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Abstract: The attention mechanism is one of the most important priori
knowledge to enhance convolutional neural networks. Most attention mecha-
nisms are bound to the convolutional layer and use local or global contextual
information to recalibrate the input. This is a popular attention strategy
design method. Global contextual information helps the network to consider
the overall distribution, while local contextual information is more general.
The contextual information makes the network pay attention to the mean or
maximum value of a particular receptive field. Different from the most atten-
tion mechanism, this article proposes a novel attention mechanism with the
heuristic difference attention module (HDAM). HDAM’s input recalibration
is based on the difference between the local and global contextual information
instead of the mean and maximum values. At the same time, to make different
layers have a more suitable local receptive field sizes and increase the flexibility
of the local receptive field design, we use genetic algorithm to heuristically
produce local receptive fields. First, HDAM extracts the mean value of the
global and local receptive fields as the corresponding contextual information.
Then the difference between the global and local contextual information is
calculated. Finally, HDAM uses this difference to recalibrate the input. In
addition, we use the heuristic ability of genetic algorithm to search for the
local receptive field size of each layer. Our experiments on CIFAR-10 and
CIFAR-100 show that HDAM can use fewer parameters than other attention
mechanisms to achieve higher accuracy. We implement HDAM with the
Python library, Pytorch, and the code and models will be publicly available.

Keywords: Attention mechanism; convolutional neural network; genetic algo-
rithm

1 Introduction

Convolutional Neural Networks (CNNs) [1] have achieved amazing development in the past
10 years. Due to the efficient representation, CNNs have achieved remarkable results in multiple
downstream tasks, such as classification [2], detection [3] and segmentation [4]. Therefore, efforts
to improve representation capabilities have never stopped. For example, in the early days of CNNs,
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researchers found that the depth [5] of the network has a great impact on the performance of
CNNs, because the deeper the network, the richer the high-dimensional information of the network.
However, if the network reaches a certain depth, not only the computational cost of the network
increases, and the inference is prolonged, but the performance of the network is severely degraded due
to the vanishing or explosion of the gradient [6]. In addition to depth that affects the performance of
the network, the width of the network is also an important factor that affects the performance of the
network. Similar to increasing the depth, increasing the width [7,8] can also improve the representation
ability of the network. But it also increases computing consumption and extends the inference time.
Cardinality [9] diversifies the style of convolution in the same layer. This method can significantly
improve the network without increasing parameters or adding a small number of parameters. All
the above are to improve network performance by stacking, and skip connection [10] is to change
the way of information transmission whose advantage is that no additional parameters are required,
the gradient explosion and vanishing are solved at the same time, and the convergence speed of the
network is improved. However, additional storage space is needed to store the skip-connected part
during inference. Although the above methods can improve the performance of CNNs to a certain
extent, they consume a lot of computing resources such as memory and floating-point calculations.
The attention mechanism can improve CNNs with a small number of parameters and zero additional
storage requirements. More importantly, the attention mechanism simulates the human visual system,
that is, pay more attention to meaningful information rather than meaningless information.

Among them, SENet [11] is one of the most representative attention networks. SENet [11] proposes
a channel attention mechanism and calculates the global average of each channel, which is used as
contextual information (CI) to recalibrate the input. This can magnify the global feature of each
channel. On this basis, CBAM [12] and BAM [13] additionally consider the spatial attention, and
add the global maximum value to enrich the global CI, so that the network can find what and where
to focus on more accurately. To make this attention more general, GENet [14] extracts local CI instead
of global CI. Based on GENet [14], SPANet [15] extracts local CI from different spatial scales.

These attention strategies use few parameters to enhance the performance of CNNs. They
recalibrate input pixels by multiplying the input pixels with global or local CI embedding, and integrate
the CI into the network’s information flow. Therefore, most attention mechanisms use either global CI
or local CI. We review the meaning of global and local CI and conclude that global CI represents the
average value of the entire image, reflecting the trend of the overall pixel value; the local CI describes
the average value of the local receptive field, and represents the average value of the pixel values in
a small area of the sample. The two are different, and the animal’s visual system pays attention to
this difference. The difference in color distribution between objects is a prerequisite for the observer
to distinguish and pay special attention. And today’s various attention strategies do not take this
into consideration. Therefore, this paper proposes a novel attention strategy based on the difference
between global and local CI, and this attention module is termed Heuristic Difference Attention
Module (HADM). At the same time, to design a more reasonable local receptive field, we adopt a
heuristic strategy, that is, to introduce genetic algorithm (GA) [16] to perform a heuristic search for
the size of the local receptive field.

Specifically, we first extract global and local CI, obtain their embedding through the shared
multi-layer perceptron (MLP) [17] of two layers, calculate the difference between global and local CI
according to embedding, and use this difference recalibrate the input. At the same time, we encode
the combination of local receptive field sizes of all layers in the network, and search for the best
network local receptive field size combination through GA [16]. We validate HDAM on CIFAR-10 [18]
and CIFAR-100 [18], and used accuracy, number of parameters as the measurement standards. The
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results show that HDAM surpasses various current state-of-the-art network models. These networks
include classic networks, attention networks, and networks based on neural network architecture
search (NAS) [19,20].

2 Related Work

In this part, we will introduce the work related to HDAM from two aspects: Convolutional neural
network and Attention mechanism.

2.1 Convolutional Neural Network
In the first decade of the 21st century, limited by hardware equipment, the development of CNNs

has been at a low ebb. With the gradual increase in computing power, and due to the success of
AlexNet [21] in 2011, the development of CNNs enteredthe spring. Since then, CNNs have been the
main backbone of computer vision and made remarkable achievements. After AlexNet, researchers
continued to improve the performance of CNNs. GoogleNet [8] and VGG [7] increased the depth of
CNNs, and found that depth is an important factor affecting the performance of CNNs. However,
the training of the model needs to be carefully designed, such as the initialization and learning rate
settings, otherwise it is dificult to achieve the desired performance. Batch normalization (BN) [22]
believes that this is because the convolutional layer in the model fits the input whose distribution is
changing in each inference, that is, the input produces an internal covariate shift, so it proposes to
normalize the data of each batch. This makes the training of the model easier and the performance
is compelling. Although BN can make training easier, the explosion and vanishing of gradient caused
by the increase in depth still affect the potential of CNNs. Therefore, the skip connection proposed
by ResNet [10] solves this problem by a big margin, because it alleviates the gradient accumulation
consequence caused by the chain rule. ResNet [10] provides an efficient network topology template
for later CNNs design. In addition to depth, WideResNet [5] based on ResNet [10] believes that
expanding the width is also an effective means to improve CNNs. Depth and width are important
hyperparameters that affect the performance of CNNs. Besides, the convolution operation affects
the performance of CNNs from another perspective. The depthwise separable convolution [23] uses
fewer parameters to achieve similar accuracy to the general convolution. This type of convolution is
mainly used on mobile devices. ResNeXt [9] uses multiple convolutions of different sizes in the same
convolutional layer. Also, without using additional parameters or using few additional parameters,
the performance of CNNs has been greatly improved. Different from the above methods, the current
design of CNNs network is mainly focused on the performance improvement strategy of CNNs based
on the attention mechanism. This paper also proposes a new type of attention network.

2.2 Attention Mechanism
The attention mechanism simulates how the animal visual system works, that is, paying attention

to the more effective part. The performance of the model can be improved without increasing or
increasing a few parameters. The attention mechanism mainly extracts the CI of the feature maps, and
then multiplies CI back to the network to increase the network’s sensitivity to this information. SENet
[11] is a typical attention network. It extracts the result of global average pooling as CI. SPANet [15]
and GENet [14] extract the local mean as the local CI, which makes the extraction method based on
global CI more general. In addition to using the mean value as the CI, CBAM [12] and BAM [13] also
use the maximum value as the component of the CI. Different from all existing attention mechanisms,
we extract global and local CI at the same time, seek the difference between the two, and pass this
difference back to the network. At the same time, to find the most suitable local receptive field size, we
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use GA [16] based on heuristic search for the first time in the field of attention mechanism to generate
the most suitable local receptive field size combination.

3 Proposed Algorithm

In this part, we discuss HDAM in detail. HDAM mainly includes four parts, namely global and
local CI extraction, embedding and difference calculation, input recalibration, and best local receptive
field search. To explain HDAM more accurately, we provide detailed formula derivation.

3.1 Contextual Information Extraction
CI extraction is an important operation of the attention mechanism. CI represents the concentra-

tion of a specific receptive field information and is the basis for embedding calculation.

We use the mean to represent the CI of the receptive field. First, we divide the input into non-
overlapping patches, and each patch is a receptive field. We calculate the average value of the receptive
field on each channel based on the channel, and use this as the CI in the receptive field on each
channel. Given Input into ∈ R

P×C×Ĥ×Ŵ, where P means the number of local receptive fields (patches)
and Ĥ and Ŵ denote the height and width of the patch. P equals HW/

(
ĤŴ

)
. With the addition of

global receptive field, the final receptive field metric (RF) is ∈ R
(P+1)×C×Ĥ×Ŵ, then the CI is as follows:

CI = Mean (RF) (1)

where Mean() calculates the mean of RF and CI is ∈ R
P×C. If RF is the global receptive filed, it means

global CI, otherwise it means local CI.

3.2 Embedding and Difference Calculation
Embedding calculation maps the extracted CI . To control the number of parameters, we use two-

layer shared MLP to map the extracted global and local CI . The ReLu [24] activation function is used
after the first layer, and the softmax activation function is used after the second layer. Finally, we use
cross entropy to calculate the difference between global embedding and local embedding as shown
below (for clarity, bias is ignored):

Embedding = Softmax (W2 (ReLu (W1 (CI)))) (2)

where Embedding is ∈ R
P×C and W 1 and W 2 denote the two-layer MLP. Embedding is(

Local Embedding
Global Embedding

)
, where Local Embedding (LE) is ∈ R

HW/(ĤŴ)×C and Global Embedding (GE) is

∈ R
1×C. The difference coefficient (DC) is calculated as follows:

DC = Crossentropy (GE, LE) (3)

where DC is ∈ R
HW/(ĤŴ)×1.

3.3 Recalibration
The recalibration is to multiply the difference coefficient with the input. This process makes

the difference between the global and local CI flow into the network in the inference to enrich the
subsequent feature processing, so that the gradient carries the difference information to optimize the
network parameters.

We broadcast each DC obtained into a matrix with the same dimension and shape as its
corresponding local receptive filed, and then the obtained matrix is multiplied by the Input. Finally, we
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reshape the shape of Output into R
C×H×W:

DC = Broadcast (DC)

Output = Input × DC (4)

Output = Reshape (Output) .

3.4 Local Receptive Filed Search
In this part, we will elaborate on the working principle of GA’s heuristic search in local receptive

field design. To facilitate our explanation, we use ResNet-50 [10] as the basic model for our explana-
tion. As we all know, ResNet-50 [10] consists of four units, and each unit consists of several residual
blocks. The number of residual blocks in each unit is three, four, six, and three, respectively. We only
design HDAM on the input of each residual block. The input special sizes of all residual blocks in
each of these four units are 16, 16, 8, and 4. Taking the first unit as an example, because the input
special size of each residual block is 16, the range of the local receptive field size of each block can be
[1/16, 1/8, 1/4, 1/2, 0], where the number represents the proportion of the input special size, 0 means
that HDAM is not used, and the range of the local receptive field in the remaining units are [1/16, 1/8,
1/4, 1/2, 0], [1/8, 1/4, 1/2, 0] and [1/4, 1/2, 0].

We use an array with a length of 16, that is, the sum of the number of blocks in all units, to represent
the local receptive field size combination of all patches in ResNet-50 [10]. Fig. 1 is an example:

Figure 1: An encoded individual. The numbers in the dashed lines indicate the other size options

We represent a combination of local receptive fields as an individual and use GA [16] to search
for the best combination. Algorithm 1 shows the entire process of GA [16].
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Algorithm 1: Local receptive field search
Require: The population size N, the maximal generation number T , the crossover probability μ, the
mutation of probability ν.
1:P0 ← Initialize N arrays as a population using encoding strategy;
2: Decode each individual and generate the corresponding CNN (ResNet-50 [10]). Train and validate

each CNN, then take the highest accuracy as the fitness of each individual in P0;
3: t = 0;
4: while t < T do
5: Qt ← ∅;
6: while |Qt| < N do
7: p1, p2 ← Select two arrays from Pt with binary tournament selection;
8: q1, q2 ← Generate two arrays by q1 and q2 by crossover operation with the probability μ, and

mutation operation with the probability ν;
9: Qt ← Qt ∪ q1 ∪ q2;
10: end while
11: Train and evaluate CNNs’ performance in Qt;
12: Pt+1 ← Select N arrays from Pt ∪ Qt by environmental selection;
13: t ← t + 1;
14: end while

Ensure: The architecture of a ResNet-50 [10] with the best combination of local receptive fields.

Before GA process, N denotes the population size, T denotes the maximal generation number,
and the crossover and mutation probability are μ and ν, respectively. First, a population needs to be
initialized. We encode the combination of a local receptive field size of a CNN as an array. We repeat
this procedure N times to generate an initial population P0. Second, we decode the individuals in
the initial population to N CNNs. Then those CNNs are trained and evaluated and use the highest
accuracy of each CNN on the validation dataset as its corresponding individual fitness value. Third,
initialize a generation counter t to 0 and an empty set Qt is initialized. Two individuals are selected as
the parents from the population by binary tournament. Generate a number between 0 and 1 and if the
number is less than μ, conduct the crossover operation on the two parent individuals. Determine in the
same way whether to perform a mutation. After crossover and mutation, two offspring individuals are
generated and merge them with Qt. Repeat this process before the size of Qt reaches N. Fourth, decode,
train, and evaluate the individuals to obtain their fitness. Merge Qt and Pt, then select N individuals
from them by environmental selection to generate Pt+1 and t increases by 1. Repeat these procedures
until T generations.

4 Experiment Design
4.1 Dataset

We conduct our experiments on the two most popular datasets, CIFAR-10 [18] and CIFAR-100
[18]. The CIFAR [18] dataset is collected by Krizhevsky et al. and is divided in two subsets including
CIFAR-10 [18] and CIFAR-100 [18] according to the number of categories. Each subset contains
60,000 images with the of 32 32, including 50,000 training images and 10,000 test images. The difference
is that CIFAR-10 [18] contains 10 categories of images, each with 6,000 images, of which 5,000 are
used for training and 1,000 are used for testing; CIFAR-100 [18] contains 100 categories, each with
600 images, of which 500 are used for training, 100 are used for testing. Fig. 2 shows the example of
the CIFAR-10 and CIFAR-100.
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Figure 2: Example of CIFAR-10 [18] and CIFAR-100 [18]

4.2 Peer Competitor
To illustrate the superior performance of HDAM, we select a variety of different CNNs models for

comparison, including the classic CNNs, the CNNs searched by NAS, and the CNNs with mainstream
attention mechanism. The CNN architectures searched by NAS includes the ones searched by semi-
automatic NAS and fully automatic NAS. The classic CNN structure includes DenseNet [25], Maxout
[26], VGG [7], Network in Network [27], Highway Network [28], All-CNN [29] and FractalNet [30].
The structures searched by semi-automatic NAS include Genetic CNN [31], EAS [32] and Block-
QNN-S [33]. The structures found by the automatic search include Large-scale Evolution [34], CGP-
CNN [35], NAS [36], MetaQNN [37] and AE-CNN [38]. CNNs based on the attention mechanism
include SE-Net [11] and CBAM [12]. Except for the structure of CNNs based on the attention
mechanism, we directly use their experimental results in the original paper, because these results are
often the best. We retrain CNNs based on the attention mechanism.

4.3 Parameter Settings
We use ResNet-50 [10] as our basic model for embedding HDAM. According to the computing

resource, two NVIDIA 2080TI graphic processing units (GPUs), we set the population size to 20
and the maximal generation to 20. The crossover and mutation probability are set to 0.9 and 0.2,
respectively. We use the SGD with momentum as the optimizer. The momentum and weight decay are
set to 0.9 and 5e − 4, respectively. A total of 250 epochs is set to train the individuals. The batch size
is 128 and the learning rate is shown in Tab. 1. The training accuracy is recorded every 30 iterations
in each epoch, and the test accuracy is recorded once in each epoch. Data augmentation includes
random cropping, random horizontal flipping, and Cutout [39]. Random cropping fills four zeros on
all borders of the image, and then randomly crops the image with a size of 32 × 32.
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Table 1: Learning rate

Epoch 0∼50 50∼80 80∼120 120∼250

Learning rate 0.1 0.01 0.001 0.0008

5 Experiment Results

To void accidental factors, our experiments are conducted for 5 times, and the average value of
these 5 times was taken as the final result. In addition to using accuracy as our evaluation index, the
number of parameters is also used as one of the evaluation index. Tab. 2 shows the experimental results
of HDAM on two datasets.

Table 2: Comparison between the proposed HDAM and the state-of-the-art peer competitors in terms
of the classification accuracy, the number of parameters on the dataset CIFAR-10 [18] and CIFAR-100
[18]

Model CIFAR-10 [18] CIFAR-100 [18] Parameter (M) Style

DenseNet (k = 12) [25] 94.76 75.58 1.0 Hand-crafted
Maxout [26] 93.57 61.40 - Hand-crafted
VGG [7] 93.34 71.95 20.04 Hand-crafted
Network in network
[27]

91.19 64.32 - Hand-crafted

Highway network [28] 92.28 67.61 - Hand-crafted
All-CNN [29] 92.75 66.29 - Hand-crafted
FractalNet [30] 94.78 77.70 38.6 Hand-crafted
Genetic CNN [31] 92.90 70.95 - Semi-automatic
EAS [32] 95.77 - 23.4 Semi-automatic
Block-QNN-S [33] 95.62 79.35 6.1 Semi-automatic
Large-scale evolution
[34]

94.60 - 5.4 Full-automatic

Large-scale evolution
[34]

- 77.00 40.4 Full-automatic

CGP-CNN [35] 94.02 - 2.64 Full-automatic
NAS [36] 93.99 - 2.5 Full-automatic
MetaQNN [37] 93.08 72.86 - Full-automatic
AE-CNN [38] 95.70 - 2.0 Full-automatic
AE-CNN [38] - 79.15 5.4 Full-automatic
SE-ResNet-101 [11] 95.34 - 47.29 Attention
SE-ResNet-101 [11] - 79.22 47.48 Attention
CBAM-ResNet-101 [12] 95.75 - 47.29 Attention
CBAM-ResNet-101 [12] - 79.26 47.48 Attention
HDAM (Ours) 96.10 - 23.65 Attention
HDAM (Ours) 79.79 23.83 Attention
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The first column of the table is the name of models, the second and third columns are the accuracy
of CIFAR-10 [18] and CIFAR-100 [18] on each model, the fourth column is the number of parameters
of each model, and the last column is the model category including hand-crafted, semi-automatic, and
full-automatic. ‘-’ means that the corresponding model has no public record.

The experimental results show that HDAM obtains the best accuracy of 96.10 on CIFAR-10 [18]
and the highest accuracy of 79.79 on CIFAR-100 [18]. The accuracy of HDAM on CIFAR-10 [18]
is 1.32 higher than the highest accuracy among hand-designed classic CNNs, 0.33 higher than the
highest accuracy of CNNs generated by semi-automatic NAS, 0.4 higher than the highest accuracy of
CNNs generated by full-automatic NAS and 0.35 higher than the highest accuracy of CNNs based
on the attention mechanism. HDAM also obtains the highest accuracy of 79.79 on CIFAR-100 [18],
which is 2.09 higher than the highest accuracy of hand-designed CNNs, 0.44 higher than the highest
accuracy of CNNs generated by semi-automatic NAS, 0.64 higher than the highest accuracy generated
by full-automatic NAS, and 0.53 higher than the highest accuracy of CNNs based on the attention
mechanism. In terms of the number of parameters, HDAM has half the parameters of the attention
network SE-ResNet-101 [11] and CBAM-ResNet-101 [12], which means that HDAM saves nearly half
of the parameters and achieves higher performance.

6 Conclusion and Future Work

We propose a new attention mechanism module HDAM based on heuristics search and differences
between the local and global CI. This module calculates global and local CI at the same time, but
unlike any previous attention mechanism, HDAM does not use local or global CI to recalibrate the
input, but calculates the difference between the two and recalibrates the input with the difference. In
addition, to design a more reasonable local receptive field size, we first introduce heuristic search into
the attention mechanism design. We encode the local receptive field of each convolutional layer into
individuals, and use GA to search for the most suitable combination of local receptive fields. We use
ResNet-50 as the base model to embed HDAM, and test HDAM on CIFAR-10 and CIFAR-100,
respectively, and compare with four types of CNNs, including classic and state-of-the-art. The results
show that HDAM surpasses all the above models on CIFAR-10 and CIFAR-100. Compared with the
most popular attention mechanism-based models, HDAM can use nearly half of the parameters to
obtain higher accuracy. For the future work, we will use weight inheritance to reduce the time spent
searching for local receptive fields.
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