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Abstract: Cryo-Electron Microscopy (cryo-EM) has become a powerful
method to study the structure and function of biological macromolecules.
However, in clustering tasks based on the projection angle of particles in cryo-
EM, the noise considerably affects the clustering results. Existing denoising
algorithms are ineffective due to the extremely low signal-to-noise ratio (SNR)
of cryo-EM images and the complexity of noise types. The noise of a single
particle greatly influences the orientation estimation of the subsequent clus-
tering task, and the result of the clustering task directly affects the accuracy
of the 3D reconstruction. In this paper, we propose a construction method of
cryo-EM denoising dataset that uses U-Net to extract noise blocks from cryo-
EM images, superimpose the noise block with the projected pure particles
to construct our simulated dataset. Then we adopt a supervised generative
adversarial network (GAN) with perceptual loss to train on our simulated
dataset and denoise the real cryo-EM single particle. The method can solve
the problem of poor denoising performance caused by assuming that the
noise of the Gaussian distribution does not conform to the noise distribution
of cryo-EM, and it can retain the useful information of particles to a great
extent. We compared traditional image filtering methods and the classic deep
learning denoising algorithm DnCNN on the simulated and real datasets.
Experiment results show that the method based on deep learning has more
advantages than traditional image denoising methods. It is worth mentioning
that our method achieves a competitive peak signal to noise ratio (PSNR)
and structural similarity (SSIM). Moreover, visualization results, indicate that
our method can retain the structure information and orientation information
of particles to a greater extent compared with other state-of-the-art image
denoising methods. It means that our denoising task can provide considerable
help for subsequent cryo-EM clustering tasks.
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1 Introduction

With the development of science and technology, researchers have discovered that visualization
of the structure of biological macromolecules is essential for studying the functional properties and
molecular mechanisms of biological macromolecules. However, because clear images of biological
macromolecules cannot be obtained, the structure of many biological macromolecules cannot be
accurately determined. The methods currently used for the analysis of the 3D structure of biological
macromolecules are rough as follows: Cryo-Electron Microscopy, cryo-EM [1]; X-ray crystallography,
X-ray [2]; Nuclear Magnetic Resonance, NMR [3]. Given that Cryo-EM 3D reconstruction only
requires a small number of high-purity samples, a small concentration can reconstruct biological
macromolecules well [4]. Therefore, many researchers have begun to pay attention to cryo-EM
technology.

The main idea of cryo-EM technology is to cool the biological macromolecules quickly, observe
the sample with a transmission electron microscope at a low temperature, and obtain the 3D structure
of the sample through image processing and reconstruction calculation.

Image quality plays a crucial role in the 3D reconstruction of cryo-EM. In the process of
irradiating biological macromolecules with a projection electron microscope, the intensity of the
electron beam is usually reduced to protect the functional structure of the biological macromolecules.
However, this will also result in a low SNR of cryo-EM images obtained in this way [5]. Cryo-EM
particle selection are often based on automatic or semi-automatic particle selection software such
as Relion [6], Spider [7], EMAN?2 [8], XMIPP [9], and CryoSPARC [10]. Most of these methods are
based on template matching, edge detection, image segmentation, etc. The single-particles selected by
these methods still have a lot of noise, and the SNR is extremely low. However, low SNR of single-
particle images equates to a large error in estimating the particle orientation by using the equivalent line
phase residual evaluation method and a poor clustering result. The clustering result has a considerable
impact on the subsequent 3D reconstruction. Therefore, establishing an effective cryo-EM single-
particle denoising method that can effectively improve the clustering results and the accuracy of 3D
reconstruction.

For the denoising problem of cryo-EM images, several existing cryo-EM image filtering tech-
niques, such as bilateral filters, Gaussian filters, and transform-domain methods BM3D and KSVD,
lose large amounts of particle edge information and internal detail information under an extremely
low SNR of cryo-EM images and cannot achieve good results [11]. Current deep-learning based
methods aim to minimize the mean-squared error (MSE) [12] between noisy and clean particle images.
Although this approach can improve the peak SNR (PSNR) [13], it loses the important structural
details of the particles. Moreover, the denoising method based on deep learning needs to use paired
datasets to train the noise network and implicitly learn the rules of noise. Therefore, reasonable dataset
construction is important for deep learning algorithms. However, finding a suitable cryo-EM dataset is
difficult. Generally, there are only noise-containing single-particle images after single-particle selection
of cryo-EM original images without corresponding clean images, or there are high-definition particle
images obtained by projecting the 3D reconstructed model without the corresponding noisy particles.
Therefore, training the denoising network to learn the mapping of similar noise from clean images to
real noisy images is difficult.

Unlike in natural image denoising, the light field distribution of a natural image caused by direct
and scattered light can be considered uniform, and the noise generated by the image sensor is mostly
Gaussian noise [14]. Therefore, in the task of blind denoising of natural images using deep learning
algorithms, many scholars use Gaussian noise to simulate the noise in natural images. However, this
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method is challenging to achieve good results for actual image denoising with complex noise types [15].
Because of the difference between cryo-EM and natural image imaging principles, different types of
image noises are generated during the acquisition, storage, and signal conversion of cryo-EM images.
The types of cryo-EM noise, such as ice crystal particles, noise caused by noise itself, machine vibration
during operation, and changes in the magnetic field in the experimental environment, are complicated.
Analyses of cryo-EM images have found that the common noise types of cryo-EM images include
Gaussian noise, Poisson noise [16], gamma noise [1 7], and Rayleigh noise [18]. These difficulties pose
challenges to the denoising of cryo-EM images. At present, some scholars use the construction method
of natural image denoising paired dataset for the construction of paired dataset for cryo-EM single-
particle denoising task, that is to add Gaussian noise with fixed signal-to-noise ratio to clean particles.
However, using this method to build the dataset exhibits a major drawback because the original noise
distribution of cryo-EM images is much more complex than that of Gaussian noise [14]. This condition
means that Gaussian noise cannot simulate the noise of real cryo-EM images well. Achieving good
results in real cryo-EM image denoising is difficult.

To solve these problems, we propose a noise extraction algorithm for cryo-EM images. It uses
U-Net [19] to segment the original cryo-EM images, extracts the noise block, builds a paired dataset,
and uses an improved GAN to denoise the cryo-EM single-particle images. The main contributions of
this paper are as follows:

(1) To solve the difficulty of constructing a paired dataset in the cryo-EM image denoising task,
we propose a noise extraction algorithm for cryo-EM images. This algorithm uses U-Net to
segment the original cryo-EM images into three categories: noise, pollution, and particles.
Then, the noise area is extracted to form a noise block corresponding to the clean particles,
thereby constructing a paired dataset.

(2) To solve the problem that conventional deep learning methods tend to lose particle details
in cryo-EM images with low SNR. This paper adopts GAN with perceptual loss and adds
conditional constraints to generate denoising images. The method we use can reduce the noise
level of cryo-EM single-particle images and retain the particle details and direction information
to a large extent.

2 Related Works
2.1 Denoising Algorithm of Cryo-EM Images

The algorithms for cryo-EM image denoising in practical applications are mainly divided into the
following categories.

(1) The first category covers algorithms that work in the spatial domain. These methods usually
use different image smoothing templates to perform image convolution. Local and non-local
filtering are methods that work in the spatial domain. Wei et al. [20] designed an adaptive non-
local filter that uses a wide range of pixels to estimate the pixel value after denoising. Wang et al.
[21] proposed a filtering method based on non-local means that uses the rotational symmetry
of several biomolecules.

(2) The second category encompasses algorithms that use the transform domain. Xian et al. [22
utilized transform-domain filtering methods to solve the noise reduction problem in cryo-EM.
However, these methods do not work properly under extremely low SNRs. In addition, Bhamre
et al. [23] proposed covariance wiener filtering (CWF) for image denoising and demonstrated
that CWF, despite its strong noise reduction effect, requires many data samples to estimate the
covariance matrix correctly.
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(3) The third category, hybrid domain filtering, refers to algorithms that combine the two afore-
mentioned types. BM3D [24] is the most representative among these algorithms. The BM3D
algorithm, which is based on the image before obtaining noise, estimates by transforming
similar blocks through cooperative filtering. It is widely compared in experiments due to its
good performance. Denoising algorithms that work in the transform domain of the image
generally consume long computational time. They require extensive computational resources
and cannot remove noise effectively. The denoising effect also decreases rapidly when faced
with complex noise.

(4) Owing to the rapid development of deep learning, researchers have also discovered the
potential of using deep learning in image denoising. Algorithms based on deep learning can
be considered the fourth category. Autoencoders, convolutional neural networks, and other
approaches have achieved good results in denoising research. Goodfellow et al. [25] (2014)
proposed a GAN for evaluating generative models through an adversarial process. Ledig et
al. [26] proposed the SRGAN model, which takes an original high-resolution image, samples
it, then tries to restore the image by using a GAN model, thus achieving a natural and close
approximation of the original image.

2.2 GAN

Given the extremely low SNR of cryo-EM images, distinguishing between noise and particles is
difficult, which makes traditional methods ineffective for denoising cryo-EM images. The advantages
exhibited by deep learning techniques in image processing, indicate that it is possible to process cryo-
EM images. Ian J. Goodfellow et al. proposed GAN, which uses the idea of game theory to train two
network models against each other. In the original GAN, the network model usually consists of a
generative model and a discriminative model. The generator deceives the discriminator by capturing
the potential distribution of the real data samples and generating data similar to the real data. The
discriminator is a two-classifier, and its task is to do its best to distinguish whether the input is real data
or samples generated by the generator. The structures of the generator and discriminator can adopt the
currently popular deep neural network. We use a differentiable function G to represent the generator
and D to represent the discriminator. G and D continue to improve their generation and discrimination
capabilities through confrontation and finally reach a kind of Nash equilibrium. The loss function is
shown in Eq. (1), where x is sampled from the real data distribution pg,.,, G (x) represents the image
generated by the generator, D (x) represents the probability that x comes from real data. z is sampled
from the prior distribution (e.g., Gaussian noise distribution). E represents the expected value of the
calculation. When the input data are sampled from real data x, the goal of D is to make the output
probability value D (x) approach 1; when the input comes from generated data G (z), the goal of D is
to correctly judge the source of the data so that D (G (z)) approaches 0, and the goal of G is to make
it approach 1.

min max V (D, G) = By, i [10g D (0)] + ..y, [log (1 = D (G @))] ()

In general, for GAN learning, we need to train D to maximize the accuracy of discriminating
whether the data comes from real data x or pseudo data G (z), and we need to train G to minimize
log (1 — D (G (z))). The training process adopts alternate optimization. First, fix the generator G and
optimize discriminator D to maximize the classification accuracy of the discriminator. Second, we fix
discriminator D and optimize the generator G to minimize the accuracy of the discriminator.

Ledig et al. [26] used GAN in the image super-resolution and achieved good results. SRGAN
showed better visual similarity in texture compared with the SRCNN method. Then Yang et al. [27]
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applied GAN to medical CT image denoising and also achieved good results. Although using MSE
[12] can obtain a high PSNR [13], it makes the image lack high-frequency information, and the
image texture becomes excessively smooth. We should make the reconstructed high-resolution and
real images close in terms of pixel value, high-level overall characteristics, and overall style. Therefore,
the authors of SRGAN designed a loss function that assesses a solution with respect to perceptually
relevant characteristics. The perceptual loss function (See Eq. (2)) is defined as the weighted sum of a
content loss (/5%) (See Eq. (3)) and an adversarial loss (12X ) (See Eq. (4)).

Perceptual loss:

Fr= Y +107°BF 2
~— ~—

content loss adversarial loss
The first part is a content-based cost function, and the second part is an adversarial learning-
based cost function. The content-based cost function not only minimizes the MSE [12] of the pixel
space, but also includes an MSE [12] based on the feature space, which is a high-level feature of the
image extracted by the VGG network.

Content loss:
ISR 1 WiJHiJ IHR G ILR : 3
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The authors define VGG loss based on the ReLU activation layers of the pre-trained 19-layer

VGG network described in Simonyan et al. [28]. ¢,; denotes the feature map obtained by the j-th
convolution (after activation) before the i-th largest pooling layer in the VGG19 network. Then, VGG
loss is defined as the Euclidean distance between the feature representation of the reconstructed image
Gy, (I LR) and reference image /”%. W, and H,, describe the dimensions of the respective feature maps
within the VGG network.

Adversarial loss:
N
lit, = D ~logDu, (Gyg (I') @
n=1
In addition to the content losses described so far, the generative component of our GAN is
added to perceptual loss. Generative loss /5% is defined based on the probabilities of the discrimi-
nator Dy, (G, (I"*)). Here, D,, (G, (I**)) is the probability that the reconstructed image G, (I*¥)
is a natural HR image. For good gradient behavior we minimize —logD,, (G,, (I"*)) instead of

log[l = Dy, (G9G (ILR))]'

3 Methods
3.1 Construction of Cryo-EM Single-Particle Denoising Task Paired Dataset

Since the real cryo-EM single-particle image has no corresponding clean particle image, we can
regard the cryo-EM single-particle denoising task as an image blind denoising problem. The image
blind denoising problem is to remove unknown noise from noisy images. The previous image denoising
methods rely on image prior knowledge modeling to solve the problem of image blind denoising.
However, most of the image prior knowledge used in these methods is defined based on human
knowledge, and it is difficult to obtain all the features of the image, these methods only the internal
information of the input image is used without any external information, so it lacks generality.
Deep learning-based methods such as DnCNN have achieved state-of-the-art denoising effects on
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image non-blind denoising problems. Still, they are not suitable for image blind denoising problems,
mainly because deep learning algorithms use paired datasets to train a deep denoising network and
implicitly learn the underlying noise distribution. Therefore, for denoising problems with known noise
distribution (such as Gaussian noise), a paired dataset can be constructed by adding Gaussian noise
and trained with a deep convolutional network for denoising. However, such datasets are difficult to
obtain in reality, or the noise distribution is difficult to derive. Generally speaking, we can only obtain
noise images with unknown noise information. In real life, the noise distribution of these unknown
noise images may be more complicated, so, using existing models trained on a specific noise, such as
Gaussian noise, does not give good results [15].

For the blind denoising problem of cryo-EM images, the current deep-learning based method
adds Gaussian noise with different noise levels to the clean particles of cryo-EM projection; this is a
common method for deep learning to solve the problem of unpaired datasets for denoising tasks. The
reason why Gaussian noise is used for analog noise is that in natural images, the light field distribution
of natural images caused by direct light and scattered light can be considered to be uniform, and
the noise generated by the sensor inside the camera is primarily Gaussian noise so that it can be
approximated as Gaussian noise. However, since cryo-EM will generate different types of image noises
during acquisition, storage, and signal conversion, such as Gaussian noise, Poisson noise, Rayleigh
noise, etc. Therefore, the method of adding Gaussian noise cannot effectively simulate the complex
noise distribution of cryo-EM images. This method limits the capability for noise modeling and further
affects the denoising performance, and the denoising effect of cryo-EM images with low SNR and
complex noise distribution is poor. Therefore, it may be difficult to achieve good results when this
method is applied to the image blind denoising problem of cryo-EM. This problem would be solved if
abundant external information on cryo-EM images is given. In 2018, Jingwen Chen et al. [15] proposed
a noise modeling method based on generative adversarial networks for the blind denoising problem of
unknown noise images, which proposed a novel two-step framework, firstly extracting noise blocks.
Then the extracted noise blocks are input into the generative adversarial network, the noise distribution
is simulated, and the noise is modeled, thereby constructing a suitable paired dataset. The performance
is better than the method of directly constructing a paired dataset by Gaussian noise on the high-
definition dataset for training.

This paper proposes a noise extraction algorithm for cryo-EM images. The algorithm segments
the original cryo-EM image through U-Net. Then, the cryo-EM image’s pure noise block is extracted
to construct a cryo-EM single-particle paired dataset of the denoising task. Section 3.1.1 describes
the specific process of using U-Net to segment the original cryo-EM image. Section 3.1.2 presents the
specific process of extracting pure noise blocks of cryo-EM images.

3.1.1 U-Net Segmentation of the Original Cryo-EM Image

In the noise modeling method proposed by Chen et al. [15] for the blind denoising problem of
unknown noise images, noise extraction is to extract noise blocks from the part with a relatively weak
background in a given noise image, and the basic approach is to assume that the mean of the same
type of noise is 0, and an approximate noise patch is obtained by subtracting the mean of the relatively
smooth patches in the noisy image.

The noise and information of natural images are often closely connected. The areas containing
noise usually contain useful background information or object information. Therefore, the noise
extraction of natural images may be more effective from weak background modules. However, the
noise and information distribution of cryo-EM and natural images are different. The particularity
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of the cryo-EM image is that its noise area and useful particle area do not completely overlap. Many
regions that do not contain particle information contain pure noise blocks. Therefore, we can consider
segmenting the original cryo-EM image to extract pure noise blocks. We use U-Net, segment the
original cryo-EM image and classify the original cryo-EM image into three categories: pure noise,
noise mixed with pollution, and particles.

To achieve the above-method, we label and classify the original images of cryo-EM. We divide the
targets into three categories, namely, background noise, pollution, and particles. Pollution here refers
to ice pollution, impurities, and carbon-rich areas. When selecting particles, we do not select particles
that are heavily polluted. We mark the particles at the point level, so they are only associated with a
few surrounding pixels. We use pixel-level annotations for large areas such as pollution. The remaining
unlabeled pixels are automatically classified as background noise. Fig. 1 shows the labeling of an 80S
ribosome (EMPIAR-10153) cryo-EM image.

(b)

Figure 1: (a) Original cryo-EM image of the 80 s ribosome; (b) Label image of (a). In which the blue area
represents background noise, the red area represents pollution, and the green dot is the particle label

The U-Net image segmentation algorithm can segment background noise, pollution, and particles
from noisy images without excessive training images. It calculates the softmax score vector of each pixel
through function calculations and selects each pixel. The category with the highest score is used as the
predicted category of the pixel value. Then, the category label of each pixel value is obtained. The pixel
label of the background noise category is 0, the pixel label of the pollution category is 1, and the pixel
label of the particle category is 2.

3.1.2 Noise Block Extraction of the Original Cryo-EM Image

After using the U-Net image segmentation algorithm, we input a cryo-EM original image and
obtain a pixel label matrix. Ay, is used to denote this matrix, and /,,,, denotes the original cryo-
EM image. We adopt an m x m size slider and denote it as w,,,,,,. Slider w,,,,, scans the entire pixel
label matrix Ay,y by using a preset stride. When the matrix obtained by slider w,,,,, is an all-zero
matrix, we store the noise block corresponding to the position of the original cryo-EM image, and we
can get a pure block /' of the cryo-EM image. By using the slider to traverse the entire pixel label

mxm
matrix Ay,y, We can obtain 2 i 1. We process enough cryo-EM original images,

— [yl
mxm {lmxm’ lmxm’ * 0 Tmxm

obtain sufficient noise blocks, and superimpose these noise blocks with the projected clean particles
to obtain a simulated noise particle image corresponding to the clean particle image. In this way, a
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paired dataset for the cryo-EM single-particle noise reduction task is constructed (for specific details,
refer to Algorithm 1).

Algorithm 1: Noise Block Extraction of Original Cryo-EM Image

Input: A label matrix after image segmentation, A, ; Original cryo-EM image, I,/ ;
Output: Many blocks of the original cryo-EM images, i
01: Set up a sliding window, w,,.,
02: x =0;y =0;
03: While x < N-m
04:  While y < N-m
05: Ifw,,,, = 0 then

> “mxm?

06: Store the original image w,,,, corresponding to the location of i
07: Endif
08: y =y + stride;

09:  Endwhile

09:  x=x+ stride;

10: Endwhile
11: return #

mxm

Fig. 2 describes the overall paired dataset construction process for the cryo-EM single-particle
noise reduction task.

Particle: Point-level annotation

Unpaired Data

X

Pollution: Pixel-level annotations

label

Original Cryo-EM Image

l

3D Projection
Image

U-Net Image
Segmentation Network

l

Noise Block Extraction

|

Noise Blocks

L Superimpose

Simulated Particle Image

Input

Denoising Network

Input

Figure 2: Process of building the paired dataset for the cryo-EM single-particle denoising task

Fig. 3 shows the simulated cryo-EM single-particle image with Gaussian noise and the method
used in this paper, as well as the real cryo-EM single-particle image. (Real cryo-EM single particle
image (d) do not match simulated images.
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(a) (b) (© (d)

Figure 3: (a) Clean particle image after projection by cryo-EM; (b) cryo-EM single-particle image
simulated by Gaussian noise method; (c) cryo-EM single-particle simulated by our method; (d) Real
cryo-EM single-particle image

3.2 Denoising Network: GAN with Perceptual Loss

Traditional image filtering technology cannot function normally when processing cryo-EM
images with extremely low SNR and low contrast. Related algorithms greatly lose the details and
contour information of the particles. Although the denoising method based on deep learning has
achieved good results in image denoising, the mean square error of using MSE [12] will make the
denoised image become too smooth and lose the detailed texture information. However, in particle
denoising tasks, the structure and orientation information of particles greatly influence the results
of subsequent clustering tasks. Therefore, we need to establish a denoising method that effectively
removes noise and retains particle information. To solve these problems, we apply GAN with
perceptual loss to the cryo-EM single-particle image denoising task and combine the improvement
ideas of GAN to enhance the cryo-EM denoising task. The GAN with perceptual loss can retain
the detailed information of the particles to the greatest extent, and GAN, which is robust to various
noises, learns the implicit characteristics of noise. GAN focuses on the migration of data noise from
strong statistics to weak statistics. Hence, it has strong adaptability to noise and blur and increases the
processing effect on low-SNR cryo-EM images.

3.2.1 Model

The goal of the generator network is to generate pure particle images through generators. The
discriminator continuously improves its resolving power by learning the feature distribution of the 3D
projected high-definition particle image. Hence, the generator must generate enhanced-quality particle
images to fool the discriminator.

For the network structure, we refer to the design of Alsaiari et al. [29]. We use the residual connec-
tion in the structure of the generator network. The network is divided into three blocks, convolution
layers, residual blocks, and deconvolution layers. The convolution layers contains convolution, BN,
and LReLU. In the residual blocks, the same structure as the convolutional layer is used, the difference
is that a shortcut connection is used to implement the residual structure, which makes the network
efficient and achieve good convergence during training. The input of the generator network is the
simulated particle image previously constructed; the output of the generator network is the particle
image after denoising; The size of the input and output images are (256, 256). We use five convolutional
networks with batch normalization and the LReLLU activation function for the discriminator network.
The input of the discriminator network is the denoising particle image generated by the generator and
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the corresponding clean particle image. Figs. 4 and 5 show diagrams of the generator and discriminator
network structures, respectively.

Simulate Single Conv layers 3 residual blocks Deconv layers
Particle Image . = A < doc =
k9n32s1 k9n64s1k3n128s1 k3n128s1 n64 n32 n3
Denoising Image
1 1
Skip connection
Figure 4: Generator networks
k4n48s2 k4n96s2 k4n192s2 k4n384s1 kdnis1  Generated
Ground-truth

Clean Image

Figure 5: Discriminator networks

3.2.2 Loss Function

GAN was traditionally used for unsupervised learning tasks. The unsupervised training method
adds a random noise z to the generator to generate images. However, this method is challenging when
used to control the output image. That is, we cannot decide which random noise to use to produce
the image we want unless we try all the initial distributions. Given that we have constructed a paired
dataset of cryo-EM images, we can use the idea of image-to-image translation [30] to solve it and
change the unsupervised training method of GAN to supervised. Image-to-image translation [30] is
the process of obtaining the desired output image based on an input image. It can be regarded as a
mapping between an image and another image. For the cryo-EM image denoising task, we use x to
represent the simulated noisy particle image. G (x, z) represents the particle image after denoising,
and y represents the clean particle image. E represents the expected value of the calculation. The
loss function Lg,y (G, D) is defined in Eq. (5). G tries to minimize this objective, whereas D tries to
maximize it. Moreover, we change the input of the generator and discriminator. x it is combined with
z as the generator’s input to derive the generated image G (x, z). Then, G (x,z) and x are combined
based on the channel dimension and used as the input of the discriminator to derive the predicted
probability value.

LGAN (Ga D) = ]Ex,y [lOgD (xa y)] + ]Ex,z [108 (1 - D (.X, G (xa Z)))] (5)
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To ensure similarity between the input and output image, we use L1 loss as the loss function to
constrain the difference between the particle denoising image G (x, z) and the clean particle image y,
as defined in Eq. (0).

Ly (G) =E,,.:lly — G(x, 2] (6)

To preserve the structure information of the particles to the greatest extent during training,
we adopt perceptual loss, which we call L;, as defined in Eq. (7). The loss function is obtained by
passing the generated and target images through the untrainable VGG-19 network and calculating
the MSE [12] between the two images. C is a preset constant, V(G (x)) represents the denoising
particles generated by the generator after passing through the untrainable VGG-19 network, and V' (y)
represents the clean particles after passing through the untrainable VGG-19 network.

L, = C* MSE(V(G(x)), V() (7

Therefore, the overall loss function is defined in Eq. (8). A,, and A, are pre-defined weights.

G = argmgnmax Ly (G,D) + AL, (G) + AL, ®)
D

4 Experiments

The source of our experimental dataset is the PDB’s Electron Microscope Database (EMDB)
[31]. To improve the generalization of the network, we select various PDB molecules for 3D projection
to obtain our clean particle images and selected the corresponding original image for noise block
extraction to simulate real noisy particles. The image format obtained from EMDB is mrc and cannot
be directly inputted to the neural network. We preprocess the mrc images and convert them to jpg
format. Section 4.1, compares the performance of various denoising methods for different noises
and different particles in our simulated dataset. Section 4.2, compares the denoising effect of our
network on the real particle image when training on the dataset under Gaussian noise and training
on the simulated dataset. We also compare the denoising effects of other denoising methods on real
particles. Given that real particles do not have corresponding clean particles, the denoising results of
real particles can only be evaluated by subjective evaluation.

4.1 Denoising Performance in the Simulation Dataset

We conduct a comparative experiment on the paired dataset we constructed. The experiment
compares two indicators, PSNR [13] and SSIM [13], which are two indicators commonly used in
the field of image denoising. PSNR is an error-sensitive image quality evaluation index. Generally
speaking, the higher the PSNR, the better the quality of denoising. However, this index tends to ignore
the visual characteristics, and it often appears inconsistent with the subjective evaluation. SSIM is
an index that measures image similarity from the three aspects of image brightness, contrast, and
structure. In this experiment, we used simulated images of various particles for training and used the
EMD-0406 dataset and EMD-23579 for testing. We added noise blocks of different noise levels to
these two particles. Among them, the noise level added to the EMD-0406 dataset is lower, and the
noise level added to EMD-23579 is higher. Compare our method with the general filter, the hybrid
domain BM3D algorithm, and the deep learning-based DnCNN algorithm.

The denoised images of the EMD-0406 dataset are shown in Fig. 6, and the denoised images of
EMD-are shown in Fig. 7. The results of the evaluation indicators are shown in Tab. 1.



72 JBD, 2022, vol.4, no.1

(e) (8 (h)

Figure 6: Comparative experiments on the EMD-0406 simulation dataset with a weak noise level: (a)
Clean particle image; (b) Noisy image simulated by our method; (c) Bilateral Filters; (d) BM3D; (e)
low-pass filter; (f) DnCNN; (g) GAN (Unsupervised); (h) GAN (Ours)

(e) (8 (h)

Figure 7: Comparative experiments on the EMD-23579 simulation dataset with a strong noise level:
(a) Clean particle image; (b) Noisy image simulated by our method; (c) Bilateral Filters; (d) BM3D;
(e) low-pass filter; (f) DnCNN; (g) GAN (Unsupervised); (h) GAN (Ours)
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Table 1: Comparison of the denoising results of different methods

Denoising algorithm PSNR SSIM
Mean filter 10.43 0.54
Gaussian filter 10.40 0.54
Bilateral filtering 10.44 0.49
Low pass filter 13.67 0.67
BM3D 11.58 0.56
DNCNN 23.59 0.92
GAN (Unsupervised) 24.31 0.92
GAN (Ours) 25.06 0.96

Among the seven compared methods, our method achieves the best PSNR [13] and SSIM [17],
and the general filtering method in the spatial domain has the worst results. One of the main reasons
is that algorithms in the spatial domain calculate directly based on the pixels of the image; moreover,
the signal of cryo-EM images is close to the gray value of noise, so the effect is weak. Compared with
the effect in the spatial domain, the effect in the hybrid and transform domains is relatively better.
However, the denoising effect we wish to achieve is still not achieved, and the calculation time of these
algorithmsislong. Compared with these traditional image denoising methods, the denoising algorithm
based on deep learning is superior mainly because the deep learning algorithm can learn the rules of
noise through the paired dataset we constructed. The GAN-based denoising algorithm can achieve
better results than the other deep learning algorithms. The main reason is that GAN pays attention to
the migration of data noise from strong statistics to weak statistics and has strong resistance to various
noises. It enhances the processing effect on cryo-EM images, which contain complex noise images. In
addition, the GAN that we use to join the conditional constraints can learn the features we want, so
we obtain the best results.

For the EMD-0406 simulation data denoising experiment with the weak noise level, we show the
denoising results of six methods. The visualization results show that the traditional image filtering
method is not effective; the methods based on deep learning have shown a great effect and can retain
the contours of the particles. However, the approach using DnCNN still retains a certain amount of
noise, and the unsupervised GAN-based loses some edge information. Compared with these methods,
the method we use can retain the detailed information of the particles to the greatest extent.

For the EMD-23579 simulation data denoising experiment with a strong noise level, we also show
the denoising results of six methods. The visualization results reveal that the algorithm based on
DnCNN exerts a better effect than the traditional filtering methods. However, it still retains much noise
and loses the particles’ structure and orientation information. Compared with DnCNN, GAN has a
better denoising effect. Furthermore, compared with the unsupervised training GAN, the method we
use can remove noise to the greatest extent and retain the useful information of the particles.

4.2 Denoising Performance in Real Noisy Dataset

In this section, we compared the denoising effect of two methods on real single particle of
cryo-EM, one method uses Gaussian noise to train our network, and the other method trains our
network with the simulated dataset constructed in this paper. We also compare the denoising images
of our method and those of other methods on real particles. The denoising image of the real particle
(EMPIAR-10059) is shown in Fig. 8.
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Figure 8: Comparative experiments on the EMPAIR-10059 real dataset : (a) real noisy particle; (b)
Bilateral Filters; (c) BM3D; (d) low-pass filter; (¢) GAN (ours) trained on Gaussian noise dataset;
(f) DnCNN; (g) GAN (Unsupervised); (h) GAN (Ours). (f)-(g) trained with the simulated dataset
constructed by our method

The images of the denoising results of real particles show that the traditional filter only has a low-
pass filter, which can play a role to a certain extent but still retains a lot of noise. The method based
on deep learning has significant effects. Among them, our method has the best effect on retaining the
particle’s structure information and orientation information due to the perceptual loss that we added
during training. Comparison of (g) and (h) in Fig. 8, both unsupervised GAN (g) and supervised
GAN (h) have good denoising effect on real particles, but the supervised GAN we trained can remove
noise to a greater extent and retain particle information to a greater extent. It shows that the use of
supervised GAN allows the network to better learn the mapping from the input image to the output
image, so as to obtain the specified output image. In addition, in Fig. &, (e) is the denoising effect of our
improved GAN network trained by Gaussian noise on real particles. Comparing (¢) and subsequent
(D), (g), (h), it can be seen that the use of a Gaussian noise training network has a poor denoising effect
on real particles. Although the rough outline of the particles can be seen, a large amount of noise is
still retained. The method of constructing the dataset using the method in this paper, whether it is
DnCNN (f), or unsupervised GAN (g), or supervised GAN (h), the denoising effect is better than
(e), which further shows that the dataset constructed with our method is more efficient than using
Gaussian noise to build the dataset performs better for cryo-EM single-particle denoising task.

5 Conclusion

In this paper, we propose a noise extraction algorithm to build a paired dataset and use improved
GAN to denoise cryo-EM single-particle images. We provide quantitative indicators and visualization
results on simulated datasets and visualization results on real datasets. The experimental results show
that our method demonstrates better performance than other state-of-the-art methods, achieves higher
PSNR and SSIM, effectively removes particle noise, and retains more useful information. Although
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the proposed method achieves good performance in PSNR and good visual effects on the retention
of particle structure information, for particles that have not been extracted from the noise block of
the original cryo-EM image, a large gap still exists between denoised and clean particles. Therefore,
in our future work, after extracting enough noise blocks, we will input them into GAN, simulate the
distribution, and perform modeling to improve the network’s generalization.
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