
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceJournal of Cyber Security
DOI: 10.32604/jcs.2022.026816

Article

Research on Known Vulnerability Detection Method Based on Firmware
Analysis

Wenjing Wang1, Tengteng Zhao1, Xiaolong Li1,*, Lei Huang1, Wei Zhang1 and Hui Guo2

1Beijing Institute of Control and Electronics Technology, Beijing, 100038, China
2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,

Beijing, 100876, China
*Corresponding Author: Xiaolong Li. Email: lxl-777333@163.com

Received: 03 March 2022; Accepted: 07 April 2022

Abstract: At present, the network security situation is becoming more and
more serious. Malicious network attacks such as computer viruses, Trojans
and hacker attacks are becoming more and more rampant. National and
group network attacks such as network information war and network terror-
ism have a serious damage to the production and life of the whole society. At
the same time, with the rapid development of Internet of Things and the arrival
of 5G era, IoT devices as an important part of industrial Internet system,
have become an important target of infiltration attacks by hostile forces. This
paper describes the challenges facing firmware vulnerability detection at this
stage, and introduces four automatic detection and utilization technologies in
detail: based on patch comparison, based on control flow, based on data flow
and ROP attack against buffer vulnerabilities. On the basis of clarifying its
core idea, main steps and experimental results, the limitations of its method
are proposed. Finally, combined with four automatic detection methods, this
paper summarizes the known vulnerability detection steps based on firmware
analysis, and looks forward to the follow-up work.

Keywords: IoT devices; vulnerability mining; automatic detection; static
analysis

1 Introduction

In recent years, with the deepening of the integration of informatization and industrialization,
industrial control systems have moved from stand-alone to interconnection, from closed to open, and
from automation to intelligence. With the significant improvement of productivity, industrial control
systems are facing an increasingly severe threats to information security. According to Gartner’s report
[1], the number of IoT devices will exceed 20 billion in 2020. In 2010, Iran’s nuclear facilities were
attacked by Stuxnet virus, which delayed the progress of Iran’s nuclear program for 18 months to
two years, which caused a sensation around the world. In 2012, the important information systems
of the oil industry in Iran, Lebanon and other Middle Eastern countries were greatly impacted by

http://dx.doi.org/10.32604/jcs.2022.026816
mailto:lxl-777333@163.com


2 JCS, 2022, vol.4, no.1

the “flame” virus, forcing Iran to temporarily cut off the Internet connection of the oil sector and
related facilities, and hitting the oil exports. Through the statistical analysis of the Internet of Things
vulnerability data publicly disclosed by CNVD (As shown in Figs. 1 and 2), it is found that there
are about 10,600 Internet of Things vulnerabilities so far, including 4,512 high-risk vulnerabilities,
accounting for 42.31%, and 1639 intermediate-risk vulnerabilities, accounting for 42.31%, which
is much higher than the proportion of high and intermediate risk vulnerabilities in the traditional
industries. Therefore, Internet of Things security has become the focus of governments and enterprises
around the world.

Figure 1: Distribution map of IoT vulnerability hazard levels

Figure 2: Trend of the number of vulnerabilities in the Internet of Things

According to the statistics of Alibaba mobile security team in 2015, 90% of IoT devices have
weak key and buffer overflow vulnerabilities [2,3]. In recent years, a large number of vulnerabilities
of IoT devices have been disclosed. For example, at the Black Hat Conference in 2013, Heffners [4]
showed the overflow class, password hard coding and command injection vulnerabilities of various
webcams, involving DLink, TPLink, Linksys and Trendnet device manufacturers. Attackers can use
these vulnerabilities to conduct unauthorized login and hijack the real-time picture of the camera.
Since then, various types of IoT devices (from smart homes, such as smart bulbs, thermostats and
routers, to electric vehicles and airplanes with wireless networks and entertainment systems) have been
disclosed at the hacker conference that have serious vulnerabilities. In addition, real security incidents



JCS, 2022, vol.4, no.1 3

caused by security vulnerabilities are also emerging one after another. On October 21, 2016, hackers
used a large number of IoT devices infected by Mirai virus to launch DDoS attacks against DNS
servers managed by Dyn, affecting the east coast, west coast of the United States and some parts
of Europe, and resulting in the inaccessibility of many well-known websites such as Twitter, Github,
Amazon, Paypal, BBC, Wall Street Journal and so on. Generally speaking, the attack against the
security vulnerabilities of IoT devices will not only cause the leakage of personal privacy, but also cause
the loss of personal and property, and even threaten the security of the whole cyberspace. Therefore,
vulnerability detection for IoT devices is imminent.

2 Challenges and Opportunities Facing Firmware Vulnerability Detection
2.1 IoT Device Types are Intricate and Have Different Standards

There are many IoT manufacturers, but there is no unified specification. Each manufacturer
adopts different file formats, CPU architecture and encryption methods, etc., which makes firmware
analysis face great challenges. Therefore, it is difficult to form a perfect standard vulnerability
analysis system. On the one hand, the CPU architecture of IoT devices is different from that of
general platforms, resulting in differences in program instruction sets. The instruction architecture
of general-purpose software is usually X86 or X86_64 [5–7]. The IoT programs usually use embedded
architectures such as ARM, MIPS and PowerPC. Therefore, the static analysis scheme directly based
on general CPU instruction assembly is no longer applicable. On the other hand, the peripheral I/O
hardware of IoT devices is diversified, which increases the difficulty of adapting dynamic analysis
technology [8].

2.2 The Firmware is Difficult to Obtain and Decompress
The general dynamic binary analysis technology needs to implement monitoring and analysis

on the periphery of the running program. Due to the limitation of the storage resources (storage)
of IoT devices, the relevant analysis modules cannot be deployed, resulting in the inapplicability of
dynamic analysis technology. At the same time, the computing capability of the hardware CPU is
limited, which will reduce the performance of dynamic analysis. In practice, the IoT devices usually do
not provide the source code of firmware, and even most of them do not publicly provide the firmware
of devices. Therefore, obtaining the firmware is the most difficult work in the research of firmware
vulnerability detection. After obtaining the firmware, it is usually impossible to directly analyze the
program, because what is obtained is a series of compressed files of program files and data files, which
need to be decompressed. However, different manufacturers use different compression methods, and
even some manufacturers use obfuscated encryption, which brings great difficulty to firmware analysis.

2.3 Low Success Rate of Firmware Dynamic Simulation
At present, the vulnerability detection based on firmware web interface is a more effective method

for firmware vulnerability detection, but this detection method requires real devices or dynamic
simulation of firmware. Because some devices are expensive and firmware simulation is more universal,
most of the existing research work adopts dynamic simulation of firmware based on QEMU [9,10].
According to relevant material statistics, only 13%–20% of firmware can be fully simulated (that is,
it supports all functions of simulated firmware). In addition, the dynamic execution of firmware also
causes great difficulties in the detection of firmware vulnerabilities.



4 JCS, 2022, vol.4, no.1

2.4 Opportunities for Vulnerability Mining in IoT Devices
The characteristics of IoT devices not only bring challenges to vulnerability mining, but also bring

new opportunities.

(1) The Richness of System Interaction: Although it is for vulnerability mining of IoT devices,
the IoT devices usually interact with terminal, cloud and other systems, so the device itself has
more attack surfaces. For the dynamic binary analysis scheme, we can make full use of the
information of the external interactive system to test and analyze the new attack surface.

(2) Massive Reuse of Component Code: During the development process of IoT device programs,
in order to save development costs, a large number of open source third-party libraries are used,
resulting in a large number of vulnerabilities of third-party components in IoT devices. The
previous static analysis technology based on binary comparison is mainly to discover security
vulnerabilities through different levels of information (control flow, program block, instruction
level), but now we can exploit homologous vulnerabilities through the similarity of different
levels of information.

(3) Convergence of Vulnerability Types: General software vulnerability types include memory
corruption classes (stack overflow, heap overflow, null pointer application, secondary release,
etc.), input verification classes (command injection, etc.), configuration error classes, etc. The
location of the vulnerability can be in the kernel, driver and user mode service program. For the
firmware of IoT devices containing operating systems, these types of vulnerabilities also exist
[11,12]. Therefore, whether static binary or dynamic binary analysis technology, the general
vulnerability detection rules are still applicable to the firmware and programs of IoT devices.

3 Automatic Detection and Utilization Technology of Firmware Vulnerabilities

Fuzzy testing [13] is a very effective vulnerability mining method for software and systems, and it is
also the most widely used technology for dynamic analysis of IoT devices. By sending random input to
the tested object, and by observing its behavior (usually program crash), potential vulnerabilities can
be discovered. Software vulnerability is a hot issue at present. Although fuzzy testing technology helps
us solve the problem of automatic discovery of program vulnerabilities, parallel fuzzy testing platform
can efficiently find a large number of program errors. But both defenders and attackers are more
concerned about whether these program vulnerabilities or errors may be exploited. How to quickly
analyze and evaluate the exploitability of vulnerabilities is one of the key problems in vulnerability
discovery and analysis.

The traditional software vulnerability exploitation is mainly constructed manually. This process
requires not only comprehensive system underlying knowledge (including file format, assembly code,
internal mechanism of operating system and processor architecture, etc.), but also in-depth and
detailed analysis of vulnerability mechanism, so as to construct successful utilization. With software
functions becoming more and more complex and vulnerabilities becoming more and more diversified,
the traditional utilization methods have been difficult to meet the challenges mentioned above.
At present, with the continuous development of program analysis technology, especially after the
successful application of stain analysis, symbol execution and other technologies in many fields such
as software dynamic analysis and software vulnerability detection, researchers began to try to use
these technologies to carry out efficient automatic construction of software vulnerability utilization
[14]. Tab. 1 shows the comparison between existing works. Next, this paper will introduce each work
in detail.



JCS, 2022, vol.4, no.1 5

Table 1: Comparison of automated verification methods for vulnerabilities

Plan Patch
based

Control flow oriented Data flow
oriented

Rop

Method APEG AEG MAYHEM PolyAEG FLOWSTITCH Q

Release
time

2008 2011 2012 2013 2015 2011

Core idea The patch
program
adds filter
conditions
to trigger
the crash
of the
original
program

Use the
program
verification
technology
to find the
input that
can satisfy
the
program to
enter the
unsafe
state and
can be
utilized

Use an
index-
based
memory
model to
optimize
the
processing
of
symbolic
memory

All control
flow
hijacking
points are
found
through
dynamic
taint
analysis to
complete
the
diversified
structure
of vulnera-
bility
samples

Use known
memory
errors to
directly or
indirectly
tamper with
variables at
key positions
in the original
data stream
of the
program to
complete the
automated
structure of
the utilization

Collect the
Gadget
(driver) in
the target
program
and auto-
matically
build the
ROP
through the
Gadget-
oriented
program-
ming
language

Limitations Unable to
handle the
case where
no filtering
judgment
is added in
the patch

Need to
rely on
source
code for
program
error
search

Only part
of the
system or
library
functions
can be
modeled,
and large
programs
cannot be
processed
efficiently

There are
certain
limitations
in the face
of data
execution
protection
mecha-
nisms

Does not
consider
satisfying
Turing
completeness

Did not
consider
automati-
cally
construct-
ing ROP
without ret
instruction

3.1 Automatic Vulnerability Detection and Utilization Technology Based on Patch Comparison
Early automated patching techniques were used to prevent the spread of worm. With the

development of technology, automatic patching technology has slowly penetrated into all aspects
of computer software security. Automatic patching technology is divided into two types: based on
runtime state and based on detection patch.



6 JCS, 2022, vol.4, no.1

The automatic vulnerability repair technology based on runtime state bypasses the vulnerabilities
without interrupting the program by comparing the normal execution process or taking some actions.
For example, ClearView fixes binary errors by automatically monitoring the normal execution of X86
system registers and memory. When an error occurs, ClearView compares it with the log during normal
operation to correct the error. In addition, ClearView can solve the problem of memory write out
of bounds and control flow vulnerabilities. The detection based patch technology can use genetic
algorithm to generate patches and patch vulnerabilities through constraint solving. For example,
GenProg uses genetic algorithms to patch vulnerabilities without requiring software specifications,
program comments and other special coding. In order to repair the vulnerability with minimal
changes, it uses structural difference algorithm and Delta debugging technology to further reduce the
difference between the patched program and the original program. SemFix combines the methods
of symbolic execution, constraint solving and program combination. It uses a given test case to
constrain the program that needs to be patched into a solution formula, and generates patches through
semantic analysis and dynamic symbolic execution. Automated patching technology has made many
research achievements in solving computer security problems, but it still can not repair all types of
vulnerabilities, and there is no breakthrough for 0 day vulnerabilities. How to better understand the
high-level semantics in the program is a difficult problem in the automatic patch technology.

At the IEEES&P conference in 2008, Brumley and others first proposed the automatic vulnera-
bility generation method APEG based on binary patch comparison. The core idea is based on the
following assumptions, that is, thhe patch program adds filter conditions that trigger the original
program to crash. Therefore, as long as you can find the location where the filter condition is added
in the patch program and construct the “violating” input that does not meet the filter condition, it
can be considered as a usable input candidate for the original program. According to the specific
introduction, the work is mainly divided into three steps: firstly, use binary difference comparison tools
(such as BinDiff and EBDS, etc.) to find the location of the patch, that is, the detection point of the
patch; Secondly, find out the input data that does not meet the patch detection point as the utilization
candidate of the original program; Finally, the monitoring methods such as stain propagation are used
to filter all the effective utilization that can cause overflow or control flow hijacking to occur in the
original program. According to the experimental results of several patches released by Microsoft, the
method has strong reliability and practicability. APEG is the first attempt to automate the construction
of vulnerability exploitation. Although the core idea is relatively simple, it has been widely recognized
by other researchers because of its strong operability. However, the limitations of APEG are mainly
reflected in two aspects: firstly, this method cannot deal with the case that no filter judgment is added to
the patch, for example, the patch that increases the buffer length in order to repair the buffer overflow;
Secondly, from the actual utilization effect, the constructed utilization type mainly belongs to denial
of service, that is, it can only cause the collapse of the original program, but cannot cause direct control
flow hijacking.

3.2 Automatic Vulnerability Detection and Utilization Technology Based on Control Flow
3.2.1 Automatic Vulnerability Detection and Utilization Technology Based on Source Code

Source code vulnerability detection aims at the software design and development stage, by
extracting the source code model and vulnerability rules, and detecting vulnerabilities in the source
code based on static program analysis technology. It has the advantages of high code coverage and
low false negatives, but it is highly dependent on known vulnerabilities and high false positives. Source
code vulnerability detection methods mainly include vulnerability detection based on intermediate



JCS, 2022, vol.4, no.1 7

representation and vulnerability detection based on logical reasoning [15–17]. The vulnerability detec-
tion method based on intermediate representation first converts the source code into an intermediate
representation that are conducive to vulnerability detection, and then analyzes the intermediate
representation to check whether it matches a predefined vulnerability rule, so as to determine whether
the source program contains vulnerabilities related to the corresponding vulnerability rule.

The vulnerability detection method based on logical reasoning describes the source code formally,
and then uses mathematical reasoning, proof and other methods to verify some properties of the
formal description, so as to judge whether the program contains a certain type of vulnerabilities. The
vulnerability detection method based on logical reasoning is based on mathematical reasoning, so
the analysis is strict and the result is reliable. However, for large-scale programs, it is very difficult
to formalize the code. The vulnerability detection method based on intermediate representation does
not have the above limitations, and is suitable for analyzing large-scale programs, so it has been more
widely used.

At the NDSS meeting in 2011, Avgerinos and others first proposed an effective automatic
vulnerability detection and utilization method AEG [18,19]. The core idea of this method is to
use the program verification technology to find the input that can satisfy the program to enter
the unsafe state and can be used. The unsafe state includes the memory out-of-bounds writing,
malicious formatted string, etc., which can be used mainly refers to the EIP of the program is
arbitrarily manipulated. The specific process is as follows: firstly, in the preprocessing stage, GNUC
compiler is used to build the binary program [20] and LLVM is used to generate the required
byte code information; Secondly, in the process of actual analysis, AEG firstly finds out the error
location through source code analysis and symbol execution, and generates the corresponding input
through path constraints. After that, AEG uses the dynamic analysis method to extract all kinds of
information when the program runs, such as the address of the vulnerable buffer on the stack, the
return address of the vulnerable function and other environmental data before the vulnerability is
triggered. Then, the exploitable samples are finally constructed by integrating vulnerability utilization
constraints and dynamic runtime environment information. Through the automatic utilization exper-
iments of 14 groups of real program vulnerabilities, the reliability and effectiveness of this method are
proved. AEG integrates the optimized symbol execution and dynamic instruction insertion technology,
and realizes the whole process from software vulnerability automatic mining to software vulnerability
automatic utilization. In addition, the generated utilization samples directly have the ability of control
flow hijacking, which is the first real automatic construction scheme for control flow vulnerability
utilization. The limitations of the scheme are as follows: firstly, the scheme needs to rely on the source
code for program error search; Secondly, the constructed utilization samples are mainly for stack
overflow or string formatting vulnerabilities, and the utilization samples are limited by factors such as
compiler and dynamic running environment.

3.2.2 Automatic Vulnerability Detection and Utilization Technology Based on Binary

Binary vulnerability is that the software performs unexpected functions due to the executable files
(PE, ELF files, etc.) are not well considered during coding [21]. Because binary vulnerabilities mostly
involve the system level, the degree of harm is relatively high. For example, the classic office stack
overflow vulnerability (CVE-2012-0158), (CVE-2017-11882) and the patch bypass vulnerability (CVE-
2018-0802) of (CVE-2017-11882) are all extremely dangerous 0 and 1 day vulnerabilities. Common
binary vulnerabilities include Stack-Overflow, Heap-Overflow, Use-After-Free, Double-Free, and
Out-of-bounds.



8 JCS, 2022, vol.4, no.1

In order to get rid of the dependence on source code and ensure the universality of system
application scenarios, Cha and others proposed mayhem, an automatic generation method for
vulnerability utilization based on binary program at the IEEES&P conference in 2012. This method
makes comprehensive utilizes the speed advantages of online symbol execution and the low memory
consumption characteristics of offline symbol execution, and constructs a memory model based on
index, so as to realize a more practical vulnerability mining and utilization automatic generation
method. The specific process is as follows: firstly, construct two parallel symbolic execution subsys-
tems, the specific execution subsystem and the symbolic execution subsystem. Secondly, for the specific
execution subsystem, the stain propagation technology is introduced to find all JMP instructions or
call instructions that can be controlled by the user in the process of program execution, and give them
to the symbol execution subsystem as bug candidates. Then, the symbol execution system converts all
received tainted instructions into intermediate instructions, and constructs execution path constraints
and available constraints. Finally, the symbolic execution system uses the constraint solver to find the
utilization samples that meet the path reachable conditions and vulnerability exploitable conditions.
In the actual process of symbol execution, in order to ensure the efficiency, the Mayhem system
uses an index-based memory model to optimize the loading of symbolic memory, so as to make it
a highly usable vulnerability automatic utilization scheme. At present, Mayhem’s limitations mainly
focus on the following three aspects: first, the system can only model part of the system or library
functions, so it cannot deal with large programs efficiently; Secondly, the system cannot deal with
multi-threaded interaction issues, such as message passing and shared memory issues; Finally, due to
the use of stain propagation method, there are also typical problems such as missed transmission and
false transmission.

3.2.3 Automatic Vulnerability Detection and Utilization Technology for Diversified Vulnerabilities

In order to improve China’s ability to control software and system vulnerability resources, it
is urgent to tackle key problems such as weak intelligence of vulnerability mining and analysis,
low accuracy of large flow monitoring, difficult hazard assessment and verification, and lack of
scale coordination, and study software and system vulnerability intelligent mining methods and
key technologies, software and system vulnerability analysis and availability judgment technologies,
the vulnerability analysis and detection technology based on network traffic, vulnerability hazard
assessment and verification technology, and vulnerability large-scale collaborative mining and analysis
technology are used for automatic detection by using diversified vulnerability characteristics.

Since high-quality and diversified vulnerability utilization samples are of great significance to
vulnerability hazard assessment, Wang and others proposed a set of automatic generation method
(PolyAEG) of diversity utilization samples for control flow hijacking vulnerabilities at securecomm
conference in 2013 [22]. The core idea of this method is to find out all control flow hijacking points
of the program through dynamic stain analysis, and to complete the diversity construction of vulner-
ability utilization samples by constructing different control flow transfer modes. The specific process
is as follows: firstly, the program dynamic monitoring is realized and the relevant information of
program execution is extracted by expanding the hardware virtualization platform QEMU; Secondly,
based on the dynamic acquisition of information, the instruction level stain propagation flow graph
iTPG and the global stain state record GTSR are constructed. And on this basis, all possible control
flow hijacking points, available springboard instructions and the stain memory area that can store
attack codes in the program are obtained. Finally, by constructing different jump instruction chains
and attack codes in different tainted memory areas, and solving the path constraints, a diverse set
of utilization samples is generated. According to the experimental results of 8 actual vulnerability



JCS, 2022, vol.4, no.1 9

samples, the scheme generates up to 4724 utilization samples for a single control flow hijacking
vulnerability. PolyAEG implements a complete set of automatic vulnerability utilization diversity
structure for control flow hijacking vulnerabilities, which provides effective support for vulnerability
hazard assessment. However, the limitations of the scheme are mainly reflected in the following
two aspects: one is that he scheme has certain limitations in the face of data execution protection
mechanism; The other is that this scheme only considers relying on the existing instructions in the
program itself or other class libraries, and does not consider the use of dynamically generated code.

3.2.4 Automatic Vulnerability Detection and Utilization Technology Based on ROP Code

Although there are many innovative systems to ensure software security. But many applications are
still vulnerable to hooks and return-oriented programming (ROP) attacks. Although it is impossible to
get rid of all vulnerabilities in the application, developers should consider executable space protection
during the coding phase. In order to solve the problem of control flow hijacking vulnerability
utilization caused by data execution protection and address randomization, Schwartz and others
realized a set of ROP code automatic generation method Q [23] for high reliability vulnerability
utilization at the USENIX Security conference in 2011. The core idea is to collect the Gadgets in
the target program and automatically build the ROP through the Gadget oriented programming
language. The specific process is as follows: first, Q is provided with unrandomized fragile programs or
other binary libraries, and Q finds the Gadget set with specific functions; Secondly, the programming
language QooL provided by Q is used to realize the object code that meets the specific semantic
functions, and Q is used to compile the object code into a gadget oriented instruction sequence; Then,
the final ROP code is formed by filling the instruction sequence obtained in the previous step with the
obtained Gadget set.

Through experiments on 9 real software vulnerabilities, it can be seen that after the data execution
protection and address randomization functions are enabled, the stable execution of the exploit code
of these vulnerabilities can still be guaranteed through Q. The Q scheme proves that the ROP code can
still be effectively and automatically constructed in the system with a small amount of non randomized
code, which strengthens the attack effect of control flow hijacking vulnerability exploitation in the real
environment. The limitations of the Q scheme itself are mainly reflected in: firstly, the Q scheme does
not consider the automatic construction of ROP without “ret” instruction; Secondly, the Q scheme
only starts from the practical application effect and does not consider meeting the Turing completeness.

3.3 Automatic Vulnerability Detection and Utilization Technology Based on Data Flow
Variable tracking based on code data flow is the principle of many white box detection tools. It

also needs to analyze the code execution process and detect vulnerabilities based on data flow. Instead
of directly dividing the source code into strings, it will destroy the semantics of the code and lose the
basis of vulnerability detection [24–26].

In the case of large-scale deployment of data execution protection, address randomization, and
control flow integrity protection measures, most attackers have shifted from vulnerability exploitation
attacks for control flow hijacking to data flow utilization attack. It is against this background that
Hu and others first proposed an automatic construction method for data flow utilization, FlowStitch,
at the USENIX Security conference in 2015 [27]. The core idea of this method is to use the known
memory errors to directly or indirectly tamper with the variables at the key position in the original
data flow of the program without changing the program control flow, so as to complete the automatic
construction of the utilization. According to the introduction of the article, the specific process is



10 JCS, 2022, vol.4, no.1

divided into the following steps: first, take the program containing memory error, the input triggering
memory error and special normal input as the three preconditions of the whole automatic utilization
system, in which “special normal input” means that before the program error occurs, its execution
path must be the same as that triggering memory error; Secondly, the corresponding error execution
record and normal execution record are obtained by error input and normal input respectively, and
based on this, the influence range of memory error and sensitive data in normal data stream are further
extracted respectively; Finally, the sensitive data that may be involved in the impact range of memory
errors are determined by comparing the error execution records with the normal execution records.
Finally, all sensitive data that may be tampered with are screened and the automatic construction
process of data flow oriented utilization is completed. Through the experimental results on 8 real
vulnerability samples, it can be seen that the 19 utilization samples automatically constructed by
FlowStitch can not only bypass the protection methods such as data execution and fine-grained control
flow integrity, but also 10 utilization samples can be successfully executed in the environment of
opening address randomization. Flowstich is the first automatic vulnerability exploitation scheme for
data flow. Although the utilization samples constructed by FlowStich can not directly run arbitrary
malicious code, they still have strong practical value because they can leak the sensitive data on
the target host. From the description details of this paper, the limitations of this scheme are mainly
reflected in: firstly, the utilization of data flow is based on the premise that there are known memory
errors in the program; Secondly, in the process of construction and utilization, it is necessary not
only to input the corresponding execution record incorrectly, but also to construct the corresponding
normal input and normal execution path.

3.4 Automatic Vulnerability Detection and Utilization Technology for Buffer Vulnerability ROP
Attacks

The full name of ROP attack technology is “Return-Oriented Programming”, that is, return
oriented programming. Its core idea is to achieve its purpose by controlling the program flow and
executing the existing executable code of the program. Fig. 3 shows its algorithm flow chart. ROP
technology reuses short instruction fragments, which are divided into many sections. Each section
ends with a “ret” instruction and becomes the Gadget of ROP. Each Gadget performs only a small
part of functions, such as push ebx, ret. The two instructions form a Gadget, and then a ROP chain
is formed through several Gadgets. ROP attack technology is to complete its core functions through
ROP chain.

3.4.1 Stack Overflow Validation Rules

Fig. 4 shows the schematic diagram of stack overflow verification. According to the different
characteristics of function return address and ordinary function return address during stack overflow,
malicious samples and normal programs can be distinguished, and the overflow location can be found.
The Ret instruction that pops up this overflow position will be listed in the list of suspicious Ret
instructions for subsequent ROP attack verification.

3.4.2 ROP Attack Verification Rules

ROP attacks usually achieve the purpose of executing key functions by constructing the values of
stacks and register. The key function is to bypass DEP, such as closing DEP or opening a new heap
space to execute shellcode to bypass DEP [28,29]. The characteristics of ROPCHAN are as follows: 1.
The length of regular Gadget should meet 1–6 instructions. 2. In the actual attacks, the ROP Gadget
should be continuous.



JCS, 2022, vol.4, no.1 11

Figure 3: Algorithm flow chart

During the detection process, a continuous RET instruction sequence with a length of 1–6 was
found on the basis of stack overflow, and it will be determined as a suspected Gadget. Ret instruction
features are divided into: 1. Normal Ret instruction; 2. Ret instruction in Gadget. The conventional Ret
instruction is generally generated at the end of the function, indicating that the function is successfully
executed and ready to return the address before call. Then, before returning, the system must complete



12 JCS, 2022, vol.4, no.1

the operation of recovering the stack frame, restoring the pointer values of EBP and ESP, so that the
contents of the function stack can be restored to the stack frame of the upper function. The process
of stack frame recovery is shown in Fig. 5.

Figure 4: Schematic diagram of stack overflow verification

Step 1: MOV ESP, EBP, that is, ESP points to EBP.

Step 2: POP EBP, put the return address into the EBP before pop-up, that is, the EBP points to
the front EBP.

The Ret instruction in the Gadget refers to the instruction before RET in the ROP CHAIN. It is
impossible to completely include the above two steps. Because these two instructions restore the stack
frame, other ROP CHAIN instructions placed in the stack will be invalidated.

Figure 5: Schematic diagram of stack frame recovery



JCS, 2022, vol.4, no.1 13

4 Summary of Known Vulnerability Detection Steps Based on Firmware Analysis

There are a large number of unknown vulnerabilities in Internet of things devices, which brings
many potential threats to the devices themselves and cyberspace. Although government departments
and security research teams recognize the network security risks brought by the vulnerabilities of IoT
devices and the urgency of strengthening the vulnerability detection of IoT devices, there is still a lack
of effective technical means for vulnerability detection of IoT devices. Although there are abundant
technologies, products and research teams related to vulnerability detection on the market, most of
them are for general-purpose systems (Windows, Linux, Mac, Android) and their software.

In terms of IoT device vulnerability detection, due to the huge differences in software and
hardware between IoT devices of different manufacturers, the non disclosure of IoT devices source
code and documents, it is difficult to build an IoT vulnerability analysis model and establish a unified
dynamic simulation environment, and it is difficult to form an efficient, automated and batch IoT
device vulnerability detection method. At present, most of the IoT devices vulnerabilities are found
through manual analysis by security personnel. At the same time, OWASP has issued firmware security
test guidelines, which given some guidance methods for firmware security evaluation. In this chapter,
we will refer to OWASP firmware security test guidelines to describe the routine firmware leak
detection steps, as shown in Tab. 2.

Table 2: Firmware vulnerability detection steps

1 Information collection Get details of all relevant technical documentation about the
firmware of the target device

2 Get firmware Use one or more of the recommended methods listed to obtain
firmware

3 Firmware feature analysis Check the characteristics of the target firmware
4 Extract the file system Get the file system from the target firmware
5 Analysis the file system Statically analyze vulnerabilities in system configuration files and

binaries of extracted files
6 Firmware simulation

execution
Simulate firmware files and components

7 Dynamic scanning Perform dynamic security testing for firmware and application
program interfaces

5 Summary and Prospect

The current vulnerability detection technology of IoT devices has made some progress in firmware
based Web interface, sensitive information and homology analysis technology. Among them, the
known vulnerability detection technology based on firmware Web interface is limited by the execution
technology of firmware simulation and the difficulty of starting web service interface. There is still a
lot of development space, and a great breakthrough in firmware simulation technology is required.
Static analysis technology can effectively solve the analysis of firmware and the analysis of common
vulnerabilities in firmware. However, there is still a lack of in-depth thinking and exploration for the
efficient analysis of specific vulnerabilities of IoT devices. In addition, there is still a lack of systematic



14 JCS, 2022, vol.4, no.1

analysis and research on firmware without operating system and containing specific embedded
operating system.

For the homology analysis technology, the current technology has supported the multi-level
correlation of large-scale firmware, so as to realize the discovery of homology vulnerabilities. The
future development direction should be to effectively extract features and code for specific vulnerability
types, so as to achieve accurate and rapid discovery of specific types of homologous vulnerabilities.

Generally speaking, the vulnerability detection technology of IoT devices is still in its infancy. In
the future, it is still necessary to start with these three categories of technologies. On the one hand,
it proposes general methods and technologies. On the other hand, it will also study corresponding
detection technologies for specific types of devices and vulnerabilities.

In order to quickly analyze and determine the exploitability of a large number of software
vulnerabilities generated by fuzzy testing technology, researchers have proposed a series of efficient
automatic construction schemes for vulnerability utilization, including patch comparison scheme,
control flow-oriented scheme and data flow-oriented scheme. The implementation of these schemes
can not only help us quickly identify high-risk vulnerabilities from a large number of program
vulnerabilities, but also help us reduce the possibility of high-risk vulnerability attacks to a certain
extent.

Although the current automatic exploitation of software vulnerabilities has achieved preliminary
results, with the increase of software complexity, the deployment of defense methods such as control
flow integrity detection and the development and change of software vulnerability types. It has brought
challenges to the vulnerability availability evaluation. Therefore, further exploration and research are
needed for software vulnerability utilization, and more efficient and reliable automation schemes are
proposed.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Gartner says 8.4 billlion connected “things” will be in use in 2017, up 31 percent from 2016, Gartner. http://

www.gartner.com/en/newsroom/. 2019.
[2] https://www.cnblogs.com/alisecurity/p/5261794.html, 2015.
[3] T. F. Tu, X. Y. Liu, L. H. Song and Y. Y. Zhang, “Understanding real-world concurrency bugs in go,” in

Proc. of the Twenty-Fourth Int. Conf. on Architectural Support for Programming Languages and Operating
Systems, New York, NY, USA, Association for Computing Machinery, pp. 865–878, 2019.

[4] C. Heffners, “Exploiting network surveillance cameras like a hollywood hacker,” 2013.
[5] B. Qin, T. Tu, Z. Liu, T. Yu and L. Song, “Algorithmic profiling for real-world complexity problems,” IEEE

Transactions on Software Engineering, vol. 16, pp. 3067652, 2021.
[6] L. Rao, H. Zhang and T. Tu, “Dynamic outsourced auditing services for cloud storage based on batch-

leaves-authenticated merkle hash tree,” IEEE Transactions on Services Computing, vol. 13, no. 3, pp. 451–
463, 2020.

[7] H. Zhang, B. Qin, T. Tu, Z. Guo, F. Gao et al., “An adaptive encryption-as-a-service architecture based
on fog computing for real-time substation communications,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 1, pp. 658–668, 2020.

http://www.gartner.com/en/newsroom/
http://www.gartner.com/en/newsroom/
https://www.cnblogs.com/alisecurity/p/5261794.html


JCS, 2022, vol.4, no.1 15

[8] T. F. Tu, L. Rao, H. Zhang and Q. Y. Wen, “Privacy-preserving outsourced auditing scheme for dynamic
data storage in cloud,” Security and Communication Networks, vol. 12, pp. 1–17, 2017.

[9] J. Qin, H. Zhang, J. Guo, S. Wang, Q. Wen et al., “Vulnerability detection on android apps–inspired by case
study on vulnerability related with web functions,” IEEE Access, vol. 8, pp. 106437–106451, 2020.

[10] J. Qin, H. Zhang, S. Wang, Z. Geng and T. Chen, “Active++: An improved android application automatic
tester based on active,” IEEE Access, vol. 7, pp. 31358–31363, 2019.

[11] S. Wang, S. Qin, J. Qin, H. Zhang, T. Tu et al., “KRDroid: Ransomware-oriented detector for mobile
devices based on behaviors,” Appl. Sci., vol. 11, pp. 6557, 2020.

[12] S. Wang, S. Qin, N. He, T. Tu, J. Hou et al., “KRRecover: An auto-recovery tool for hijacked devices and
encrypted files by ransomwares on android,” Symmetry, vol. 13, pp. 861, 2021.

[13] C. Chen, B. J. Cui, J. X. Ma, R. P. Wu, J. C. Guo et al., “A systematic review of fuzzing techniques,” in
Computers & Security, pp. 118–137, 2018.

[14] W. Xie, Y. Jiang, Y. Tang, N. Ding and Y. Gao, “Vulnerability detection in IoT firmware: A survey,” in
2017 IEEE 23rd Int. Conf. on Parallel and Distributed Systems (ICPADS), China, pp. 769–772, 2017.

[15] R. Russell, “Automated vulnerability detection in source code using deep representation learning,” in 2018
17th IEEE Int. Conf. on Machine Learning and Applications (ICMLA), Canada, pp. 757–762, 2018.

[16] H. Wang, “Combining graph-based learning with automated data collection for code vulnerability detec-
tion,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1943–1958, 2021.

[17] T. Ji, Y. Wu, C. Wang, X. Zhang and Z. Wang, “The coming Era of AlphaHacking?: A survey of automatic
software vulnerability detection, exploitation and patching techniques,” in 2018 IEEE Third Int. Conf. on
Data Science in Cyberspace (DSC), pp. 53–60, 2018.

[18] Brumley, P. Poosankam, D. Song and J. Zheng, “Automatic patch-based exploit generation is possible:
Techniques and implications,” in Proc. of the IEEE Symp. on Security and Privacy (S&P), 2008.

[19] T. Avgerinos, K. C. Sang, A. Rebert E. J. Schwartz, M. Woo and D. J. C. O. T. A. Brumley, “Automatic
Exploit Generation,” vol. 57, no. 2, pp. 74,76–84, 2014.

[20] K. Cha, T. Avgerinos, A. Rebert and D. Brumley, “Unleashing MAYHEM on binary code,” in Proc. of the
IEEE Symp. on Security and Privacy (S&P), Oakland, 2012.

[21] https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&
filename=1021731589.nh&uniplatform=NZKPT&v=sDdoA8%25mmd2BXV4C8q7aykp%25mmd2
FCVnhe0x14KmUUKx6X%25mmd2BSUbp1FBUMArUchY8XBkEs94URtJ.

[22] H. Wang, P. R. Su, Q. Li, L. Y. Ying, Y. Yang et al., “Automatic polymorphic exploit generation for software
vulnerabilities,” in Proc. of Int. Conf. on Security and Privacy in Communication Networks (SecureComm),
Suzhou,China, 2013.

[23] J. Schwartz, T. Avgerinos and D. Brumley, “Q: Exploit hardening made easy,” in Proc. of the USENIX
Security Symp., 2011.

[24] Y. Mao, Y. Li, J. Sun and Y. Chen, “Explainable software vulnerability detection based on attention-based
bidirectional recurrent neural networks,” in 2020 IEEE Int. Conf. on Big Data (Big Data), Beijing, China,
pp. 4651–4656, 2020.

[25] M. Yi, X. Xu and L. Xu, “An intelligent communication warning vulnerability detection algorithm based
on IoT technology,” IEEE Access, vol. 7, pp. 164803–164814, 2019.

[26] Y. Tatarinova, “AVIA: Automatic vulnerability impact assessment on the target system,” in Int. Conf. 2018
IEEE Second. on Data Stream Mining & Processing (DSMP), pp. 364–368, 2018.

[27] H. Hu, Z. L. Chua, S. Adrian, P. Saxena and Z. K. Liang, “Automatic generation of data-oriented exploits,”
in Proc. of the USENIX Security Symp., American, 2015.

[28] S. Volckaert, B. Coppens and B. De Sutter, “Cloning your gadgets: Complete ROP attack immunity with
multi-variant execution,” IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 4, pp. 437–
450, 2016.

[29] Z. J. Huang, T. Zheng and J. Liu, “A dynamic detective method against ROP attack on ARM platform,”
in 2012 Second Int. Workshop on Software Engineering for Embedded Systems (SEES), China, pp. 51–57,
2012.

https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=1021731589.nh&uniplatform=NZKPT&v=sDdoA8%25mmd2BXV4C8q7aykp%25mmd2FCVnhe0x14KmUUKx6X%25mmd2BSUbp1FBUMArUchY8XBkEs94URtJ
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=1021731589.nh&uniplatform=NZKPT&v=sDdoA8%25mmd2BXV4C8q7aykp%25mmd2FCVnhe0x14KmUUKx6X%25mmd2BSUbp1FBUMArUchY8XBkEs94URtJ
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=1021731589.nh&uniplatform=NZKPT&v=sDdoA8%25mmd2BXV4C8q7aykp%25mmd2FCVnhe0x14KmUUKx6X%25mmd2BSUbp1FBUMArUchY8XBkEs94URtJ

	Research on Known Vulnerability Detection Method Based on Firmware Analysis
	1 Introduction
	2 Challenges and Opportunities Facing Firmware Vulnerability Detection
	3 Automatic Detection and Utilization Technology of Firmware Vulnerabilities
	4 Summary of Known Vulnerability Detection Steps Based on Firmware Analysis
	5 Summary and Prospect


