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Abstract: In recent years, with the development of the natural language
processing (NLP) technologies, security analyst began to use NLP directly
on assembly codes which were disassembled from binary executables in order
to examine binary similarity, achieved great progress. However, we found
that the existing frameworks often ignored the complex internal structure of
instructions and didn’t fully consider the long-term dependencies of instruc-
tions. In this paper, we propose firmVulSeeker—a vulnerability search tool
for embedded firmware images, based on BERT and Siamese network. It first
builds a BERT MLM task to observe and learn the semantics of different
instructions in their context in a very large unlabeled binary corpus. Then,
a finetune mode based on Siamese network is constructed to guide training
and matching semantically similar functions using the knowledge learned
from the first stage. Finally, it will use a function embedding generated from
the fine-tuned model to search in the targeted corpus and find the most
similar function which will be confirmed whether it’s a real vulnerability
manually. We evaluate the accuracy, robustness, scalability and vulnerability
search capability of firmVulSeeker. Results show that it can greatly improve
the accuracy of matching semantically similar functions, and can successfully
find more real vulnerabilities in real-world firmware than other tools.

Keywords: Embedded device firmware; vulnerability search; BERT; siamese
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1 Introduction

In recent years, the open-source communities have been expanded rapidly, accelerating the design
and development of the software, also the spread of vulnerabilities. Especially in the field of embedded
devices, due to the cost, device manufacturers usually reuse large number of third-party components
(from open-source community, historical codebase, the third-party companies, etc.) to smoothly port
the software programs on mature x86 terminal devices to platforms such as ARM or MIPS. All of these
will lead to the same manufacturer’s different types of products and even different models of different
products are likely to be influenced by the same vulnerability in the reused component, while the user
who uses the product (even security analyst) has no clear knowledge about the internal relationships
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of the product’s firmware, which undoubtedly aggravates the spread of the potential vulnerabilities.
Therefore, how to use know vulnerabilities to detect whether there is a homologous vulnerability in
other devices’ firmware across platforms becomes more and more important [1]. However, it is a very
challenging task. Compared with the vulnerability detection on common desktop applications, it faces
the following challenges [2]: 1. The source code of the firmware is usually unavailable. 2. The ISA, the
compiler and the optimization level used on the firmware are usually different, so given the same source
code, it will get different binary executables whose syntax and structure characteristics are different and
we can’t easily get the knowledge about which compiler and optimization level it used. To address this
challenge, cross-architecture binary firmware vulnerability search has been received more and more
attention in recent years, and many well-performed methods have been proposed [3–7].

Existing methods feed artificially designed features to deep learning models, such as Gemini
[3], Vulseeker [4] etc., or use some representation learning model to automatically general a vector
representation for similarity comparison, such as InnerEye [5], SAFE [6], OrderMatters [7], etc.
Especially in recent years, researchers began to use NLP technologies to process assembly language
directly, because there are many similar characteristics shared by natural language and assembly code.
For example, InnerEye [5] and Asm2Vec [8] both use word2vec [9] model as a preprocessing model to
generate instruction embedding, on top of which LSTM [10] or RNN [11] will be used to generate basic
block embedding or function embedding to represent basic block or function semantics. However, as
explained in Section 2.2, existing methods usually ignore the complex internal structure of instructions,
which just use the statistical characteristics of the instructions (e.g., Geimini treats the constant number
as one feature) or treat the entire instruction as a token (e.g., InnerEye, SAFE, etc.) or just consider
some simple instruction format (e.g., Asm2Vec treats an instruction as an opcode plus a combination
of up to two operands) or ignore the position of the instruction (e.g., OrderMaters), therefore, they
can’t model the dependencies within and between instructions especially the long-range dependencies,
further can’t better capture the semantic information of the binary code (basic block or function). On
the other hand, existing methods are mostly supervised learning, whose performance seriously depend
on the quality of the training data. But in the binary similarity detection especially in the embedded
firmware vulnerability detection, collecting a large, representative and balanced training data set is
very difficult, and there may be overfitting problem in supervised learning [12].

In this paper, a BERT MLM [13] and Siamese network [14] based vulnerability search tool for
embedded firmware images is proposed, which is named firmVulSeeker. The core idea is to train a
BERT MLM task to observe and learn the semantics of different instructions in their context firstly.
At this stage, it takes the original instruction sequence without the need to label the training samples,
so it is an unsupervised learning. Then, a fine-tune model based on Siamese network is constructed,
utilizing the knowledge from the first stage to guide training and matching semantically similar
functions. Finally, given a vulnerability function, to search it in the target corpus. The contributions
are as follows:

1. We propose firmVulSeeker—a three-staged embedded device firmware vulnerability search
tool based on BERT and Siamese network. In the first stage, we will use a BERT MLM
task to train the original instruction sequences disassembled from binary function to learn
the semantic information of the instructions and the dependencies among instructions. In
the second stage, we construct a fine-tune model based on Siamese network to find-tune the
pretrained model from the first stage. In the third stage, we search the vulnerability function in
the target corpus based on its function embedding generated from the model generated from
the second phase.
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2. We implement firmVulSeeker and evaluate its accuracy, robustness and scalability. The results
show that firmVulSeeker is superior to SAFE and Gemini in the accuracy of the evaluation
dataset in this paper, and firmVulSeeker can deal with the situation across architecture,
across optimization options and across projects. Also, when we use the firmVulSeeker pretrain
model to other similar tools, they can significantly improve their function similarity matching
accuracy.

3. We evaluate the vulnerability search capability of the firmVulSeeker on real-world embedded
device firmware images with 14 CVEs (Common Vulnerability & Exposures) and the results
show that it can successfully search 13 CVE vulnerability functions in the 70 embedded device
firmware image datasets, and the accuracy is higher than SAFE and Gemini.

2 Problem Statement
2.1 Embedded Device Firmware Vulnerability Based on Binary Code Similarity Analysis

Given a binary vulnerability function of interest (affected by a CVE, such as a binary function
containing the Heartbleed vulnerability [15]), at function granularity, we hope to analyze a very large
binary function corpus (a large number of binary functions disassembled from binary executables
which are extracted from different embedded device firmware images with firmware extraction
tools such as Binwalk), identify semantically equivalent or similar candidates (suspicious vulnerable
functions) quickly and accurately, and then confirm whether they are vulnerable or not by artificial
or static or dynamic means. Here, we name the interested binary vulnerability as query and the binary
function corpus as target corpus. Therefore, the problem is translated to find in the target corpus the
most similar function as the query function (which means binary code similarity analysis). This process
is shown in Fig. 1.

Figure 1: embedded device firmware vulnerability search overview

2.2 Summary of Existing Binary Similarity Analysis Methods Based on NLP and Their Shortcomings
Because of many similar characteristics shared by natural language and assembly code, in recent

years, researchers have begun to use NLP technology directly on assembly code to analyze binary
code similarity. Tab. 1 summarizes and compares the existing popular binary similarity analysis
methods based on NLP, with respect to token granularity, context range, encoding model and whether
instruction internal structure is considered.
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Table 1: Summary of existing binary analysis methods based on NLP

Methods Tokens Context Encoding Internal structure

Asm2Vec [8] opcode, operand control flow PV-DM [16] partially
InnerEye [5] entire instruction slide window word2vec no
MIRROR [17] opcode, operand slide window NMT [18] partially
SAFE [6] entire instruction slide window skip-gram [19] no
DeepBinDiff [12] opcode, operand control flow derived word2vec partially
OrderMatters [7] entire instruction control flow BERT [13] no

From Tab. 1, we find that the existing methods have more or less the following shortcomings in
their embedding generation process:

First, existing methods ignore the complex internal formats of instructions or only consider some
simple format of instructions. InnerEye [5], SAFE [6] and OrderMatters [7] all treat entire instruction
as a token, ignoring the internal structure of the instruction. Although Asm2Vec [8], DeepBinDiff [12]
and MIRROR [17] separate the opcode and operands in the instruction as different tokens, they only
consider a simple internal format, for example, Asm2Vec [8] only consider up to two operands while
in x86 assembly code, the number of operands can range from 0 to 3, and can be register, memory
location expression, immediate constants, string symbols, and so on.

Second, existing methods are limited in modeling long-range dependencies. As Tab. 1 shows,
existing methods mostly use word2vec or its derived model (such as PV-DM model used in Asm2Vec)
to train the tokens within the specified slide windows. Other methods extract the instruction sequence
in the CFG by means of random walk, such as Asm2Vec and DeepBinDiff. However, due to compiler
optimizations, there may some noise in the context information on the control flow, which can’t truly
reflect the actual dependency relations between instrucitons.

To solve the above shortcomings in the existing methods, we take the original assembly instruction
sequence of the function (disassembled from binary executable) as input, introduce a more fine-grained
strategy to decompose the instructions (the decomposed parts are called tokens), consider the position
information of tokens between and within the instructions, and then create a BERT MLM task to
learn the tokens in order to get the instruction semantics and function semantics with the target of the
function embedding generated by the model can fully represent the semantics of the original function
in mind.

3 Design
3.1 Overview

Fig. 2 shows the overview of firmVulSeeker, which consists of three phases.

The first stage is the pretraining stage. In this paper, we use a BERT MLM task to pretrain the
assembly instruction sequence to capture the complex internal semantics of instructions and the long-
range dependency relations of different instructions. At this stage, we will feed the original assembly
instruction sequence to the model and the output will be instruction embedding sequency. Compared
to SAFE, a more fine-grained strategy is used: we take one instruction as a sentence, and break it down
into basic tokens. Take the instruction “mov eax, [esp + 4]” as example, we will break it down to seven
tokens: “mov”, “eax”, “[”,“esp”,“+”,“4”, “]”.
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Figure 2: firmVulSeeker overview

The second stage is the fine-tuning stage, aiming to further refine the semantics learned from
the first stage for different downstream tasks. Inspired by SBERT [19], we add a pooling layer to the
pretrained model from the first stage to derive a fixed-size embedding as a function embedding. By
fine-tuning the pooling layer and the pretraining model, the function embedding was calculated and
the similarity between the two function was calculated by calculating the cosine similarity between
their embeddings [21].

The third stage is the querying stage, aiming to find in the target corpus the most similar function
to the vulnerability function, and confirm whether it’s really a vulnerability through manual analysis
or other methods. The target corpus is constructed as follows: get the firmware, extract the binary
executables from the firmware, disassemble the binary executables, get all the functions, feed them
into the fine-tuned model to generate the function embeddings, and store them in the dataset finally.

In the following, we will introduce the design details of firmVulSeeker, including its input
representation, the pretraining model, the fine-tuning model and more.

3.2 Input Representation
Given a function f (assembly instruction sequence), we will prepare the model input x, consisting

of 3 types of token sequence with the same size n:

Instruction sequence: xf = {mov, eax, +, . . .}n, generated by tokenizing the assembly instructions in
the function. As described in Section 3.1, all symbols that appear in the assembly instruction sequence
are treated as tokens, with the purpose to remain key information about the syntax and semantics of
assembly instructions.

Inter-instruction position sequence: xit = {1, 1, 1, 1, 2, . . .}n, a sequence of integers encoding the
position of each instruction in the function. The opcode and all operands within a single instruction
share the same integer value. The reason of introducing this position sequence is that it’s critical for
inferring binary semantics, for example, exchanging the two instructions “mov eax, [rbp-0x2c]” and
“add eax, 1” will get different semantics.
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Intra-instruction position sequence: xin = {1, 2, 3, 4, 1, . . .}n, a sequence of integers encoding the
position of opcode and operands within a single instruction. The reason of introducing this position
sequence is that exchanging the two operands in one instruction can significantly change the semantics
of the instruction. For example, when we change “eax” and “[rbp-0x2c]” in “mov eax, [rbp-0x2c]”, we
will get different semantics.

Since a BERT MLM task requires a vector as input, we use one-hot encoding to generate
embedding vector for each token in these three input sequences, and sum them up to get a single
embedding vector as the input to the model. Take the i-th token (e.g., xi) as an example, the input
representation is as follows:

Ei = Ef

(
xfi

) + Eit

(
xiti

) + Ein

(
xini

)
Here, xfi , xiti and xini represents the instruction code sequence, the inter-instruction position

sequence and the inner-instruction position sequence of the i-th token in the function assembly code
and Ef

(
xfi

)
, Eit

(
xiti

)
and Ein

(
xini

)
represents their embedding vector generated by one-hot encoding

[22–23] respectively.

3.3 Pretraining Based on BERT MLM
In this paper, we will use a BERT MLM task to perform pretraining in order to help learning

specific instruction semantics and its context dependencies, which are critical for many binary analysis
tasks. MLM task requires the model to predict randomly masked words, that is, given the context, to
predict the masked words, which forces the model to learn the dependencies between the masked words
and their surrounding words, thus train the model to understand the semantics of the statement. At
the same time, MLM task is an unsupervised learning process that doesn’t need any manual labelling.
Therefore, some other pretraining samples can be used to further improve the accuracy of model
training, while avoiding overfitting.

Masking Strategy. As shown in Fig. 4, we follow the random masking strategy of the original
BERT model to mask the tokens to be predicted. Specifically, it selects 15% tokens to deal with as
follows: 1) randomly select 80% of them to be masked; 2) replace 10% with any other token than it;
3) 10% remains unchanged. Masking means to use a special token (e.g.,<MASK>) to replace the
selected tokens. Then, the model will predict what the masked tokens are based on the remaining 85%
un-masked tokens. What to be masked in this paper can be opcode or operand of an instruction or the
entire instruction, or even a sequence of multiple instructions, as long as a fixed percentage of tokens
are selected.

Training objectives. The pretraining model fp takes the input representation described above as
input: (E1, E2, . . . , Ei, . . . , En) , i ∈ P, where, we use Ei to represent the embedding of the i-th token
(e.g., xi) to be masked. In this paper, we select the token xfi in the instruction code token sequence xf

to be masked, and we use P to represent a set of positions to be masked. Then, the model will predict
the masked tokens:

{
x̂fi , i ∈ P

} = fp (E1, E2, . . . , Ei, . . . , En). Let fp be parameterized by θ , the training
objective of fp is thus to search for θ that minimizes the cross-entropy losses between the predicted
tokens and the actual tokens, that is:

arg min
θ

|P|∑
i=1

(−xfi log
(
x̂fi

))
(1)

As shown in Fig. 3, fp uses Transformer self-attention layer as encoder to generate context-aware
embedding, so that the context information of every token can be embedded into the embedding of
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each token in the entire input sequence, that is Ei. Specifically, each embedding of each token at each
layer will participate in all the other tokens’ embedding generation process, then aggregates at that
layer, and finally updates its embedding at the next layer. That means the last embedding, learned
after the last layer, encodes semantic information of each token in the entire input sequence. That’s very
different from the word2vec approach used in previous work, where once the training is completed, the
token embedding is fixed. However, even the same token may have very different semantic in different
contexts, which word2vec can’t deal with but our model can. On top of the transformer, we use a
softmax layer to output the probability of the masked token xfi .

Figure 3: pretraining based on BERT MLM

3.4 fine-tuning Based on Siamese Network
As shown in Fig. 2, the second stage is to find-tune the model, whose task is: given a triplet (f1, f2, y)

consisting of a pair of functions (f1 and f2) and their similarity label y(1 and −1 respectively indicate
that these two functions are similar and dissimilar), to train the model to learn the similarity of two
functions. There are two main operations in this stage: one for function embedding generation; one
for fine-tuning the model according to the true label of the two functions.
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Figure 4: masking strategy

Function embedding generation. Inspired by SBERT [20], we add a pooling layer to the pretrained
model outputted in the first stage to derive a fixed-size embedding as a function embedding. In terms of
strategy, we select the MEANstrategy strategy recommended by SBERT model, taking the average of
all the embedding vectors outputted in the first stage as its function embedding. Given the embedding
vector sequence produced by the pretraining model El = (El1, El2, . . . , Eln), the function embedding
generation formula is as follows:

u = tanh
(∑n

i=1 El,i

n
· W1

)
· W2 (2)

Here, W1 and W2 are n × n and n × m matrix respectively.

Fine-tuning the model. After generating function embedding, we construct a Siamese network
[14] to update its weight parameters according to the cosine similarity [21] between the two function
embeddings and their real similarity label. We show the progress in Fig. 5.

Figure 5: Fine-tuning model based on Siamese network

Formally, given K function pairs
〈
fi, f ′

i

〉
and its real-word similarity label yi ∈ {1, −1} (1 means fi

is semantically similar to f ′
i , −1 means dissimilar). For each function pair, the output of the Siamese

network is:
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sim
(
fi, f ′

i

) = cos (u, v) =
∑n

i=1 (u [i] · v [i])√∑n

i=1 u [i] · √∑n

i=1 v [i]
(3)

Here, u and v are respectively the embedding of the function f1 and f2, u [i] and v [i] are the i-th
component of the vector u and v, respectively. Therefore, the objective of the fine-tuning is to minimize
the distance between the cosine similarity of the two function and their real-world label:

min
W1,...,W2

K∑
i=1

(
sim

(
fi, f ′

i

) − yi

)2
(4)

As in Gemini, we choose backpropagation gradient descent method to solve the formula (4), and
recursively calculate the gradient of the parameters according to the generated function embedding.
Because the pretrained model is part of formula (4), so, the parameters of the pretrained model can
be updated during fine-tuning. Finally, once a good performance (such as using AUC as a metric) is
achieved, we will terminate the fine-tuning progress. And the resulting model can be used to transform
a function into a valid function embedding for similarity detection.

3.5 Querying with a CVE Vulnerability Function
As shown in Fig. 6, the target of the querying stage is to search in the target corpus the most

similarity function with the CVE vulnerability as query function and finally confirm whether it’s
indeed a vulnerability. To do this: Firstly, we will use Binwalk to extract all the binary executables from
the embedded device firmware images, disassembled them to extract all the binary functions as a set of
target functions. Secondly, we feed all the functions in the target corpus to the resulting model from the
second stage to generate all their embeddings, and store them in the target corpus. Thirdly, we compile
the CVE vulnerability function, feed it to the model and generate the function embedding as the query
embedding u. Fourthly, we calculate the similarity between u and all the function embedding vs. in the
target corpus, and ranking them. Finally, we manually confirm whether the most similar function is
indeed a vulnerability function.

Figure 6: Querying with a CVE vulnerability function

4 Experiment and Evaluation
4.1 Experiment Settings

Experiment environment. We conduct all the experiments on a Linux Desktop Machine, Intel(R)
Core (TM) i7-8700K CPU @ 3.70GH, with 12 virtual cores, 16GB RAM, 1 GeForce RTX 2080-Ti
GPU, Ubuntu 16.04, CUDA 10.0, CUDNN 7.6.5, Python 3.7, PyTorch 1.6.0, GCC 7.3.0, and IDA
Pro 7.5.
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Baselines and model parameters. In this paper, we select Gemini and SAFE as the baseline to
compare with our firmVulSeeker, because SAFE is the state-of-the-art binary function similarity
analysis tool and Gemini has provided its firmware vulnerability capability which can be usually
baseline to compare with other tools. For the sake of fair comparison, we set the embedding dimension
to 128 and the maximum number of instructions to 150 as in SAFE. We also set the layers 12, the
headers 8 and the hidden embedding 128 in the basic BERT parameters.

Datasets. In our evaluation, we collect 3 datasets: (1) Dataset I for training and evaluating the
accuracy of the model; (2) a vulnerability dataset (Dataset III); (3) Dataset II for evaluating the
performance of the firmVulSeeker on real-word cases.

• Dataset I. This dataset is used for training and baseline comparison. It consists of binaries
compiled from source code, so that we have ground truth. As shown in Tab. 2, we col-
lect 4 (but different versions) software projects widely used in embedded device firmware,
including: coreutils-6.51, coreutils-6.7, bintuils-2.302, busybox-1-21-stable3,OpenSSL_1_0_1f4

and OpenSSL_1_0_1u. We compile them into 5 architectures (x86_32, x86_64, arm_32, mips_32
and mipseb_32) using gcc-7.3.05 with 4 optimization levels (O0-O3), resulting 4, 140 binary files
(considering openssl is often found in embedded firmware as libssl.so and libcrypto.so, so we
compile openssl into libssl.so and libcrypto.so.) containing 1,493,950 functions.

� Dataset partitioning. We strictly separate the dataset into different function sets to be
used in pretraining, fine-tuning and evaluation, although in theory pretraining can be
done on a large-scale dataset including functions for fine-tuning. In terms of dataset for
fine-tuning, we set the ratio of training set and testing set as 1:4, which is just opposite
to the common 4:1, to prove the generalization capability of our model from a small
number of training samples to large number of unseen testing samples to alleviate the
possibility of overfitting.

� Similar/dissimilar function pairs set. In this paper, we didn’t strip the symbols in the
compilation process, so we use the symbol as index to search in the dataset, and treat
two functions with the same function name as similar, others are dissimilar. Moreover,
we keep the training and testing function pairs strictly non-duplicated by ensuring the
functions that appear in training function pairs not appear in the testing set anymore.
And we set the ratio between similar and dissimilar function pairs in the training set as
1:5 for fine-tuning, which follows the actual distribution of similar/dissimilar functions
(in practice, the proportion of dissimilar functions is larger than similar functions).

• Dataset II (vulnerability dataset). This dataset contains known CVE vulnerabilities collected
from CVE website6. We use “openssl” and “busybox” (because the two projects are widely used
in the embedded firmware) as index to search from the CVE website and select the items which
clearly describe where are their vulnerable functions. In the resulting dataset, we exclude the
items containing “openssl” but not related with the OpenSSL project (e.g., associated with PHP,
OpenSSH, Ruby and so on), and finally we get the remaining 52 CVEs meet our requirements,
based on which we built our vulnerability dataset.

• Dataset III (firmware dataset). In order to evaluate the vulnerability search capability on
the real-world firmware sets, we collect firmware images from the official sites of D-Link,

1https://www.gnu.org/software/coreutils/
2https://www.gnu.org/software/binutils/
3https://git.busybox.net/busybox
4https://github.com/openssl/openssl.git
5https://gcc.gnu.org/
6https://cve.mitre.org/

https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/binutils/
https://git.busybox.net/busybox
https://github.com/openssl/openssl.git
https://gcc.gnu.org/
https://cve.mitre.org/
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Netgear, Cisco, Tenda and TP_Link, and select out the firmware images whose filesystem and
corresponding binary files and library function can be extracted by binwalk. Finally, we get
70 firmware images, mainly some small home router or camera firmware, and the number of
arm_32 (little-endian), mips_32 (big-endian) and mips_32 (little-endian) architecture is 36, 23
and 11, respectively.

Table 2: Dataset I

Project Version Compiler Optimization levels Architecture Functions(#)

OpenSSL 1_0_1f gcc-7.3.0 O0-O3 x86_32,
x86_64,
arm_32,
mips_32,
mipseb_32

124,090
1_0_1u 123,673

coreutils 6.5 337,823
6.7 337,823

bintuils 2.30 505,503
busybox 1–21 65,038
Total functions(#) 1,493,950

4.2 Evaluation
We will evaluate firmVulSeeker in terms of accuracy compared to the state-of-the-art tools, the

robustness of the model, the scalability of the model and the vulnerability search capabilities on the
real-world firmware set.

4.2.1 Accuracy

As shown in Section 4.1, Gemini and SAFE are selected as baseline tools for comparison with
firmVulSeeker. Gemini is the first deep learning-based firmware vulnerability search for embedded
firmware and is often used as the baseline tool for comparison. SAFE is the state-of-the-art tool for
binary code similarity analysis in term of function granularity. As in Gemini and SAFE, we select the
area under ROC(Receiver Operating Characteristic) curve (AUC) as metric to quantify the accuracy
of firmVulSeeker, the higher the AUC score, the better the accuracy of the model.

Fig. 7 shows the average AUC score when matching functions on different architectures with
irmVulSeeker, SAFE and Gemini, where Fig. 7a shows the comparison results about the actual test
results on our evaluation dataset and Fig. 7b shows the comparison results about the reported results
in their papers.

SAFE and Gemini reported their AUC score on their evaluation sets as 0.990 and 0.971
respectively in their papers, as shown in Fig. 7b. However, on our evaluation datasets, the AUC score of
firmVulSeeker, SAFE and Gemini is 0.982, 0.971 and 0.871, respectively, as shown in Fig. 7a. We can
see that firmVulSeeker is a little better than SAFE and far better than Gemini, thanks to its automated
feature learning process and its pretraining model can extract instruction semantics more accurately,
therefore the semantic features learned can better represent the function code than SAFE and Gemini.
The training and testing set in Gemini all come from the same dataset compiled from OpenSSL with
the same compiler, which is prone to overfitting, that’s the reason contributed to the poor performance
on the evaluation dataset provided in this paper.
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(a) (b)

Figure 7: Actual results vs. reported results

4.2.2 Robustness

We discuss the robustness of the firmVulSeeker from three angels: across architectures, across
optimization levels and dealing with new projects. The results are show in Fig. 8.

0.8

0.85

0.9

0.95

1

openssl coreutils binutils busybox gmp

robustness

arch opt arch+opt

Figure 8: Robustness of the model

The entries “arch”, “opt” and “arch + opt” in Fig. 8 respectively means we only consider
cross-architecture, cross-optimization levels and consider both architecture and optimization. All the
projects except “gmp”7 in Fig. 8 participate in the pre-training and fine-tuning process. “gmp” is a new
project used to test the capability of the model to deal with new, previously unseen functions.

As you can see, firmVulSeeker performs best on all the projects when considering optimization
levels only, with an AUC up to 0.983. The reason behind this is the syntax of the two functions from
different optimization levels but same architecture doesn’t change significantly (i.e., the names of the
opcode and operands remain unchanged). The AUC score of only considering cross-architecture is
slightly lower, while the AUC score of both considering architecture and optimization levels lowest,
only 0.945%, 3.8% lower than that of only considering optimization levels. The “gmp” project has the
worst results because it didn’t participate in the pretraining or fine-tuning process, however, even in
its worst case (arch + opt), the AUC score is still 0.939, only 4.47% lower than the optimal case of the
other projects. This result shows that firmVulSeeker can find semantically similar function pairs on a
completely new dataset, which also proves the robustness of firmVulSeeker.

7https://gmplib.org/

https://gmplib.org/
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4.2.3 Scalability

We try to apply (part of) firmVulSeeker to other tools and analyze the results to show the
scalability of firmVulSeeker. Specifically, we apply firmVulSeeker’s pretraining model on SAFE and
Gemini, as shown in Figs. 9 and 10, replacing the corresponding component in the original tool with
the green part.

Figure 9: SAFE+

Figure 10: Gemini+
As shown in Fig. 9, we use firmVulSeeker pretraining model to substitute the original i2v

component in the SAFE using word2vec model to embed the instruction sequence to instruction
embedding sequence. The results are shown in Tab. 3. On the evaluation dataset provided in this paper,
the AUC score of SAFE + increases by 0.012 than that of the original SAFE, and even exceeds that
of firmVulSeeker.

Table 3: AUC score in SAFE, SAFE + and firmVulSeeker on our evaluation dataset

Tools SAFE SAFE+ firmVulSeeker

AUC 0.971 0.986 0.981

As shown in Fig. 10, we use firmVulSeeker pretraining model plus a polling layer to replace
Gemini’s original manually-selected feature vector components. Specifically, we use the pretraining
model to generate the instruction embedding sequence for all the basic blocks in the function’s CFG,
then average all the instruction embeddings in the basic block as its basic block embedding, attach it
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to the corresponding node in the CFG and finally get the resulting ACFG as the input to the Gemini’s
Structure2Vec [24] to generate function embedding.

Tab. 4 shows the AUC score of Gemini, Gemini + and firmVulSeeker on the evaluation dataset
in this paper. As the Tab. 4 shows, Gemini + improves greatly the AUC score than the original (0.085,
about 9.8%), and the AUC score even closes to firmVulSeeker.

Table 4: AUC score of Gemini, Gemini + and firmVulSeeker on our evaluation dataset

Tools Gemini Gemini+ firmVulSeeker

AUC 0.871 0.956 0.981

The above two cases show that firmVulSeeker can be extended to most analysis tools that start
with a sequence of instructions as the sample set.

4.2.4 The Capability of Vulnerability Search on Real-World Firmware Images

We use 15 CVE vulnerability functions selected from dataset II to search on the firmware images
in the dataset III. We give the number, the program and its version affected by the vulnerability, the
program version we will compile, the vulnerability type and functions involved in the vulnerability of
each CVE in Tab. 5. For each CVE, we compile the specified version of the program source code using
gcc 7.3.0 with the default optimization option, targeting arm_32, mips_32 and mipseb_32, resulting
in 45 vulnerability functions. Therefore, 45 search tasks will be performed.

Table 5: CVEs and related information

CVE number Involved program Version Type Involved functions

CVE-2018–20679 busybox-1.30.0
before

1.30.0 ID udhcp_get_option(),
networking/udhcp/common.c

CVE-2017-16544 busybox-1.27.2 1.27.2 CE add_match, libbb/lineedit.c
CVE-2017-15873 busybox-1.27.2 1.27.2 IOF get_next_block,

archival/libarchive/decom-
press_bunzip2.c

CVE-2016-6301 busybox 1.21 DoS recv_and_process_client_pkt,
networking/ntpd.c

CVE-2015-9261 busybox1.27.2
before

1.27.2 BOF huft_build,
archival/libarchive/decom-
press_gunzip.c

CVE-2016-6302 openssl1.1.0 before 1.1.0 DoS tls_decrypt_ticket, ssl/t1_lib.c
CVE-2016-6303 openssl1.1.0 before 1.1.0 DoS MDC2_Update,

crypto/mdc2/mdc2dgst.c
CVE-2016-6305 openssl1.1.0a

before
1.1.0 DoS ssl3_read_bytes,

record/rec_layer_s3.c
CVE-2016-2842 openssl1.0.1(1.0.1 s

before)
1.0.1f DoS doapr_outch,

crypto/bio/b_print.c

(Continued)
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Table 5: Continued
CVE number Involved program Version Type Involved functions

openssl1.0.2(1.0.2 g
before)

CVE-2016-2182 openssl 1.1.0
before

1.1.0 OoW BN_bn2dec function,
crypto/bn/bn_print.c

CVE-2016-2180 openssl 1.0.2 h
before

1.0.2 h OoR TS_OBJ_print_bio,
crypto/ts/ts_lib.c

CVE-2016-2178 openssl 1.0.2 h 1.0.2 h ID dsa_sign_setup,
crypto/dsa/dsa_ossl.c

CVE-2015-1791 openssl before
0.9.8zg

0.9.8 DoS ssl3_get_new_session_ticket,
ssl/s3_clnt.c

openssl 1.0.0
before 1.0.0 s
openssl 1.0.1
before 1.0.1n
openssl 1.0.2
before 1.0.2b

CVE-2015-0290 OpenSSL before
1.0.2a

1.0.1f DoS ssl3_write_bytes, s3_pkt.c

CVE-2014-3508 openssl before
0.9.8zb

0.9.8 ID OBJ_obj2txt,
crypto/objects/obj_dat.c

openssl 1.0.0
before 1.0.0n
openssl 1.0.1
before 1.0.1i

Note: ∗ ID: information disclosure, DoS: deny of Service, OOR: out-of-read, OOW: out-of-write, BOF: buffer overflow, IOF: integer
overflow, CE: code execution. “DoS” in this table is not a strict type of vulnerability, but a phenomenon caused by some vulnerability which
will cause the program or service to crash. We use “DoS” as a substitute, because the official website doesn’t clearly indicate what causes it.

For each CVE, three queries will be performed, each will retrieve the top 1, 10 and 50 firmware
functions that is/are similar to the CVE function. Then we will confirm whether they are indeed
vulnerability functions manually. We take the average value of these three queries as the search
accuracy of the CVE. The reason for taking the average value is that in the actual testing process, it
is found that the accuracy difference between using x86 binary function to match ARM/MIPS binary
function and using ARM/MIPS binary function to match ARM/MIPS binary function is within the
range of 10%, which is an acceptable error. Although we can’t know the actual optimization option
used by the firmware, however, benefit from the across-architecture and across-optimization capability
of firmVulSeeker, we take the average value of these three searches as the final accuracy evaluation
metric.

The results show that we can always successfully search in the dataset III all the CVE vulnerability
except CVE-2015-02908. We analyzed the CVE-2015-0290, and found that it only exists in OpenSSL
libraries that support AES NI on 64-bit platforms. However, all the firmware images in dataset III are

8https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0290

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0290
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ARM or MIPS series, so it can’t be successfully matched even using CVE binary functions compiled
for ARM or MIPS.

Particularly, in order to compare with SAFE and Gemini, we list the results in terms of using the
same CVE: CVE-2015-17919 and CVE-2014-350810 as queries as in the Gemini in Tab. 6:

Table 6: top-K results in Gemini, SAFE and firmVulSeeker

CVE-2015-1791 CVE-2014-3508

#N@1 #N@10 #N@50 #N@1 #N@10 #N@50

Gemini 1 5 20 1 4 22
SAFE 1 7 24 1 6 25
firmVulSeeker 1 8 29 1 7 32
Note: ∗ N@K means the number of positives in the top-K.

As we can see from the table, all the three tools can successfully find real vulnerability in top-
1 result. For CVE-2015-1971, firmVulSeeker can find 3 and 9 more real vulnerability than Gemini
in top-10 and top-50 results, 60% and 45% enhanced, respectively. Similarly, it can find 1 and 5
more real vulnerability than SAFE, 14.3% and 20.8% enhanced, respectively. For CVE-2014-3508,
firmVulSeeker has 75% and 45.5% higher search accuracy than Gemini, and 16.7% and 28% higher
search accuracy than SAFE in their respectively the top-10 and top-50 results. As a result, we can
conclude that firmVulSeeker achieves a higher accuracy than other two tools and more vulnerabilities
can be detected.

5 Related Work
5.1 Binary Code Similarity Analysis

We can divide the existing binary code similarity analysis into three categories: static approaches,
dynamic approaches and learning-based approaches.

Static approaches. Static approaches use static program analysis technology to convert binary
into graphs (for example, CFG) and then perform comparison on them. These tools perform
matching on the generated CFG or DFG [25–28] or decompose the graphs into fragments [29–32]
for similarity detection. Most such approaches consider only the syntax of the instructions and not
consider semantics which are critical in the analysis progress, especially when dealing with different
optimization options.

Dynamic approaches. Such approaches assume that similar code must have semantically similar
behavior. This, they perform the analysis by directly execution the given code [33,34], performing
dynamic slicing [35] or taint analysis [36] on the given binary, and then checking the semantic
equivalence based on the information collected during the execution. In general, these approaches are
good at extracting semantics of the code and they have good resilience against optimization options
and code obfuscation, but at the same time, they usually suffer from poor scalability and incomplete
code coverage.

9https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1791
10https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3508

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1791
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3508


JIOT, 2022, vol.4, no.1 17

Learning-based approaches. Such approaches take the advantage of machine learning to solve
the binary similarity problem. In recent years, many techniques [2–8,12–17] have been proposed,
leveraging graph representation learning techniques [37,38] to embed the code information into
embeddings (i.e., high dimensional numerical vectors) for similarity detection. There are two major
advantages over the above static and dynamic approaches: Higher accuracy, because they incorporate
the unique features of the code into their analysis progress by means of manual engineered featured
[2–4] or automatic deep-learning-based methods [5–8,12–17]; and better scalability, because they don’t
use heavy graph matching algorithm nor dynamic execution.

5.2 Firmware Vulnerability Based on Binary Similarity Analysis
Costin et al. [39] proposed the first large-scale embedded firmware security analysis method based

on fuzzy hashing, which was at file-level granularity, so its accuracy was not ideal. Multi-MH [27]
is the first cross-architecture binary code similarity detection tool, which has a good effect on the
HeartBleed vulnerability correlation. discoveRE [28] prefilters function-level features before graph
matching to improve the efficiency of its search. FirmUp [40] utilizes the normalized fragements to
represent program to solve cross-architecture, cross-compiler, cross-optimization option problems.
BinARM [41] can identify vulnerable function in IED firmware using a granularity from coarse-
grained to fine-grained. Xmatch [42] performs vulnerability detection based on data dependency and
condition checking. Apposed to directly compare two control flow graphs, learning-based approaches
such as Genius, Gemini, VulSeeker, aDiff [43] etc. embed the code features into the embedding to
calculate the similarity of the two functions to improve the original search accuracy.

In general, firmware vulnerability based on binary similarity ranges from the earlier file compari-
son based on fuzzy hash to fine-grained function comparison, from file characteristics to control flow
graph to semantic feature extraction, even to the multi-dimensional feature selection. The encoding
scheme ranges from the earlier graph matching to graph embedding matching. The speed and accuracy
of vulnerability correlation have been greatly improved. We conclude that the finer the granularity, the
richer the encoding features, the more intelligent the encoding scheme, the higher the accuracy. And it
shows absolute advantages in large-scale binary firmware vulnerability search.

6 Conclusion

In this paper, we introduced firmVulSeeker based on BERT MLM and Siamese network to search
vulnerability in embedded device firmware images. Its core idea is to first pretrain a BERT MLM task
to explicitly learn the approximate semantic information of the instruction and its context dependency
relation. Then, a large number of similar/dissimilar function pairs are used to fine-tune the pretrained
model, making full use of the instruction semantic information learned in the first stage, letting the
resulting model can judge whether any two function pairs are similar. Finally, it will use a function
embedding generated from the fine-tuned model to search in the targeted corpus and find the most
similar function which will be confirmed whether it’s a real vulnerability manually. We evaluated the
accuracy, robustness, scalability and vulnerability search capability of firmVulSeeker on a real-world
firmware set. Results show that it can greatly improve the accuracy of matching semantically similar
functions, and can successfully find more real vulnerabilities in real-world firmware than other tools.

In the future work, we will consider the influence of different compilers and different obfuscation
mechanisms on the accuracy of the model in order to further improve the vulnerability search
capability of firmVulSeeker on real-world embedded device firmware images. At the same time, we will
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research how to automatically confirm the existence of vulnerabilities based on the binary vulnerability
search results in order to further eliminate the false positives caused by manual confirmation.
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