS and Dehazing
The other solution that we have tried is to use a multiscale formulation for STRESS. Unlike the methods

developed in [30] and [31], the multi-scale STRESS algorithm does not need to find the threshold of white
pixels, nor does it require manual segmentation of the image. The algorithm can be built with 2 or more rays
of the STRESS algorithm, the radiuses of rays must always be different from each other and their length must
be between 1 and the diagonal of the image. Let s be the number of multiscale, xSTRESS1 . . . xSTRESSs represent
a series of STRESS that operations on the image. The output of our new multiscale STRESS formulation can
be defined as follows:

xmsSTRASS ¼ 1

S

XS
i ¼ 1

xSTRESSi (13)

The experimental results show that the multiscale STRESS will occur relatively large noise in some
more complicated situations (such as dense haze).

4 Experiment and Results

In this section, we verify the effect of the STRASS algorithm in dehazing tasks, and test its
generalization ability on different datasets. The datasets we use mainly come from the NTIRE challenge.
Then we show some details of the network training process. Finally, we compare the STRASS algorithm
with the state-of-art methods, including Berman et al. [5], Cho et al. [6], He et al. [1], Meng et al. [10],
Tarel et al. [8].

4.1 Implementation Details
In our work, we run the code on a Linux machine with Ubuntu OS 18.04 LTS, with 8GB of memory, we

conduct dehazing experiments on C++, and only one CPU is used in the training process (Intel Core i7,
2.40 GHZ x 4). We use O(MNn) to represent the complexity of the STRASS, where M represents the
number of samples, N denotes the number of iterations, and the total number of pixels contained in the
image is n. All the parameters in this article first set the initial threshold. In the experiment, we tested a
series of images to find out the approximate range of the optimal values of these parameters through
subjective evaluation and objective indicators.
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4.2 Qualitative Evaluation on Dataset
We firstly show the results of the qualitative experiment on NTIRE2020 dataset in Fig. 2. The images

from left to right represent the haze image and the results of the five state-of-the-art dehazing algorithms: GT,
Berman et al. [5], Cho et al. [6], He et al. [1], Meng et al. [10], Tarel et al. [8] results and ours. Some dehazing
methods [1,8,10] rely on prior knowledge that cannot accurately estimate the density of haze. If some areas of
the image are over-processed, the dehazing results will be darker than original image, or get a brighter one.
[6] showed color distortion in some areas, and there is still some remaining haze.

In the experiment, we noticed that STRASS will amplify white noise when the haze is inhomogeneous
and dense. By observing the image as shown in Fig. 3, we can clearly see that STRASS has achieved better
results than other methods, it is because the haze in image 51 is relatively uniform, so the white noise of this
image is not amplified, while the nonuniform haze in other images causes the appearance of white noise. So,
the STRASS method is effective, and the contrast is enhanced qualitatively in the way of our visual system.

In order to further test the robustness and computing capabilities, we not only conducted comparative
experiments on the NTIRE2020 dataset, but also on the images of NTIRE2019. Fig. 4 shows five dense
haze images from the NTIRE2019 and the processing results on the state-of-art methods. By observing
the first four images, we find that all methods cannot completely remove the haze, especially in areas
with thick haze. It can be obviously seen that these methods are not good at handling images captured in
dense haze. While compared with other algorithms, we not only get a pleasant dehazing result, but also
preserve the original color of the image. The method in this article is indeed not the best on some
pictures, but it is relatively better on most pictures in general. This is also the direction for us to improve
in the future.

4.3 Qualitative Evaluation on Dataset
In order to evaluate these methods more accurately and compare the slight differences between various

dehazed images, we utilize some quantitative evaluation indicators on both NTIRE2020 and NTIRE2019 as

Figure 2: From left to right, input image, GT, Berman et al. [5], Cho et al. [6], He et al. [1], Meng et al. [10],
Tarel et al. [8] and ours from NTIRE2020
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these are very difficult dehazing situations. Besides the widely adopted structural similarity indices (SSIM
[42]), we also use PSNR as another important index, the average value of the experiment will be reported
later. PSNR and SSIM are the most common and widely used full-reference image objective evaluation
indicators. PSNR is an error-sensitive image quality evaluation. SSIM measures image similarity from
three aspects: brightness, contrast, and structure. Using these two indicators in the field of image
dehazing can well measure the difference between the dehazed image and the label image. It should be
noted that the efficiency of dehazing algorithms can be sensitive to the density of the haze and other
obscure parameters that are not necessarily related to the physical parameters of the haze. Our method has
been successfully tested on many types of dry or wet particles, such as smoke, fog, dust, mist, haze as the
results of the images from the databases of NTIRE2019 and NTIRE2020 attest.

Figure 3: Visual comparison with image used in the final round of NTIRE2020. From left to right, input
image, Berman et al. [5], Cho et al. [6], He et al. [1], Meng et al. [10] and ours

Figure 4: From left to right, input image, GT, Berman et al. [5], Cho et al. [6], He et al. [1], Meng et al. [10],
Tarel et al. [8] results and ours from NTIRE2019
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For the quantitative assessment, we only considered the image datasets from NTIRE2020 and
NTIRE2019 since they represent images that traditional algorithms not based on learning methods cannot
easily resolve. Each image database includes 45 pairs of images taken under artificial fog and its
corresponding haze-free. The number of image pairs considered for this evaluation is 90 images once the
two databases have been merged. Our algorithm clearly outperform with other unsupervised algorithms as
can be seen in the Tables 1 and 2. Our PSNR is the best and the second best for NTIRE2019 and for
NTIRE2020 respectively. However, it seems that our SSIMs are not in agreement with the results
obtained for the PSNRs. We can also notice that the results of the two metrics for our algorithm are quite
close to the results obtained for the advanced methods. For the NTIRE2019 competition, several
advanced algorithms as well as ours do not seem to have done better compared to the hazy image in
terms of the SSIM metric. This may mean that these unusual images must be processed by algorithms
based on learning methods to be effectively resolved.

Although our PSNR/SSIM value is relatively low than the state-of-the-arts, we aim to implement a fast
and simple contrast enhancement-based dehazing algorithm. Therefore, we mainly consider comparative
experiments with some traditional methods. The algorithm runs directly without a large number of
samples, which saves a lot of time for model training, and the average running time on the
NTIRE2019 and NTIRE2020 dataset as show in the Table 3. We take the influence of the human visual
system (HVS) into account in image dehazing principles, making it easier for humans to understand.
These state-of-the-arts artificial intelligence algorithms cannot be perceived by the HVS, so our algorithm
is more superior for practical applications. On the other hand, we are also exploring the use of deep
learning for dehazing, some works found that traditional algorithms are not as accurate as those based on
deep learning. Therefore, this article does not compare experiments with methods based on deep learning.

Table 1: PSNR/SSIM on the challenging NTIRE2020 dataset: Our method compared to non-learning state-
of-the-art methods

Image Original Berman Cho He Meng Tarel Ours

PSNR 11.5488 12.2579 12.8057 11.3636 12.2293 12.3411 12.7121

SSIM 0.4425 0.5390 0.5445 0.4329 0.5041 0.5301 0.5663

Table 2: PSNR/SSIM on the challenging NTIRE2019 dataset: Our method compared to non-learning state-
of-the-art methods

Image Original Berman Cho He Meng Tarel Ours

PSNR 9.5524 12.2482 12.2961 12.0916 12.5990 10.9717 12.9346

SSIM 0.4232 0.3782 0.4362 0.4031 0.4224 0.4238 0.5863

Table 3: Average running time on the NTIRE2019 and NTIRE2020 dataset

Method Berman Cho He Meng Tarel Ours

Platform Matlab Matlab Matlab Matlab Matlab C++

Time(s) 7.81 7.20 6.74 3.34 3.52 2.35
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4.4 Analysis and Discussions
We discovered the fact that the results of [5] are visually quite close to our results on all datasets (without

considering the constraint for singular cases), then we can make an assumption that [5] may has some of the
same properties as STRASS. This could explain why the [5] algorithm as well as ours have more white noise
on the NTIRE2020 data set, while both of them have shown high visibility on the NTIRE2019 dataset.

The proposed method works quite well in general, and can even handle cases of dense and non-
homogeneous haze with the introduction of the constant K (see the Eq. (12)). In those cases, our method
is able to yield comparable and even better results with advanced non-learning methods. However, a
limitation of our method is that it will cause the STRASS to produce white noise when the haze is
inhomogeneous. As shown in Fig. 3, it got unsatisfactory results when processing dense smog images.
Because the heavy haze not only greatly occludes the effective information of the image, it cannot
accurately estimate the atmospheric light. Another disadvantage of this algorithm is the calculation time.
When N = 150 and M = 5 the average time complexity is about 10 min, while we get almost the same
output visually when N = 50 and M = 6 but the time complexity is less than 3 min and 45 s.

We try to find an effective way to solve the situation of dense and non-uniform haze as much as possible,
and use another low-pass filter (such as a median filter or a mode filter) to build the STRASS framework. We
will solve this complicated problem in future research.

5 Conclusion

In this paper, we propose a single image dehazing algorithm that directly utilizes the contrast
enhancement principle, which works by recalculating each pixel with two envelopes. Compared with
previous methods which require carefully stretching the contrast, our proposed STRASS framework
considers the characteristics of HVS and is easy to implement. Inspired by STRESS and Retinex, we
show that the STRASS framework can solve the task of image dehazing, where the minimum envelope
value in the STRESS framework can be replaced by an average filter. In the proposed approach, we first
use the random sampling method mentioned in RSR to select pixels randomly from the local areas, and
then replace the current pixel value by constructing a novel high-pass filter to enhance the contrast of the
original image within a certain range. The experimental results on the NTIRE dataset and real images
prove the effectiveness and strong generalization ability of our method. The innovation of the proposed
method is that it takes the influence of the human visual system into account in image dehazing
principles and it can be run directly without any machine learning. Our method can be applied to the pre-
printing image processing link, which greatly reduces the printing process and cost, and conforms to the
concept of green printing.
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