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Abstract: Cryo-electron microscopy (cryo-EM) has become one of the main-
stream techniques for determining the structures of proteins and macromolec-
ular complexes, with prospects for development and significance. Researchers
must select hundreds of thousands of particles from micrographs to acquire
the database for single-particle cryo-EM reconstruction. However, existing
particle picking methods cannot ensure that the particles are in the center
of the bounding box because the signal-to-noise ratio (SNR) of micrographs
is extremely low, thereby directly affecting the efficiency and accuracy of
3D reconstruction. We propose an automated particle-picking method (Cen-
terPicker) based on particle center point detection to automatically select a
large number of high-quality particles from low signal-to-noise, low-contrast
refrigerated microscopy images. The method uses a fully convolutional neural
network to generate a keypoint heatmap. The heatmap value represents the
probability that a micrograph pixel belongs to a particle center area. Cen-
terPicker can process images of any size and can directly predict the center
point and size of the particle. The network implements multiscale feature
fusion and introduces an attention mechanism to improve the feature fusion
part to obtain more accurate selection results. We have conducted a detailed
evaluation of CenterPicker on a range of datasets, and results indicate that it
excels in single-particle picking tasks.

Keywords: Cryo-electron microscope; deep learning; particle picking; object
detection

1 Introduction

The main experimental observation methods currently used to resolve the structures of biological
protein macromolecules are X-ray crystallography, nuclear magnetic resonance spectroscopy, and
cryo-electron microscopy. Cryo-electron microscopy (cryo-EM) is an experimental technique that
captures images of biological samples at cryogenic temperatures using a transmission electron micro-
scope [1]. The cryo-EM 3D reconstruction technique aims to determine the 3D structure of single
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particles using 2D electron microscopy images (or micrographs) [2]. To achieve 3D reconstruction,
the researchers initially select a large number of single particles from micrographs. Then, 2D class
averaging is performed on the selected single particles. The results of the 2D class average are used
to complete the initial 3D model construction. Finally, a higher accurate 3D model is obtained. The
pipeline for 3D reconstruction of cryo-EM is shown in Fig. 1. These high-resolution results that have
been reconstructed rely on hundreds of thousands of high-quality particle images selected from the
micrographs [3]. This paper presents a novel approach to one of the first computational problems in
single-particle cryo-EM, namely, particle picking.

Figure 1: Pipeline for 3D reconstruction of cryo-EM

In particle picking, the goal is to locate individual particles in a micrograph while avoiding con-
taminants, malformed particles, and background regions [1]. However, the current particle selection
has many challenges. One trouble is the low signal-to-noise ratio (SNR) of the electron microscopy
images acquired by cryo-EM [4]. The high dose of electron beams in cryo-EM can considerably break
the covalent bonds of particles during projection; thus, the dose size must be strictly limited, generating
highly noisy images. In addition, the accuracy of the 3D reconstruction is directly influenced by the
quality of the selected particles (accurate identification, particles in the center of the bounding box
as much as possible). However, many of the present deep learning based single-particle extraction
methods do not devote sufficient attention to the impact of noise. Most methods use fully connected
layers, and the particle image should be resized when applying the model to new macromolecules of
different sizes. Hence, it causes great limitations for particle picking and is vulnerable to noise that
generates a larger border than the particle size. The efficiency and accuracy of these methods do
not reach expectations. Thus, most researchers still use manual or semi-automated selection, which
requires nearly a month or more to select the particles. Ensuring that the particles are in the center of
the bounding box is challenging.

We build off a modern cryo-EM single-particle picking method based on object detection, in
particular, the CenterNet [5], which enables anchor-free detection. However, different from CenterNet,
we implement multiscale upsampling and introduce an attention module to improve the feature fusion
process, referred to as the “CenterPicker.” The proposed method can fuse vital semantic information
with more comprehensive spatial information and has certain noise immunity.

In summary, the contributions of this paper are as follows:

1. We propose a method for the direct detection of cryo-EM single-particle center, enabling
automated end-to-end detection. The proposed method improves the accuracy and efficiency
of cryo-EM single-particle picking. Meanwhile, it ensures that the single particles are in the
center of the detection bounding box, providing better quality single-particle pictures for the
subsequent cryo-EM 3D reconstruction step

2. We propose a high-resolution deconvolution module to compensate for the information loss
during downsampling, and introduce attention mechanism to avoid the introduction of noise,
thus improve the accuracy of the network.
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3. Our results demonstrate the value of the new formulation, enabling performance improve-
ments in efficiency and accuracy of single-particle picking.

We present the current state of research on single-particle picking algorithms in Section 2, and we
describe our method in detail in Section 3. Finally, in Section 4, we have experimentally demonstrated
that CenterPicker is an excellent single-particle detection algorithm for cryo-EM.

2 Related Works

In the previous decades, many methods for automatic or semi-automatic particle picking have
been proposed. They mainly include particle selection software, such as XMIPP [6], Picker [7],
and RELION [8], most of which use computer vision techniques, namely, edge detection, feature
extraction, and template matching. However, these methods are unsuitable for cryo-EM data with
poor contrast and low SNR. The results of these approach degrade rapidly with the quality of
micrographs, and the semi-automated methods that require the introduction of manual selection are
time-consuming.

Subsequently, many cryo-EM single-particle detection methods based on deep learning have
emerged to solve the problem of automated single-particle picking and improve the accuracy and
efficiency of single-particle picking. The application of deep learning can show good robustness for
images with low SNR. Others have also explored ways to improve fully automated particle picking
tasks using traditional deep learning architectures. DeepPicker [9] proposed in 2016 uses VGG-Net
[10] as the backbone, transforming particle picking into an image classification problem, which uses a
sliding window to crop micrographs and classify these subimages as particles or backgrounds. In 2017,
DeepEM was published. DeepEM [11] used a simple CNN architecture based on AlexNet [12] to train
a model that can pick particles from unseen images of the same dataset. However, it is limited by the
small number of training and test sets and performs poorly in terms of accuracy. The object detection
model cleverly integrates the classification and localization tasks to achieve efficient detection.

Particle picking methods based on object detection have also been proposed successively given the
advantages of object detection algorithms. FastParticlePicker [13] is presented; it used the Fast R-CNN
[14] architecture with a simplified region proposal method to automate human-level particle picking
tasks. However, it uses a sliding window to obtain the region of interest, and its performance mainly
depends on the classification network. This search method greatly affects the detection efficiency and
is susceptible to noise. After FastParticlePicker, crYOLO [15] improved on the target detection model
YOLO [16] for particle detection, designed to automatically identify particles with high recall and
high accuracy and to fully automate the data acquisition process. However, the experimental parts
do not mention how the crYOLO framework detects single particles of other sizes and aspect ratios.
Subsequently, many excellent object detection networks emerged, and they performed well in natural
images (such as Faster R-CN [17], Mask R-CNN [18]). Researchers have used them for cryo-EM
particle picking but did not obtain the desired results. The reason is that cryo-EM microscopy images
are very different from natural images. These images are low-resolution, low-SNR images with a dense
distribution of objects. Most current excellent target detection algorithms are anchor-based. When
using different anchor sizes to generate regions of interest, the detectors and classifiers receive noise
and neighboring particles to confuse the target objects. The network can only detect specific particles
when the anchor scale is fixed. In addition, because they use the fully connected layer, they can only
handle fixed-size images. Therefore, researchers have turned their attention to image segmentation
networks.
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In recent years, particle picking methods based on image segmentation networks have been
proposed. PIXER [3] proposed a grid-based local maximum method to locate particles from prob-
ability density maps for cryo-EM data with low SNR, which can be as good as the semi-automatic
method RELION in terms of accuracy. PARSED [19] proposed an automatic and fast deep learning
framework for selecting cryo-EM single particles using fully convolutional networks (FCNs) as a
baseline. However, the method requires a known 3D structure of the protein molecule and the
production of a training set accordingly. This type of method initially generates probability density
maps using a segmentation network and then computes the particle centers on the probability density
maps by post-processing. The probability indicates the likelihood of one pixel belonging to a particle.
Particle selection from probability density maps can produce more robust signals than direct selection
from original noisy micrographs. However, they are not end-to-end methods. Post-processing affects
the efficiency of detection. In addition, the probability value of the particle centroid position in the
probability density map does not differ much from the probability value of its surrounding pixel
positions. Therefore, the post-processing does not guarantee the accuracy of center point localization.

To address these problems, we propose the CenterPicker method. CenterPicker turns the particle
picking problem into a center point estimation problem, and it is a fully convolutional network that can
accept images of arbitrary size. This method will not be affected by noise and neighboring particles
to generate excessively large boxes because our method does not use the anchor. At the same time,
this method realizes multiscale feature fusion and introduces an attention mechanism, which can
more accurately identify and locate particles. In addition, CenterPicker can directly predict the center
point and size of the particle without post-processing, realizing real end-to-end detection. We have
conducted a detailed evaluation of CenterPicker on a range of datasets, and the results show that our
method has excellent performance.

3 Methods

CenterPicker is a network based on cryo-EM single-particle center point detection. First, com-
pared with the cryo-EM particle picking methods based on object detection network, CenterPicker
does not use the anchor to locate the particles but directly detects the key points (center points) of
the particles and then returns to other particle attributes. The network become unaffected by noise to
generate bounding box much larger than the particle. In addition, it is a fully convolutional network
that can handle cryo-EM images of any size. Second, compared with the image segmentation network
CenterPicker also generates a heatmap. Different from the single-particle picking method for cryo-EM
based on image segmentation network, the value in the heatmap generated by CenterPicker represents
the probability that the corresponding pixel area belongs to the center point of the particle. Therefore, it
can directly predict particle position and size without post-processing, enabling end-to-end detection,
and providing better quality single-particle for the subsequent cryo-EM 3D reconstruction step.

3.1 Model Construction
As shown in Fig. 2, our network is mainly divided into three parts, namely, Convolution module,

Deconvolution module, and Detector. The cryo-EM micrograph is reduced to 1/32 times the original
image through the Convolution module and then restored to 1/4 times through the Deconvolution
module. Finally, the keypoint heatmap, particle bounding box size, and local offset are predicted
through the three branches of the Detector.
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Figure 2: Schematic representation of the CenterPicker model

The Convolution module extracts features and reduces the feature map to 1/32 times of the
input cryo-EM micrograph to obtain strong semantic information. In this module, we construct a
variation of the DLA [20] network. The basic DLA network is designed for natural images, but cryo-
EM micrographs are different from natural images. Cryo-EM micrographs have higher levels of noise
and larger features, and the receptive field brought by the 3 × 3 filters is evidently insufficient for
cryo-EM micrographs because the information must be aggregated over much larger spatial extents to
perform effective detection. However, larger filters increase the computational cost and the number of
parameters, easily leading to overfitting. Therefore, we replace the 3 × 3 convolution with a 2-dilated
convolution, increasing the receptive field without introducing additional parameters. The variation
of the DLA network can fuse semantic and spatial features effectively, whereas the receptive field is
increased and more suitable for the single-particle picking task of the cryo-EM micrograph.

The downsampling rate of our network is 4, and the Deconvolution module outputs a feature
map reduced by a factor of 4 through multiscale upsampling. The output feature map enters three
parallel branches to predict the key point heat map, local offset, and particle size. If the input image
size is 2048 × 2048, the output of the keypoint heatmap branch is 1 × 512 × 512, and the value of
each position represents the probability that the corresponding original image area belongs to the
particle center point area. The output of the Local offset branch is 2 × 512 × 512, and the two channels
represent the offset of the center point x and y. Similarly, the output of the object size branch is
2 × 512 × 512, and the two channels are the w and h of the bounding box. Different from the pixel-by-
pixel classification of the image segmentation network, our network is similar to a region-by-region
classification. It searches for the center point area and can output the size and offset of the bounding-
box corresponding to the center area through the two other branches. In the prediction phase, max
pooling is used to detect the local maximum of the heatmap as the keypoint. Then the keypoint with the
top K confidence score ranking is considered the particle center. Finally, the bounding box is generated
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by combining the results of the two other branches. At this point, CenterPicker has completed the
particle picking task.

3.2 High-Resolution Deconvolution Module
As mentioned in Section 3.1, we used multiscale upsampling to restore the feature map from

1/32 to 1/4 times. For single-particle picking tasks, precise localization and accurate classification are
required. Hence, the strong semantic information at the smaller scale and strong spatial information at
the larger scale are extremely important. The commonly used method of recovering image resolution
from low to high inevitably loses spatial information and is not the best option. Thus, we adopted
a multiresolution parallel structure similar to a triangle (Fig. 2, orange arrow). High resolution is
maintained throughout the process; thus, it is more precise in space. Moreover, the information is
aggregated from low resolution to high resolution, thereby aggregating strong semantic information
and shallow semantic information, which are beneficial to increase the classification accuracy. This
structure preserves spatial information to a certain extent and can also allow the network to become
suitable for the detection of small particles. The network performs detection directly on the high-
resolution feature map, without a fully connected layer; it can accept cryo-EM images of any size
within a reasonable range.

3.3 Attentional Feature Fusion
In 3.2, we achieved multiscale upsampling, but the problem is as follows: how do we merge the

information transmitted from different scales? Cryo-EM micrographs are noisy and have low contrast.
If each input is added directly, then the noise is inevitably incorporated, affecting the final detection
and producing aliasing effects. Therefore, using the direct addition method for feature fusion is not
feasible. The general approach is to use a convolution prior to fusion to alleviate the aliasing effect.
In FPN, a 3 × 3 convolution is used. A 3 × 3 convolution is also used in our network to alleviate the
aliasing effect. At the same time, considering the impact of noise on the network, we introduced a
lightweight attention mechanism after the 3 × 3 convolution, allowing the network to focus on more
important information and ignore useless information. In the node structure shown in Fig. 2, the
attention module comprises a serial channel attention mechanism and a spatial attention mechanism.
The feature map after 3 × 3 convolution fusion is adaptively adjusted in the two dimensions of channel
and space. Such a feature fusion structure can alleviate the aliasing effect and reduce the introduction
of noise while allowing the network to focus on important information rapidly, increasing the speed
and stability of training and improving the network’s performance.

4 Experiment

In this section, we conducted an ablation experiment to evaluate the effectiveness of our improve-
ment. A comparison experiment with other methods was performed to verify the efficiency and
accuracy of the network.

4.1 Dataset
The dataset used for network training consists of the real cryo-EM micrograph dataset, as shown

in Tab. 1. We used six different datasets to construct the training dataset, namely, beta-galactosidase
(EMPIAR-10017 [21]), Plasmodium falciparum 80S ribosome (EMPIAR-10028 [22]), picornavirus
(EMPIAR-10033 [23]), T20S proteasome (EMPIAR-10057 [24]), Nora virus (EMPIAR-10088 [25]),
and TcdA1 (EMPIAR-10089 [26]), which contain particles of different sizes and various shapes, largely
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ensuring the diversity of the training dataset to enhance the generalization of the network. The dataset
ratio of training to test is 8:2.

Table 1: Data used in the training datasets

Name 10017 10028 10033 10057 10088 10089

Number of
images

168 98 106 89 93 97

Particle size 177 360 400 176 480 352
Pixel size(Å) 1.77 1.34 1.14 1.35 1.06 1.14
Micrograph
size

4096 ∗ 4096 4096 ∗ 4096 4096 ∗ 4096 3838 ∗ 3710 3838 ∗ 3710 4096 ∗
4096

4.2 Ablation Experiment
To evaluate whether our improvements are effective, we trained Faster R-CNN, CenterNet,

CenterPicker-v1, CenterPicker-v2, and CenterPicker separately using the same dataset. Among them,
CenterPicker-v1 represents the network with high-resolution deconvolution module. CenterPicker-
v2 represents the network with attentional feature fusion. We propose evaluations based on a metric
commonly used in the object detection literature, the precision-recall curve, and the area under it,
also known as the Average Precision (AP). For completeness, we also use AP50, AP75, and AR as
evaluation indicators. AP50 and AP70 represent the AP calculated when the IOU threshold is set to
0.5 and 0.75, respectively.

The results are shown in Tab. 2. Regardless of whether it only introduces high-resolution deconvo-
lution module or only the attentional feature fusion, the network surpasses CenterNet on AP and AR,
and their fusion achieves the best performance. CenterPicker’s AP and AR reached 0.520 and 0.628,
respectively. CenterPicker has a larger receptive field than CenterNet and is more suitable for cryo-EM
micrographs. The network can more effectively aggregate semantic information and spatial informa-
tion while reducing the impact of noise to a certain extent by introducing the attention mechanism
and multiscale feature fusion. Fig. 3 shows the changes in loss during the training of CenterNet and
CenterPickerv2. Evidently, the network converges faster and more stable by introducing the attention
mechanism.

Table 2: Results of ablation experiment

Model AP AP50 AP75 AR

CenterNet 0.367 0.647 0.378 0.505
CenterPicker-v1 0.490 0.714 0.587 0.607
CenterPicker-v2 0.502 0.715 0.595 0.617
CenterPicker 0.520 0.734 0.619 0.628
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Figure 3: Loss curve. (a) Loss curve of CenterNet. (b) Loss curve of CenterPicker-v2

We also trained the Faster R-CNN with the same dataset. Faster R-CNN is an anchor-based
detection method. It is susceptible to noise and surrounding particles to produce the bounding box
larger than the particle size. In some situation, a box contains multiple particles. As shown in Tab. 3,
the Faster R-CNN did not perform well in the cryo-EM single-particle picking task, CenterNet and
CenterPicker performed better than it, and in some metrics, the CenterPicker even outperformed it
by a factor of two. Fig. 4 shows the output comparison of Faster R-CNN (Fig. 4b) and CenterPicker
(Fig. 4a) in EMPIAR-10081. For the same cryo-EM micrograph Faster R-CNN predicts a very small
number of bounding boxes, and the size of the bounding box is significantly larger than the particles.
However, CenterPicker has detected more particles, and the size and position of the bounding box are
very accurate. The experimental results of CenterPicker and Faster R-CNN also prove that the anchor-
free detection network is more suitable for cryo-EM micrograph picking tasks than the anchor-based
detection network.

Table 3: Results of comparative experiment

Model AP AP50 AP75 AR

Faster R-CNN 0.248 0.461 0.240 0.338
CenterNet 0.367 0.647 0.378 0.505
CenterPicker 0.520 0.734 0.619 0.628

4.3 Comparison with Other Picking Methods
Fig. 5 shows the intermediate results (keypoint heatmap) output by CenterPicker and the result of

the final picking. The value in the keypoint heatmap represents the probability that the corresponding
pixel position belongs to the center point of the particle, that is, the darkest position on the map. In
the detector, we use 3 × 3 max pooling to process the keypoint heatmap, find the local maximum as
the center point, and aggregate the results of the two other branches (object size and offset) to obtain
the final bounding box, as shown in Fig. 5c. We used 80S Ribosome micrographs to test the Precision
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and Recall of CenterPicker, DeepPicker, and URDnet on the same computer to evaluate the particle
picking performance of CenterPicker. In the experiment, for all these pickers, if the predicted bounding
box and ground-truth IOU>0.5, then this particle is considered an accurately collected particle.

Figure 4: Particle picking results on EMPIAR-10081. (a) Particle picking results of CenterPicker on
EMPIAR-10081. (b) Particle picking results of Faster R-CNN on EMPIAR-10081

Figure 5: Particle picking in cryo-EM micrographs with CenterPicker. (a) Cryo-EM micrograph. (b)
Keypoint heatmap. (c) Particle picking result

Precision measures the degree to which the prediction results are related to the ground-truth, and
Recall measures the ability of the network to detect positive cases. As shown in Tab. 4, CenterPicker
achieves a precision of 0.9087 and a recall of 0.9624, which are higher than the two other pickers,
thereby confirming the high performance of our method in the particle picking task. URDnet is a U-
shaped structure. It restores high-resolution representations from the low-resolution representations
generated by the high-to-low resolution network. However, this structure inevitably causes the loss
of spatial information, resulting in inaccurate spatial positioning. The upsampling process of our
network maintains high resolution, which reduces the loss of spatial information to a certain extent.
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In addition, our network inputs cryo-EM micrograph and directly outputs particle borders without
post-processing. The output of URDnet is a pixel prediction map, and post-processing (Connected
Component Analysis) is required to determine the center point of the particle.

Table 4: Picking performance on EMPIAR-10153

Model Precision Recall

DeepPicker 0.8424 0.9313
URDnet 0.8544 0.9587
CenterPicker 0.9087 0.9624

At the same time, to verify the ability of CenterPicker to generate heatmap, we calculated the center
area of the training set in Tab. 1 as the particle area label and manually labeled the contaminated areas
to generate the segmentation data set. Then, we used this dataset to train FCN, U-Net, and Attention
U-Net. We randomly selected two cryo-EM micrographs to compare the prediction results of the three
networks with the keypoint heatmap generated by the CenterPicker. The result is shown in Fig. 6. The
left column is the original cryo-EM image, and the three middle columns are the heatmap predicted by
the three image segmentation networks. In the heatmap, the dark green part is the contaminated area
predicted by the segmentation network, and the light green part is the center point area of the particle.
The rightmost column is the keypoint heatmap predicted by CenterPicker. Clearly, the FCN has the
worst effect. It even predicts the entire picture as contaminated areas. U-Net has a more complex
structure than FCN and has more upsampling and feature fusion processes; thus, his result is slightly
better than FCN. The Attention U-Net has better results, but it is also affected by high-level noise and
low contrast, resulting in many particles that cannot be accurately detected. The heatmap predicted by
CenterPicker is the most accurate, and the detected particle is the most. This finding is also due to the
introduction of multiscale upsampling and attention mechanisms. In an image with darker colors and
low contrast, the remaining three segmentation networks mistakenly detect a large part of the image
as contaminated areas because the three networks are insufficient to extract semantic information. At
the same time, because of the addition of pollution categories, competition between classes exists, and
the increase in the depth and width of the network may improve. For small particles, the structures of
the three other networks are unsuitable. When the target is small, after a series of downsampling, its
proportion in the feature map becomes very small or even disappear, and subsequent upsampling is
also difficult to recover it; thus, detecting small particles is difficult. However, our network maintains
a higher resolution throughout the process, so there is less loss of spatial information and have better
performance in small particle detection.

As for the picking speed, Tab. 5 records the average time cost of each substep (load, preprocessing,
network, and detect). Generally, the processing time increases with the size of the micrograph. For any
size of the images shown in Tab. 5, we can obtain the results within 2 s. CenterPicker uses a fully
convolutional network without FC layers and no postprocessing. Thus, it is more efficient than other
particle picking methods implemented based on target detection networks. Compared with the particle
picking method based on the image segmentation network, CenterPicker realizes end-to-end detection.
The network directly predicts the center of the particle and can predict a more accurate bounding box.
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Figure 6: Experiments compared with segmented networks

Table 5: The time cost of each part of CenterPicker

Name 10049 10075 10081 10184

Micrograph size 3710∗3838 4096∗4096 3838∗3710 3838∗3710
Load 0.142 0.142 0.130 0.129
Preprocessing 0.089 0.090 0.089 0.093
Net 1.410 1.394 1.328 1.351
Detect 0.200 0.262 0.174 0.243
Total time 1.841 1.888 1.721 1.816

5 Conclusion

We have presented CenterPicker, a new method for particle picking in cryo-EM micrograph.
Different from the object-detection particle picking method, the proposed method uses a fully
convolutional network to input micrographs of any size and is more efficient. Compared with the
particle picking method based on the segmentation network, our network can directly predict the
center point and size of the particle to achieve end-to-end detection. To integrate strong semantic
information and spatial information to improve the accuracy of the network, we have realized the
fusion of multiscale features. At the same time, we introduced attention mechanism to enhance the
feature fusion process. The results show that CenterPicker can break the bottleneck of particles picking
and enable end-to-end, automated detection. However, using max pooling to detect the center point is
not optimal. This aspect needs to be further explored. Furthermore, we have not designed an algorithm
to eliminate particles with incomplete information which will be focus on our future work.
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