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Abstract: Brain-Computer Interface (BCI) technology is a way for humans
to explore the mysteries of the brain and has applications in many areas
of real life. People use this technology to capture brain waves and analyze
the electroencephalograph (EEG) signal for feature extraction. Take the
medical field as an example, epilepsy disease is threatening human health
every moment. We propose a convolutional neural network SECNN-LSTM
framework based on the attention mechanism can automatically perform
feature extraction and analysis on the collected EEG signals of patients to
complete the prediction of epilepsy diseases, overcoming the problem that the
disease requires long time EEG monitoring and analysis by manual, which
is a large workload and relatively subjective, and improving the prediction
accuracy of epilepsy diseases by adding the attention mechanism module.
Through experimental tests, the algorithm of SECNN-LSTM can effectively
predict the EEG signal of epilepsy disease, and the correct recognition rate
is improved. The experiment has some reference value for the subsequent
research of EEG signals in other fields in deep learning.
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1 Introduction

At the current level of research, brain-computer interface technology uses certain patterns of EEG
signals generated by the brain for analysis. Using this phenomenon, we can interpret and process
the signals through certain algorithms that can eventually achieve recognition and classification.
The application of brain-computer interface technology in all aspects of society will advance the
development of society with far-reaching implications. Theoretically, any EEG signal can be used to
control a BCI system [1]. In medicine, BCI can assist in the treatment of some diseases, like mental
disorders, Parkinson’s, epilepsy, stroke, spinal cord injury, and other diseases, as well as provide help
and reference for doctors’ decision making by observing the patient’s brain wave signals [1,2]. In daily
life, many scholars have made achievements in BCI technology. For example, some scholars have
used BCI technology to design intelligent wheelchairs, which facilitate the travel problems of disabled

http://dx.doi.org/10.32604/jnm.2022.027040
mailto:Fangwei@nuist.edu.cn


74 JNM, 2022, vol.4, no.2

people [3]; some scholars have used BCI technology to achieve wheelchair steering [4]; some scholars
have used BCI technology to achieve EEG feature recognition of emotions [5]. Some scholars achieve
manipulation of robot arm by BCI technology [6]. Many scholars in the world are still continuing to
research BCI technology, a complete BCI structural system [7], as shown in Fig. 1.

Figure 1: BCI structural system

Among them, scholars have put most of their efforts into the signal processing stage. In the
preprocessing stage, EEG signals are usually preprocessed using various filters [8,9]. The feature
extraction and classification stage mainly utilizes classifiers, and the main classifiers are classified
as:linear classifiers, neural networks, nonlinear Bayesian classifiers, nearest neighbor classifiers,
classifier combinations, and adaptive classifiers [9,10]. With the development of the society, more and
more people are focusing on a new research area: deep learning. Deep learning is also an effective
problem solving method in the BCI signal processing stage. Deep learning methods have been applied
to classify emotions in brain waves. Compared to traditional machine learning with k-nearest neighbor
(KNN) classifiers and support vector machine (SVM), deep learning significantly outperforms other
methods in practical applications. These examples offer a variety of possibilities for the application of
brain-computer interface technology in various fields [11].

We tried to use deep learning algorithms to process EEG signals, and CNN, long and short term
memory (LSTM) networks [12] have been used extensively. Privacy protection has applied a hybrid
deep learning framework [13], CNN networks can be implemented to classify and detect moths [14] and
also to classify and detect breast cancer [15], a dual LSTM model based on attention mechanism is used
to classify depression [16], and a CNN-LSTM model has been applied to motor imagery EEG signals
[17], while the model has also been used to predict PM2.5 concentration [18]. And we designed a CNN-
LSTM model for epileptic EEG signals based on this model, however, we found that the results were
not satisfactory enough to test whether the model is applicable to epileptic class of EEG signals and to
test whether there is room for improvement. We analyzed that the model has the problem of channel
weights in the convolution process, which can lead to inaccurate feature extraction, so we changed the
current model and also added the attention mechanism network to form a new model SECNN-LSTM
for automatic feature extraction and classification. In particular, the attention mechanism module
is a channel attention mechanism module designed based on Squeeze-and-Excitation (SE) [19] and
embedded into the existing network architecture.

For our experiments, we chose public EEG datasets for experimental analysis. Firstly, Our aims
are to add the attention mechanism module to the mixed model to verify the feasibility of applying
the mixed model network to EEG signals. Secondly, to verify that the effect of adding the attention
mechanism module to the mixed model is better than the former one, and to achieve the purpose of
improving the effect. Finally, to provide reference basis and ideas for subsequent model innovation
and application in signal processing of other EEG signals.
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2 Related Work
2.1 CNN-LSTM Deep Learning Classifier

Our model is inspired by the CNN-LSTM deep learning classifier. This classifier was applied by
the authors to low-invasive and low-cost BCI headband for motion image EEG detection [17]. The
principle of the model is to use CNN instead of RNN encoder to extract represent image features using
RNN decoder [20]. Based on the existence of multiple paradigms for the implementation of brain-
computer interface systems, our experimental paradigms can be divided into several aspects based on
evoking different EEG signals: motor imagery, P300, steady-state visual evoked potentials (SSVEP),
auditory, emotional and other paradigms [21]. The emergence of deep learning is very effective in
solving the problems that exist in the process of feature extraction and classification [22–25]. However,
different paradigms analyze different EEG signals and the model structure has to be changed in
relation to the specific EEG signal.

2.2 Determine the Mechanism for Adding Attention
BCI technology is a multidisciplinary technology and there are many scholars from different

disciplines studying it, but the starting point of the research is different. In the signal processing
stage, classification algorithms are the most important research again. Nowadays, the more popular
classification algorithms based on EEG signals are mainly divided into adaptive classifiers, matrix
and tensor classifiers, migration learning and deep learning. As for deep learning methods, the current
results are still unsatisfactory [9]. However, with the development of technology, the application of deep
learning on BCI is becoming more and more widespread. Deep learning classification of EEG signals
using convolutional neural networks to detect epilepsy [26]. Motor imagery task classification using
convolutional neural networks [27]. Automatic detection of Parkinson’s disease using convolutional
neural networks [28]. Motor image EEG detection for BCI headband using CNN-LSTM deep learning
classifier [17].

However, the above work does not take into account the problem of classification accuracy due to
the channel weighting problem. During the convolution process, there is indeed a problem of feature
map channel weight consistency, such that the subsequent convolution process will bring about a
loss of accuracy. In contrast, our model introduces the attention mechanism module, which is able to
reassign weights to each feature map during the convolution process, providing some help for feature
extraction in the subsequent convolution.

2.3 Channel Attention Mechanism
Attention is currently used in a wide range of applications. A solid step has been taken in natural

language processing (NLP), image description, machine translation, convolutional neural network
aspects [29–33], and these approaches have increased the diversity of predictions with good results.
However, different attention mechanisms are applied for scenarios that do not use them. In context,
this paper focuses on the channel attention mechanism. More specifically, this work attempts to
reassign weights to each feature map and make its desired results more predictable by proposing to
add a channel attention mechanism after feature extraction.

3 Methods

Currently, neural network-based research in EEG signal recognition is insufficient, and the
application of deep learning is to be improved due to the specificity of EEG datasets. In this section,
we propose the mixed SECNN-LSTM model, which is based on modifying the original network by
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adding the attention mechanism module. In this experiment, our experimental results using the mixed
model of CNN-LSTM have the problems of low accuracy, and low stability and long training time.
From the experimental data structure, we analyze that the model has a channel weight assignment
problem, so the model adds the attention mechanism module to solve the channel weight problem. We
explain the model in two parts, first, an introduction to the model we built; second, an explanation
of the attention mechanism module we introduced. The overall structure of the epilepsy prediction
model we designed is shown in Fig. 2.

Figure 2: Model structure diagram

3.1 The Convolution Module
CNN-LSTM has many applications, but the structure has to be redesigned with specific scenarios

and data to achieve good results, and our model is mainly designed in the convolution module. The
diagram of SECNN-LSTM model incorporating attention mechanism is shown in Fig. 3.

In our designed convolutional module, the attention mechanism module is placed in the middle
of two convolutional kernels, three modules form a part of the convolutional module, and four partial
convolutional modules form a complete convolutional module. Analyzing from the data side, due to
the special characteristics of the brain structure and the limitation of the acquisition equipment, the
collected data need to be pre-processed, and the data quality will be affected by the influence from the
human body and the surrounding environment. The preprocessed data is different from image data,
which uses two-dimensional convolution to extract features [34]. We can observe that the analysis of
processed brainwave epilepsy data resembles a text sequence, a time series. Therefore, it was decided to
use one-dimensional convolution for this experiment. After the one-dimensional convolution, it needs
to go through normalization with the activation function. The purpose of using normalization is to
make the input of each layer of the neural network keep the same distribution during the training of
the deep neural network, and the activation function is used to increase the nonlinear expressiveness of
the network. At this moment, the expressiveness of the neural network is greatly improved, but there
are some defects.

The output of our neural network finally has to realize the classification task, and the brainwave
data will produce the corresponding number of feature maps after one-dimensional convolution. In the
traditional one-dimensional convolution process, each channel of the feature map is equally important
by default, which will have a certain impact on the accuracy of the classification results. Therefore, our
model adds a channel attention mechanism module here, which reassigns weights to each channel of
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the feature map to solve the loss problem caused by the different importance of different channels of the
feature map in the convolution process, and makes the expression of the neural network more accurate.
The feature map is reassigned with weights and then convolved again with feature extraction. The
neural network is improved in feature extraction after reassigning weights. Finally, the neural network
again undergoes normalization, activation function, maximum pooling and dropout operations to
complete the partial convolution module process.

Figure 3: Graph of SECNN-LSTM model with fused attention mechanism

Our model partial convolution process is designed with 4 parts, each with the same structure, and
the number of filters is doubled for each part from front to back. Because there will be a channel
attention mechanism in each partial module, the more the later part, the better the accuracy of the
convolution extraction will be compared to the former one. So the number of filters will be increased
in the later part compared to the former.

3.2 Channel Attention Mechanism Module
The channel attention mechanism module added to the model we designed solves the problem that

each channel has the same weight in the tradition by reassigning weights to the feature maps of each
channel. The individual model diagram of the fused channel attention mechanism module is shown in
Fig. 4.
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Figure 4: Single model diagram of the attention mechanism of the fusion channel

For convenience, we will denote Input as I ∈ R
H′×W′×C′ , Output is denoted as O ∈ R

H×W×C, First,
I is converted into the O by convolution, and we can also write the Output after convolution as O =
[O1, O2,, . . . , OC], At this time, by the formula:

Oc = fc ∗ I =
C′∑

s=1

fC
s ∗ is (1)

Here ∗ represents the convolution, and the set of filter kernels is denoted by F = [f1, f2,, . . . , fc],
fc denotes the parameter of the c-th filter, fc = [fc

1, fc
2, . . . , fc

c′ ] and I = [i1, i2, . . . , ic′ ] are expressed in
a simplified way, fc

s represents a 1D convolution kernel, so it represents a fc channel and acts on the
channel corresponding to I.

The convolution is followed by two steps. First, Output waits along the straight line with
reassigned weights to do the operation; second, the solution of the weights is performed along the
branch. In the branching path, firstly, by the formula:

uc = 1
W × H

W∑

i=1

H∑

j=1

Oc(i, j) (2)

Because each filter is a convolution operation performed in the local range, there is no way to
combine each cell of O after convolution with information outside that region. To solve this problem,
we compress the global information to the channel for representation, which is implemented in this
paper using global average pooling (GAP), where U ∈ R

c and uc is an element in U.

Then, we needed to make the neural network flexible and simple and able to learn important
features ignoring the unimportant ones, so a gating mechanism with two fully connected layers was
designed. The computational process at this point is as follows:

Q = σ(D2δ(D1U)) (3)

where δ represents the ReLU function, D1 ∈ R
C
r ×C and D2 ∈ R

C× C
r represent the weight matrices

of the two fully connected layers, respectively, r is the number of hidden nodes in the middle layer,
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and σ represents the Sigmoid activation function. The two fully connected layers are used to reduce
the complexity and generalization ability of the model. The first fully connected layer plays the role
of dimensionality reduction, then the ReLU function is used to activate, the second fully connected
layer plays the role of restoring the original dimensionality, and finally the Sigmoid function is used
to obtain the vector Q of the gating unit.

Finally, the calculation process is as follows:

ñc = qc · oc (4)

The set of feature maps after reassigning the weights Ñ, where Ñ = [ñ1, ñ2, . . . , ñc], qc represent
one of the scalar values of the gating unit Q. At this point, the reassignment of the weights of the
feature map has been completed. The result at this point only needs to be combined with the Output
of the first step again.

4 Experiments

In this section, we use the publicly available EEG epilepsy dataset to test the effectiveness of the
model. Correctness, loss value, and gradient trend were used as evaluation criteria, using the adam
optimizer [35] with the learning rate set to 0.001.

4.1 Epilepsy Dataset
Since brainwave data acquisition is demanding in terms of experimental conditions equipment,

external environment, and people involved in the experiment, we used public datasets as experimental
data to ensure data stability.

The experimental data were obtained from the University of Bonn Epilepsy EEG database. This
dataset is a preprocessed and reconstructed version of a very commonly used dataset for seizure
detection.

The original dataset consists of 5 different folders, each containing 100 files, each recording 23.6
s of brain activity. The corresponding time series were sampled to 4097 data points. Each data point
is an EEG value recorded at a different time point, and we have a total of 500 individuals with 4097
data points each.

We split and shuffle every 4097 data points into 23 blocks, each block contains 178 data points for
1 s, and each data point is the EEG value recorded at different time points. The data has 11500 rows of
information, each containing 178 data points, and the last column represents the label y ∈ {1, 2, 3, 4, 5},
as shown in Tab. 1. This version of the dataset was created to simplify access to the data by creating a
.csv version.

Table 1: Description of data labels

y label Status

1 Seizure
2 Region where tumor is located
3 Healthy brain region
4 Closed eyes
5 Open eyes
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4.2 Experimental Comparisons
We conducted experiments using the processed epilepsy dataset and the results are shown in

Figs. 5–8 and Tab. 2.

Figure 5: Accuracy of CNN-LSTM model

Figure 6: Accuracy of SECNN-LSTM model

As we can see in the above figure, the correctness aspect is improved by the model with the addition
of the channel attention mechanism module, and the accuracy is better than the original model for both
the experimental set and the data set. The experimental set improves the correct rate by about 8% in
the improved model, and the test set improves by about 0.04% in the improved model. In terms of
curve trends, after about 50 training sessions, the improved model has stabilized, the original model
is still fluctuating, and the new model is able to reach stability in a much shorter time. From the loss
value, the loss value is higher compared to the original model, but the stability is better and within the
acceptable range.
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Figure 7: Loss value of CNN-LSTM model

Figure 8: Loss value of SECNN-LSTM model

Table 2: Comparison of model test set training

Epoch Loss Accuracy

CNN-LSTM SECNN-LSTM CNN-LSTM SECNN-LSTM

50 0.5697 1.0850 0.7200 0.8117
100 0.5362 1.0650 0.7304 0.8396
150 0.4789 1.0737 0.7626 0.8239
200 0.4663 1.0715 0.7817 0.8291
250 0.4439 1.0727 0.7943 0.8313

(Continued)
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Table 2: Continued
Epoch Loss Accuracy

CNN-LSTM SECNN-LSTM CNN-LSTM SECNN-LSTM

300 0.4456 1.0729 0.7887 0.8317
350 0.4369 1.0724 0.8000 0.8300
400 0.4584 1.0727 0.7987 0.8304

The specific accuracy values can be seen in Tab. 2. The accuracy of the improved model is stable
after 200 training sessions, and the final accuracy of the training reaches 0.8304%, and the accuracy
of the original model finally reaches 0.7987%, which is more intuitive to reflect the improvement of
the accuracy of the improved model. The loss value in the improved model has been relatively stable,
and the original model has some minor fluctuations.

The experimental results show that the accuracy of the improved model is enhanced and the loss
is in the acceptable range. The improved model can reach stability in a short time, which is better than
the original model. The experiments also demonstrate the application of neural networks with added
attention mechanism in the field of brainwave signal classification.

5 Conclusions

Our improved model SECNN-LSTM, based on CNN-LSTM with channel attention mechanism,
has a strong classification capability, but there is some improvement in loss values, which is within
the acceptable range. Our model brings improvement in accuracy and stability. Our experiments have
made progress in terms of results and have made reference for applications on other EEG signals.
There is still a lot of room for growth in deep learning applications in the BCI domain, and through
our experiments, we demonstrate that adding attention mechanisms can be done in the BCI domain for
the task of signal processing classification. In the future, we can continue to explore more deep learning
frameworks combined with other attention mechanisms to accomplish more EEG signal classification.
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