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Abstract: The process of segmenting point cloud data into several homo-
geneous areas with points in the same region having the same attributes is
known as 3D segmentation. Segmentation is challenging with point cloud
data due to substantial redundancy, fluctuating sample density and lack
of apparent organization. The research area has a wide range of robotics
applications, including intelligent vehicles, autonomous mapping and navi-
gation. A number of researchers have introduced various methodologies and
algorithms. Deep learning has been successfully used to a spectrum of 2D
vision domains as a prevailing A.I. methods. However, due to the specific
problems of processing point clouds with deep neural networks, deep learning
on point clouds is still in its initial stages. This study examines many strategies
that have been presented to 3D instance and semantic segmentation and gives
a complete assessment of current developments in deep learning-based 3D
segmentation. In these approaches’ benefits, draw backs, and design mecha-
nisms are studied and addressed. This study evaluates the impact of various
segmentation algorithms on competitiveness on various publicly accessible
datasets, as well as the most often used pipelines, their advantages and limits,
insightful findings and intriguing future research directions.

Keywords: Artificial intelligence; computer vision; robot vision; 3D instance
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1 Introduction

In computer vision and graphics, segmenting 3D scenes is a dangerous and bleak issue. The
purpose of 3D segmentation is to create computational algorithms that predict the fine-grained
labels of objects in a 3D environment for a range of applications, such as medical image analysis,
autonomous driving, industrial control, mobile, augmented and virtual reality and robotics [1,2]. The
3D segmentation can be divided into multi-sorts, instance and semantic segmentation. The goal of
instance segmentation distinguishes between various instances of the same class labels in addition,
semantic segmentation is to anticipate object class labels like table and chair e.g., when segmentation
is able to discriminate between all individual objects, and this is referred to as instance segmentation.
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In contrast, semantic segmentation is used when segmentation can only discriminate between classes
of objects. Fig. 1 is the explanation of the two segmentation techniques. Deep learning approaches
have recently overtaken numerous study domains, due to their effectiveness in learning powerful
features. Deep learning for 3D segmentation has also piqued the interest of the academic community
throughout the last decade. However, many problems remain unresolved in 3D deep learning systems
e.g., features from the RGB and depth channels are difficult to combine. The irregularity of point
clouds makes exploiting local characteristics challenging, and transforming them to high-resolution
voxels imposes a significant computing load [3,4]. This research provides a comprehensive summary
of recent improvements in 3D segmentation using deep learning methods. It examines frequently
used architectures, building components, convolution kernels and advantages and disadvantages in
each scenario. Despite the fact that notable 3D segmentation surveys such as RGB-D semantic
segmentation [5] and point clouds segmentation [6] have been published, these surveys do not cover
all 3D data types and common application domains [2,3,5,6]. Furthermore, these surveys are mostly
concerned with describing a broad review of deep learning using point clouds, rather than only
3D instance and semantic segmentation. Because of the significance of the two segmentation tasks,
this research focuses solely on deep learning approaches, specifically for 3D instance and semantic
segmentation. The contributions of this paper are summarized as follows:

• To our knowledge, this is the first overview study that covers deep learning approaches for 3D
instance and semantic segmentation employing a variety of 3D data representations, such as
RGB-D, projected pictures, voxels, point clouds, and mesh-based methods.

• Several forms of 3D instance and semantic segmentation algorithms have been carefully
evaluated in terms of relative advantages and drawbacks.

• Unlike previous evaluations, we concentrate on deep learning-based algorithms for 3D instance
and semantic segmentation, as well as common application domains.

Figure 1: Two major divisions of 3D segmentation

Fig. 1 depicts how the rest of the article is divided into major two categories. Fig. 2 explains
visual explanation about semantic and instance segmentation. Figs. 3 and 4 are explaining about
their subcategories. Sections 2 and 3 covers information and underlying explanations in details, such
as 3D segmentation assessment criteria. Techniques for 3D semantic segmentation are covered in
Section 3, whereas methods for 3D instance segmentation are covered in Section 2. Section 4 explains
the common 3D datasets and their respective 3D segmentation types, classes, sensors, points and
feature representations on a variety of concise data analysis. Finally, Section 5 concludes the paper
by discussing the advantages and limits and proposing future research subjects.
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     Objects placed on the table (a) Instance Segmentation (b)

Figure 2: (a) Explains about different objects on 3D plane. (b) Indicates that each instance is
represented by a different color

Figure 3: Overview of 3D instance segmentation and sub-categories

Figure 4: Overview of 3D semantic segmentation and its sub-categories

2 3D Instance Segmentation

The techniques for 3D instance segmentation distinguish between various instances of the same
class. The research community is becoming more interested in 3D instance segmentation as a more
informative task for scene understanding. Proposal-free and proposal-based segmentation approaches
for 3D instance segmentation is essentially classified into subcategories, as explained in Fig. 1. The
visual representation is explained in Figs. 2 and 5.
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(a) (b) 

Figure 5: Example of 3D semantic segmentation (a) represents the example of objects placed on 3D
plane. (b) Represents the example of semantic segmentation with respect to object classification where
each class is represented with single color example

2.1 Proposal Based Segmentation
The proposal-based algorithms first forecast object proposals and then refines them to build final

instance masks breaking down the effort into two key issues. As a result, these strategies may be divided
into detection-based and detection-free methods in terms of proposal generation.

2.1.1 Detection Based Segmentation

Object suggestions are sometimes defined as a 3D bounding box regression issue in detection-
based approaches. Based on the posture alignment of the 3D reconstruction, 3D-SIS combines high
resolution RGB photos with voxels and simultaneously learns color and geometric characteristics
using a 3D detection backbone to anticipate 3D bounding box suggestions [7]. A 3D mask backbone
predicts the final instance masks in these approaches. Similarly, Pointgroup [8] proposes the Dual-
set point grouping, a 3D object proposal network that reconstructs object forms from shape noise
data in order to enforce geometric comprehension. The GPSN is integrated into a 3D instance
segmentation network called Region based PointNet to reject, receive, and enhance proposals (R-
PointNet). These networks must be trained step by step, and object proposal refinement demands an
expensive suppression operation. Yang et al. [9] proposed the 3D-BoNet, a unique end-to-end network
that learns a set number of 3D bounding boxes without rejection and then estimates an instance mask
in each bounding box.

2.1.2 Detection Free Segmentation

The detection free models including SGPN [10] is one of the detection free techniques that expects
that points belonging to the same object instance should have relatively comparable characteristics.
As a result, in order to forecast proposals, it learns a similarity matrix. To provide extremely credible
instance ideas, the proposals are trimmed using point confidence scores. However, this basic distance
similarity measure learning is ineffective in segmenting nearby items of the same class and is not
informative. 3D-MPA [11] learns object proposals using sampled and aggregated point data that vote
for the same object center, and then consolidates the proposal features using a graph convolutional
network, which allows for higher-level interactions between proposals and refines proposal features.
Jiang et al. [12] proposed a candidate assignment module and a candidate suppression module to
remove superfluous candidates. In order to generate an instance grouping loss for network training, a
mapping between instance labels and instance candidates is also necessary.
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2.1.3 Proposal Free Segmentation

The methods that do not need a proposal breaking down the problem into two primary difficulties
learn feature embedding for each point and then use clustering to produce definitive 3D instance labels
from the embedding learning point of a view, these approaches may be loosely separated into three
categories: multi-embedding learning, 2D embedding propagation and multi-task learning.

2.2 Multi Embedding Learning
Multi-embedding learning: approaches like MSU-Net [13] rely on good performance of the 3d

semantic segmentation with submanifold sparse convolutional networks [14] to predict the similarity
embedding between nearby points at different scales and semantic topology. A basic yet effective [15]
is adopted to segment points into instances based on the two types of learnt embedding. The feature
embedding unique to each instance and the direction embedding that orients the instance center,
which provides a stronger grouping force, are both learned by multi-task metric learning (MTML)
[16]. Similarly, depending on the original coordinate embedding space and the shifted coordinate
embedding space Pointgroup [8] points into distinct clusters. Furthermore, the suggested ScoreNet
aids in cluster selection.

2.3 2D Embedding Propagation Method
The 3D-BEVIS [17] approach is an example of 2D embedding, learns 2D global instance

embedding with a bird’s-eye view of the whole scene. The learnt embedding is then propagated onto
point clouds using DGCN [18]. Another example is PanopticFusion [19], which uses the 2D instance
segmentation network Mask R-CNN [20] to predict pixel-wise instance labels for RGB frames and
integrates the learnt labels into 3D volumes.

2.4 Multi Task Jointly Learning
The impact of 3D semantic segmentation and 3D instance segmentation on each other is possible.

Objects with distinct classes, for example, must be instances, but objects with the same instance label
must belong to the same class. Associatively segmenting instances and semantics in point clouds (ASIS)
[21] builds an encoder-decoder network called ASIS to learn semantic-aware instance embedding in
order to improve the performance of the two tasks. Similarly, Joint semantic-instance segmentation
of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields
(JSIS3D) [22] proposes an MV-CRF to simultaneously optimize object classes and instance labels by
using a unified network called MT-PNet to predict the semantic labels of points and embedding the
points into high dimensional feature vectors. In a similar manner, J. Du etal. [23] and Liang et el.
[24] 3D-GEL uses SSCN to create semantic predictions and instance embedding at the same time,
then refines the instance labels with two GCNs. OccuSeg [25] creates both an occupancy signal and a
spatial embedding using a multitask learning network.

3 3D Semantic Segmentation

In the literature, many deep learning approaches for 3D semantic segmentation have been
suggested. According on the data representation utilized, these approaches may be split into five
categories: RGB-D picture based, projected images based, voxel based, point based, and other
representations based. Point-based techniques are further divided into multiple layer perceptron
(MLP)-based, point convolution-based, and graph convolution-based approaches, depending on the
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network architecture. The visual explanation presented in Fig. 5 and classification information is
explained in Fig. 4 which depicts current deep learning achievements in 3D semantic segmentation.

3.1 RGB-D Based Segmentation
The depth map of an RGB-D picture provides geometric information about the actual environ-

ment that may be used to identify foreground items from background objects, allowing segmentation
accuracy to be improved. The conventional two channel network is often used to extract features
from RGB and depth pictures independently in this category. This minimal framework, however, is
insufficient to extract rich and sophisticated information. To this purpose, researchers have added
numerous additional modules to the aforementioned simple two channel system in order to increase
performance by learning rich context and geometric information, both of which are critical for
semantic segmentation. Multi-task learning, depth encoding, multi-scale networks, innovative neural
network designs, data/feature/score level fusion, and post-processing are the six areas that these
modules fall within (see Fig. 4).

3.1.1 Depth Estimation and Encoding

In computer vision, depth estimation and semantic segmentation are two fundamentally difficult
tasks. Because depth variation inside an item is minor compared to depth variation across various
objects, these tasks are somewhat connected. As a result, several studies combine the tasks of depth
estimation with semantic segmentation. There are two basic types of multi-task leaning frameworks,
cascade and parallel, based on the link between the two activities.

The depth estimate task in the cascade structure generates depth pictures for the semantic
segmentation task. For example, Liu et al. [26] employed Cao et al. [27] deep convolutional neural
fields (DCNF) for depth estimation. For semantic segmentation, the estimated depth pictures and
RGB images are supplied into a two channel FCN. Guo et al. [28] used Ivanecky’s [29] deep network
for automatically producing depth pictures from single RGB photos, and then presented a two channel
FCN model on the RGB and anticipated depth map image pair for pixel labeling. Because the cascade
architecture does depth estimation and semantic segmentation individually, it is unable to undertake
end-to-end training for two tasks at the same time. As a result, the semantic segmentation job provides
no advantage to the depth estimate problem. The parallel framework, on the other hand, conducts
these two activities in a network, allowing the two processes to benefit from one other. Wang et al. [30],
for example, employed Joint Global CNN to offer accurate global scale and semantic guidance by
using pixel-wise depth measurements and semantic labels from RGB images. They also employ Joint
Region CNN to learn precise depth and semantic boundaries by extracting region-wise depth values
and a semantic map from RGB.

Mousavian et al. [31] proposed a multi-scale FCN with five streams that examine depth and
semantic characteristics at different sizes while sharing the underlying feature representation. To
simulate the two tasks together, Liu et al. [32] suggested a collaborative de-convolutional neural
network (C-DCNN). The quality of depth maps calculated from RGB photographs, on the other hand,
is inferior to that obtained directly from depth sensors. In RGB-D semantic segmentation, this multi-
task learning process has increasingly been abandoned. Raw depth photos provide rich geometric
details that conventional 2D-CNNs are unable to explore. Another option is to convert raw depth
pictures into different 2D-CNN-compatible representations. To represent the depth channel from
RGB-D scenes, Höft et al. [33] employed a simplified version of the histogram of oriented gradients
(HOG). From the raw depth photos, Lin et al. [34] and Pandey et al. [35] derived three additional
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channels: horizontal disparity, height above ground, and angle with gravity (HHA). A shortcoming of
HHA, according to Liu et al. [36], is that some sceneries may not include enough horizontal and
vertical planes. As a result, they suggest a new gravity direction detecting approach that employs
vertical lines to learn a better representation. According to Hazirbas et al. [37], HHA representation
has a high processing cost and includes less information than raw depth photos. They propose the
FuseNet design, which consists of two encoder decoder branches, one for depth and the other for
RGB, which directly encodes depth information with less computational effort.

3.1.2 Multi-Scale Networks

Small objects and detailed region segmentation benefit from the context information gained by
multi-scale networks. Couprie et al. [38] used a multi-scale convolutional network to learn features
directly from RGB and depth pictures using a multi-scale convolutional network. Pandey et al. [35]
Introduced a multi-scale deep ConvNet for segmentation, in which coarse VGG16-FC net predictions
are up sampled in a Scale-2 module and then concatenated with low-level VGG-M net predictions in
a Scale-1 module to provide both high and low level features. This approach, however, is susceptible
to scene clutter, resulting in output problems. Jiang et al. [39] take use of the fact that lower-resolution
regions have more depth, whereas higher-resolution parts have less. They introduce context-aware
receptive field (CaRF), which focuses on semantic segmentation of certain scene-resolution regions
and employs depth maps to divide relevant color imagery into different scene-resolution regions. As a
result, their pipeline becomes a multi-scale network.

3.1.3 Neural Network Based Segmentation

CNNs’ capacity to process and utilize geometric information is limited because to their fixed
grid calculation. As a result, additional innovative neural network designs have been developed to
better utilize geometric characteristics and the correlations between RGB and depth pictures. These
structures may be classified into four groups

Improved 2D Convolutional Neural Networks: Jiang et al. [39] developed a unique Dense-
Sensitive Fully Convolutional Neural Network (DFCN) that includes depth information into the
early layers of the network utilizing feature fusion methods, based on cascaded feature networks
[34]. Following that, numerous dilated convolutional layers are used to utilize context information.
Wang et al. [40] presented a depth-aware 2D-CNN by incorporating two unique layers, a depth
aware convolution layer and a depth-aware pooling layer, based on the assumption that pixels with
the same semantic label and comparable depth should have greater influence on one an-other. De-
Convolutional Neural Networks: For the refining of segmentation maps, DCNN are a simple yet
effective and efficient approach. Because of its high performance, Liu et al. [32] and Wang et al. [41] all
employ the DeconvNet for RGB-D semantic segmentation. However, because the high-level prediction
map combines huge context for dense prediction, DeconvNet’s potential is restricted. Cheng et al. [42]
developed a locality-sensitive DeconvNet (LS-DenconvNet) to enhance boundary segmentation over
depth and color pictures to achieve this goal. Local visual and geometric signals from raw RGB-D
data are included into each DeconvNet, allowing it to up sample coarse convolutional maps with
huge con-text while recovering crisp object boundaries.

Recurrent Neural Networks: (RNNs) are capable of capturing long-distance relation-ships
between pixels, however they are best suited to a single data channel (e.g., RGB). Fan et al. [43]
improved single-modal RNNs to create multimodal RNNs (MM-RNNs) for RGB-D scene labeling.
The MM-RNNs enable sharing of ‘memory’ across depth and color channels. Each channel has both
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its own characteristics and those of other channels, making the learnt features more discriminative
for semantic segmentation. Li et al. proposed a novel Long Short-Term Memorized Context Fusion
(LSTM-CF) model to gather and integrate contextual information from several channels of RGB and
depth images. Li and Qi et al. [44,45] Graph Neural Networks Were the first to use GNNs for RGB-D
semantic segmentation, casting 2D RGB pixels into 3D space and giving semantic information to
the 3D points based on depth information. After generating a k-nearest neighbor graph from the 3D
points, they employed a 3D graph neural network (3DGNN) to conduct pixel wise predictions.

3.1.4 Data/Feature/Score Fusion

The optimal integration of texture (RGB channels) and geometry (depth channel) story is critical
for efficient semantic segmentation. Early, medium, and late fusion strategies are related to data
level, feature level, and score level fusion strategies, respectively. Couprie et al. [37] concatenated
the RGB and depth images into four channels for direct input to a CNN model, which is a
straightforward data level fusion technique. The high connections between depth and photometric
channels are not exploited by such a data level fusion. On the other hand, feature level fusion
captures these relationships. For example, Li et al. [44] Developed a stored fusion layer for data
driven adaptive fusing of vertical depth and RGB contexts. To retain real 2D global contexts, their
technique does bidirectional propagation along the horizontal direction. Wang et al. [41] suggested
a feature transformation network that connects the depth and color channels while also bridging the
convolutional and de-convolutional networks in one channel. The feature transformation network can
find unique features in a single channel as well as shared features across two channels, allowing the
two branches to share features and increase the representation power of shared data. The sophisticated
feature level fusion models mentioned are placed in a specific same layer between the RGB and depth
channels, which is difficult to train and ignores other same layer feature fusion. To this purpose,
Hazirbas et al. [36] perform fusion as an element-wise summing between the two channels to merge
features of multiple identical layers. The simple averaging approach is often used for score level fusion.
The RGB model and the depth model, on the other hand, provide distinct contributions to semantic
segmentation. Liu et al. [35] developed a score level fusion layer with weighted summation that learns
the weights from the two channels using a convolution layer. Cheng et al. [42] presented a gated fusion
layer to learn the varied performance of RGB and depth channels in diverse scenarios for different
class recognition. Both strategies outperformed the basic averaging strategy, albeit at the expense of
more learnable parameters.

3.2 Projected Images Based Segmentation
The core idea behind projected image-based semantic segmentation is to employ 2D-CNNs to

extract features from projected photos of 3D scenes/shapes and then fuse them to predict labels. Unlike
a single-view picture, this pipeline not only extracts more semantic information from large-scale scenes,
but it also reduces the data size of a 3D scene when compared to a point cloud. Multi-view or spherical
pictures are the most common projected images.

3.2.1 Multiview Image Based Segmentation

To enhance classification performance, MV-CNN [46] use a unified network to aggregate data
from many perspectives of a 3D shape created by a virtual camera into a single and compact shape
descriptor. Researchers were motivated to apply the same concept to 3D semantic segmentation.
For example, Lawin et al. [47] combine point clouds with RGB, depth, and surface normal pictures
to create multi-view synthetic images. All multi-view pictures’ prediction scores are combined into
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a single representation and back-projected onto each point. How-ever, if the density of the point
cloud is poor, the snapshot may incorrectly capture the points behind the seen structure, causing
the deep network to misinterpret the numerous views. Snap-Net [48,49] does this by preprocessing
point clouds in order to compute point characteristics (such as normal or local noise) and generate a
mesh, which is analogous to point cloud densification. They produce RGB and depth pictures from
the mesh and point clouds by taking appropriate snapshots. They then use FCN to conduct pixel-
wise labeling of 2D photos, and then use efficient buffering to quickly back-project these labels into
3D locations. To offer a comprehensive spatial framework for back projection, the above approaches
require obtaining the whole point clouds of a 3D scene in advance. However, multi-view photographs
collected directly from a real-world scene would lose a significant amount of spatial information.
Some studies have attempted to combine 3D scene reconstruction with semantic segmentation, with
the hope that scene reconstruction will compensate for the lack of spatial information. Boulch &
Guerry et al. [48,50], for example, use global multi-view RGB and Gray stereo pictures to rebuild a 3D
scene. The 2D snapshot labels are then back-projected onto the rebuilt scene. Simple back projection,
on the other hand, is incapable of optimally fusing semantic and spatial geometric data. Following
back projection, Pham et al. [51] suggested a revolutionary Higher-order CRF to further refine the
original segmentation.

3.2.2 Spherical Image Based Segmentation

It’s not easy to choose shots from a three-dimensional scene. To acquire an ideal depiction of the
entire environment, snapshots must be made after taking into account the number of views, viewing
distance, and angle of the virtual cameras. Researchers project the whole point cloud onto a sphere to
avoid these difficulties. For example, Iandola et al. [52] introduced SqueezeSeg, an end-to-end pipeline
based on SqueezeNet [52] that learns features from spherical pictures and refines them using CRF as
a recurrent layer. PointSeg [53] enhances SqueezeNet by combining feature-wise and channel-wise
attention to develop robust representation. SqueezeSegv2 [54] adds LiDAR mask as a channel to
boost resilience to noise and improves the structure of SqueezeSeg with Context Aggregation Module
(CAM). Regardless of the extent of discretization employed in CNN, RangNet++ [55] converts the
semantic labels to 3D point clouds, eliminating point discarding. Despite the similarities between
standard RGB and LiDAR photos, the feature distribution in LiDAR images varies depending on
where you look. SqueezeSegv3 [56] uses Spatially Adaptive Convolution (SAC), a spatially-adaptive
and context-aware convolution, to adopt various filters for different places.

3.3 Point Based Semantic Segmentation
The usage of standard 2D/3D convolutional neural networks is limited because point clouds are

spread randomly in 3D space, without any canonical order and translation invariance. A group of
point-based semantic segmentation networks has been suggested recently. Multiple layer perceptron
(MLP)-based, point convolution based, and graph convolution-based approaches may be loosely
split into three groups. There are three further sub-categories of point based semantic segmentation
e.g., multiple player perceptron-based method, graph-based convolution method and point based
convolution method.

Convolution operations are performed directly on the points in point convolution techniques. For
example, H. Su et al. [46] uses 1 × 1 convolution to leverage point-wise characteristics before passing
them via the local dependency module (LDM) to exploit local context features. It does not, however,
specify the neighborhood for each point in order to learn about local characteristics. Li et al. [44]
stacking numerous convolutional layers and a long short-term memory layer, the Long Short-Term
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Memorized Context Fusion (LSTM-CF) Model merges contextual data from channels of photometric
and depth data introduced to CNNs. to acquire real 2D global contexts, do bi-directional propagation
of the merged vertical contexts along the horizontal way. The spatial 2D convolution neural network
framework is quite similar to this method. Flex-Convolution [31] models a convolution kernel with
a linear function with less parameters and adjusts inverse density importance subsampling (IDISS)
to coarsen the points. For example, DA-CNN [40] uses a point probability density function (PDF) to
express convolution as a Monte Carlo integration problem, with the convolution kernel represented
by an MLP. Furthermore, Deep GCNs [47] uses 2D-CNN features such residual connections between
layers (ResNet) to solve the vanishing gradient problem and a dilation method to allow the GCN to
go deeper. Liu et al. [26] created a local graph on neighborhood points searched in multi-directions
and explored local features using a local attention edge convolution, based on the fundamental
architecture of PoinNet++ [57]. To capture precise and resilient local geometric details, A point-wise
spatial attention module is supplied with these features. The spherical convolution kernel divides a 3D
spherical area into several bins, each of which has learnable parameters for weighting the points that
lie within it.

4 Benchmark Datasets for 3D Segmentation

The availability of public datasets has aided research on semantic segmentation’s accurate border
recovery. The quality of the datasets used for training is unquestionably proven by the degree of success
of any deep learning-based models and applications. Only when the models are assessed against the
same benchmarks are the efficiency of accurate boundary recovery strategies comparable and credible.
As a result, many datasets were evaluated using the approach proposed, which are detailed in further
depth. Tab. 1 shows representative 2D picture benchmark datasets for evaluating border recovery
algorithms. The goal of this statistical study is to provide readers a better knowledge of the data
architecture and make benchmark selection easier for future investigations.

Table 1: In the acquisition of these datasets for 3D semantic segmentation, many types of sensors and
various 3D scanners are discussed

Dataset Classes Sensors Scenes-segmentation Points Feature
representation

ShapeNet 55 - Outdoor, indoor
instance seg.

51,300 XYZ, Propagating
human label to
shapes

ScanNet 21 RGB-D Indoor-instance seg. 242 XYZ, RGB, label
S3DIS 13 Structured,

light
Indoor-instance seg. 215 XYZ, RGB,

Normalized
coordinates

PSB 19 Amazon’s
mechanical
turk

Indoor-instance seg. 380 XYZ,
segmentation,
class

COSEG 11 - Indoor-instance seg. 1,090 Supervised,
semi-supervised

(Continued)
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Table 1: Continued
Dataset Classes Sensors Scenes-segmentation Points Feature

representation

KITTI 28 MLS Outdoor-semantic seg. 1,799 XYZ, reflectance,
label, class

Semantic3D.net 8 TLS Outdoor-semantic seg. 4,009 XYZ, intensity,
RGB

Paris-Lille-3D 50 MLS Outdoor-semantic seg. 143 XYZ, GPS time,
Label, Class

NYUv1 & 2 726 Microsoft
Kinect v1

Indoor-semantic seg. 2,347 2D LabelMe-style
annotation, classes

SUN RGB-D 47 RealSense,
Xtion, MKv1/2

Indoor-semantic seg. 10,355 2D/3Dpolygons
+3D bounding
box

Semantic3D 8 Terrestrial
Laser scanner

Outdoor-semantic seg. 1,660 XYZ, three
baseline methods

PL3D 50 Velodyne
HDL-32E
LiDAR

Outdoor-semantic seg. 143.1 M Human labeling,
Annotation, Class

Matterport3D 90 Matterport
camera

Indoor-semantic seg. 194.4 K Hierarchical
labeling,
Annotation, Class

HoME &
House3D

84 Planner5D
platform

Indoor-semantic seg. 45,622 SSCNet +3 ways,
test description

In particular, as shown in Tab. 1, the point cloud representation is summarized, which is one of
the basic methodologies for deep learning-based 3D scene interpretation. We discovered that various
datasets use distinct representations, limiting their generality and appeal. If there was a consistent
standard for representing point cloud features, it would undoubtedly speed up the development of
more complex deep learning algorithms and their applications in the industry. Datasets are essential
for training and testing deep learning based 3D segmentation algorithms. Privately gathering and
annotating datasets, on the other hand, is time consuming and costly, since it necessitates subject
expertise, high quality sensors, and processing equipment. As a result, relying on public datasets is
an excellent approach to cut costs. Following this path has an additional benefit for the community in
that it allows for a fair comparison of algorithms. Tab. 1 lists some of the most common most common
datasets, organized by sensor type, data size and format, scene class, and annotation technique.

5 Discussion and Challenges

In this section, some of the challenges and possible solutions are discussed, followed by a
comprehensive conclusion. Deep neural network (DNN) techniques for 3D instance and semantic
segmentation are quickly evolving, yet the following issues remain unsolved. It is inefficient and
impracticable for a system to use numerous deep learning networks to perform distinct computer
vision tasks. Semantic segmentation has great consistency with various tasks, such as depth estimation,
segmentation, scene comprehension, and object identification, when it comes to exploiting core
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features of a scene. These activities might work together to increase performance through cooperative
learning.

Raw point cloud-based boundary recovery: Using numerous alternative representations, such
as depth pictures, point clouds, and voxels, semantic segmentation might possibly attain improved
accuracy. Single representation, on the other hand, limits segmentation accuracy due to the restrictions
of scene information, such as fewer semantic, geometric, and voxel information, use of multiple
representations could help to improve your performance and accuracy.

The goal of point-based semantic segmentation is to comprehensively analyze point-wise charac-
teristics and their linkages. However, characteristics between local areas make exploitation of global
context features much more difficult, and low-level features are lost.

Criterion for annotating datasets: For some applications, such as autonomous driving and mobile
robotics, real-time 3D scene parsing is critical; nevertheless, most of them focus on segmentation
accuracy rather than real-time speed. Few light-weight 3D semantic segmentation models, on the other
hand, use pre-processing to improve segmentation speed, but they are likely to overlook a significant
amount of geometric information. In the future, real-time 3D semantic segmentation approaches
based on point clouds will demand greater attention.

Interpret-ability of deep learning: The neural network’s output should be justified in a way
that is intelligible to humans, leading to new insights into the inner workings. Interpret-able deep
networks are the name given to such models. Interpret-ability isn’t a one-size-fits-all concept. In reality,
due to varying degrees of human comprehension, the subjectivity of an interpretation necessitates
the existence of a plethora of characteristics that together define interpret-ability. Furthermore,
the interpretation can be expressed either in terms of low-level network parameters or perhaps in
terms of model input features. Statistical measures are commonly employed to assess an output’s
unpredictability. The idea of trust, on the other hand, is dependent on a human’s sight into the
machine’s operation.

Furthermore, Due of the high computer power and resources required, present techniques are
confined to extremely tiny 3D point clouds. Large-scale point clouds require data pre-processing to
deal with problems like these. On the other hand, spatiotemporal characteristics can help improve the
resilience of 3D video or dynamic 3D scene segmentation.

6 Conclusion

A detailed overview of current progresses in 3D segmentation utilizing deep learning approaches
including 3D instance and semantic segmentation has been presented. Deep learning approaches
for 3D segmentation have made substantial development in recent years. However, this is only the
beginning, and researchers should expect major advancements in the future. In this study, various
unresolved concerns were highlighted, as well as possible future topics. The papers evaluated in
this study explained that effective real-time application is still a work in progress due to several
limitations with point cloud data. This article on 3D point cloud segmentation, which includes a
large bibliography, can give important insight into this important topic while also stimulating new
study. In this research article, 3D instances and semantic segmentation methodologies are identified
and explored, as well as a concise summary of their strengths and downsides. This study revealed that
there is still a lot of room for development in terms of segmentation accuracy, speed, and complexity.
As a result, our future work will consist involving some of these strategies and developing a new one
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by improving the flaws and/or combining the virtues. The issues of these complications are likely to
be addressed in the near future.
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