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Abstract: Orthogonal frequency division multiplexing is one of the efficient and
flexible modulation techniques, and which is considered as the central part of
many wired and wireless standards. Orthogonal frequency division multiplexing
(OFDM) and multiple-input multiple-output (MIMO) achieves maximum spectral
efficiency and data rates for wireless mobile communication systems. Though it
offers better quality of services, high peak-to-average power ratio (PAPR) is the
major issue that needs to be resolved in the MIMO-OFDM system. Earlier studies
have addressed the high PAPR of OFDM system using clipping, coding, selected
mapping, tone injection, peak windowing, etc. Recently, deep learning (DL) mod-
els have exhibited improved performance on channel estimation, signal recogni-
tion, channel decoding, modulation identification, and end-to-end wireless
system. In this view, this paper presents a new Hyperparameter Tuned Deep
Learning based Stacked Sparse Autoencoder (HPT-SSAE) for PAPR Reduction
Technique in OFDM system. The proposed model aims to substantially reduce
the peaks in the OFDM signal. The presented HPT-SSAE model is utilized to
adaptively create a peak-canceling signal based on the features of the input signal.
In the HPT-SSAE model, the constellation mapping and demapping of symbols
take place on every individual subcarrier adaptively using the SSAE model in
such a way that bit error rate (BER) and the PAPR of the OFDM systems are
cooperatively diminished. Besides, to enhance the performance of the SSAE mod-
el, the hyperparameter tuning process takes place using monarch butterfly optimi-
zation (MBO) algorithm. A comprehensive set of simulations were performed to
highlight the supremacy of the HPT-SSAE model. The obtained experimental
values showcased the betterment of the proposed model over the compared meth-
ods interms of bit error rate (BER), complementary cumulative distribution func-
tion (CCDF), and execution time.
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1 Introduction

Advanced development in new wireless communication technologies has resulted in an increasing need
for higher data rate owing to the familiarity of multimedia services, like real-time streaming media, games,
and other social media services. Since these requirements result in maximum bandwidth technologies [1],
improved Quality of Service (QoS) becomes important. For instance, in Minoli et al. [2], it is estimated
that the 5G mobile network achieves 1000 times the system capacity, 10 times the spectral effectiveness,
high data rate, 25 times the average cell throughput, and other enhancements of the current generation 4G
system. Orthogonal frequency division multiplexing (OFDM) forms the basis of 4G wireless
communication system; for example, it can be involved in the IEEE 802.16 Worldwide Interoperability
for Microwave Access (WiMAX) and Long-Term Evolution (LTE) standard. LTE is presented as the
widely used standard to achieve interoperable Public Safety communication in United States and other
countries [3]. One of the distinct method of multicarrier modulation (MCM) is termed as OFDM
(orthogonal frequency-division multiplexing) in which the total frequency selective fading channel is
separated into numerous orthogonal narrowband flat-fading sub channels.

The integration of OFDM with Multiple-Input Multiple-Output (MIMO) wireless communication
system leads to the design of MIMO-OFDM system [4], a significant technique for wireless
communication systems due to maximum data rate. Besides, the OFDM reduces the computational
complexity of the MIMO transceiver through the transformation of a frequency selective MIMO channel
to a collection of parallel frequency flat MIMO channels [5]. But the transmission of signals in the
OFDM method whereas the outcome is the superposition of many subcarriers through an Inverse Fast
Fourier Transform (IFFT) function encompasses high peak-to-average power ratio (PAPR). It is a major
limitation that exists in the design of OFDM systems. When a transmitting device has maximum PAPR,
the average power gets considerably minimized with reference to persistent saturation energy.

With the recently available commercial wireless system, the PAPR problem is highly important in uplink
[6] due to the fact that it is the limiting connection with respect to range and coverage. Since the mobile
terminals are restricted to inbuilt batteries, the effectiveness of the power amplification device is essential.
Fig. 1 shows the structure of OFDM system [7].

An inclination in 5G allows high frequency bands to attain extra unused spectrum, and several
researches have been carried out to accomplish it [8]. In the forthcoming 5G smartphones where beam
forming concept is utilized, the reduction in PAPR is essential assuming the minimum power efficiency
of mm Wave PAs and insignificant battery efficiency is studied in Huo et al. [9]. Furthermore, in case of
tactical communication, the coverage is a serious point, and vehicle-to-vehicle broadband data

Figure 1: Structure of OFDM systems
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transmission necessitates a robust output power. The issue that exists is that power amplifier (PA) connected
to maximum power scope is highly expensive. Consequently, a real-time design of OFDM needs to address
all ways to minimize the high PAPR. Several works have resolved the issue using distinct mechanisms like
clipping and filtering, selected mapping, coding, peak windowing, clipping, tone injection, and Partial
Transmit Sequence (PTS). Each of these techniques possesses their individual merits and demerits.
However, the PTS model is considered an effective method owing to its improved performance in PAPR
reduction. Recently Machine Learning (ML) models have been emerged in the design of OFDM systems
to accomplish superior PAPR reduction.

This paper develops a novel Hyperparameter Tuned Deep Learning based Stacked Sparse Autoencoder
(HPT-SSAE) for PAPR Reduction Technique in OFDM system. The goal of the proposed HPT-SSAE model
is to train the network in such a way as to minimize PAPR with no degradation of the BER. The presented
HPT-SSAE model is employed to dynamically generate a peak-canceling signal depending upon the
characteristics of the input signal. For further improving the efficiency of the SSAE model, the
hyperparameters can be tuned by the use of monarch butterfly optimization (MBO) algorithm. Extensive
experimental analysis of the HPT-SSAE model takes place to point out the betterment of the HPT-SSAE
model. In short, the contribution of the paper is given as follows.

� Propose a new HPT-SSAE based PAPR Reduction Technique for OFDM system

� Aims to substantially reduce the peaks in the OFDM signal

� Employ SSAE model for the peak cancelling signal generation

� Perform hyperparameter tuning of SSAE model using MBO algorithm

� Validate the results of the HPT-SSAE model interms of different measures.

2 Literature Review

Al-Jawhar et al. [10] presented a novel PTS model for decreasing the high PAPR of the filtered OFDM
systems. It has analyzed different parameters namely frequency localization, bit error rate (BER), and
computation difficulty under the existence of with and without PTS. In Amhaimar et al. [11], a low
complex PTS model is presented based on a Swarm Intelligence (SI) based Fireworks Algorithm (FWA).
The FWA is an iterative technique that begins to execute till the stopping condition is satisfied and it
involves four major parameters such as mutation operation, mapping rule, explosive operator, and
selection approach. The obtained experimental values stated that the presented model has accomplished
higher accuracy of PAPR and convergence rate compared to the traditional methods.

In Wang et al. [12], an effective DL based tone reservation network (TRNets) has been presented for
OFDM system for enhancing the outcome of the TR scheme. Particularly, TRNet will reserve a portion
of the tones for the generation of a peak-canceling signal. The feed forward neural network (FFNN) is
applied for the adaptive generation of a peak-canceling signal based on the nature of an input signals. In
Kim et al. [13], a new PAPR reducing network (PRNet) is presented depending upon the autoencoder
(AE) model of the DL. Here, the constellation mapping and demapping of the symbols that take place on
every individual subcarrier is computed in an adaptive way by the use of DL model in such a way to
minimize the BER and PAPR of the OFDM systems.

Sohn et al. [14] designed a novel PAPR reduction technique which makes use of the time-domain kernel
matrix for the generation of the PAPR-reduction signals. In addition, the generation considerable of the
clipping noise is relaxed where the clipping noise includes a set of non-correlated parabolic pulse and
employ the presented model. Depending upon the instantaneous observation of clipping noises, the
presented model designs an easier time domain kernel matrix and applies a curve fitting technique for the
optimization of the respective scaling factors. In Singh et al. [15], a novel Firefly (FF) technique is
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employed for searching the optimum combination of the phase vectors. The presented model offers an
improved tradeoff amongst the enhanced PAPR results and computation difficulty over the PTS model for
several sub-blocks.

For reducing the high PAPR, a PTS model depending upon the adaptive particle swarm optimization
(PSO) algorithm is presented [16]. It effectively searches for the optimum integration of the phase
rotation factors to reduce the computation complexity. In Xiao et al. [17], a new SFLAHC-PTS model is
presented for the minimization of the PAPR of the signal. The presented model is an enhanced version of
the PTS model that inherits the merits of the shuffled frog leaping optimization and hill-climbing
algorithms for tuning the classical PTS model and reduces the computational complexity.

In Wang et al. [18], an effective scaling SCR (S-SCR) method is presented where the scaling factor is an
optimized vector with peak regeneration constraint. For additional enhancements of the convergence rate and
elimination of many peaks at every round, a multiple scaling SCR (MS-SCR) method is presented. In Kumar
et al. [19], a PTS along with hybrid optimization technique called PS-GW is defined for obtaining minimum
outcome on PAPR and computation complexity. The PS-GWalgorithm is an integration of the PSO and Gray
Wolf Optimization (GWO) algorithms that identifies the optimum combination of phase rotational factors in
an efficient way. This method is based on the idea that the volume of exploitation in PSO is improved with the
capacity of examination in GWO for the creation of two variations in quality.

3 The Proposed HPT-SSAE Model

A paper for publication should be divided into multiple sections: a Title, Full names of all the authors
including their affiliations, a concise Abstract, a list of Keywords, Main text (including figures, equations,
and tables), Acknowledgments, Funding Statement, Conflict of Interests, References, and Appendix. The
suggested length of a manuscript is 10 pages. Each page in excess of 15 will be charged an extra fee. The
transmission of signal using transceiver depending upon OFDM systems is a commonly employed
technique. It partitions the efficient spectrum channels as to a set of orthogonal subchannels with
equivalent bandwidth, every individual sub-channel autonomously manages the individual data utilizing
separate subcarrier. In addition, the OFDM signals are the total of every independent subcarrier. With the
multi-carrier signal transmission system, the input data of binary sequence undergo mapping to a set of
symbols through a modulation technique. Next, the N symbols X ¼ X0; X1; XN�1½ �T are appended to the
IFFT element for the independent modulation of every individual subcarrier and attain the OFDM signal
in time domain x ¼ x0; x1; : xN�1½ �T : The complicated covering of the OFDM signal in the discrete time
domain with oversampling factor L is defined by

x n½ � ¼ 1ffiffiffiffi
N

p
XN�1

k¼0
Xke

j2pnk=LNð Þ; 0 � n � LN � 1; (1)

where N indicates the subcarrier count and Xk is the nth complex symbol performed and sent through the kth
sub-carrier.

In Eq. (1), the signal in the time domain produced by IFFT comprises N autonomously modulated and
orthogonal sub-carriers with high PAPR in case of adding it to the outcome of the IDFT block [20]. The
PAPR of the OFDM signals from discrete time can be represented as the ratio of maximal to average
power (or excepted power E �f gÞ of the difficult OFDM signal, as represented in Eq. (2):

PAPR x n½ �f g ¼
max jx n½ �j2

n o

E jx n½ �j2
n o ; 0 � n � LN � 1; (2)
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3.1 Architecture of SSAE Model

SSAE is a NN comprised of multiple SAEs connected in an end-to-end way. The output of the preceding
layer of sparse self encoder is utilized as the input of the subsequent layer of self-encoder, therefore higher-
level feature illustrations of an input data are achieved. A greedy layerwise pretraining model is utilized for
the sequential training of all layers of SSAE for accessing the optimization connection weights as well as bias
values of the whole SSAE network. Fig. 2 illustrates the representation of AE.

Afterward, the error backpropagation (BP) technique is utilized for fine-tuning the SSAE till the
outcome of error function among the input as well as output data fulfills the predictable necessities, in
order to get the better parameter model. The error function Jsparse W ; bð Þ is determined by:

@

@wr
ij
Jsparse W ; bð Þ ¼ 1

2nr

Xnr

r¼1

@

@wr
ij
Jsparse W ; b; X nð Þ; Y nð Þð Þ þ �wr

ij (3)

@

@br
Jsparse W ; bð Þ ¼ 1

2nr

Xnr

r¼1

@

@br
Jsparse W ; b; X nð Þ; Y nð Þð Þ (4)

So, the upgraded model of the weight as well as bias are given as follows:

wk
ij ¼ wk

ij � g
@

@wk
ij

J W ; bð Þ (5)

br ¼ br � g
@

@br
J W ; bð Þ (6)

where X nð Þ and Y nð Þ are correspondingly signified as the nth actual vector and its equivalent reformation
vector, and g implies the upgrade rate of learning.

Assume that there are sparse restraints from the SSAE model, it requires utilizing several rates of
learning for various parameters like decreasing the frequency of upgrade to infrequent features. Fig. 3
demonstrates the architecture of SSAE [21]. But, the typical Gradient Descent (GD) technique contains
Stochastic Gradient Descent (SGD) and mini-batch GD that utilize a similar learning rate to each network
parameter which requires to upgraded, creating it complex to select the proper learning rate and simply
attain the local minimal.

Figure 2: Representation of AutoEncoder
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In the SSAE, the encoding of the input data takes place at the constellation plane by the use of the
encoder of SSAE, comprised of Lf ¼ 5 sub-blocks. Therefore, the outcome of the encoding unit can be

defined by f rð Þ ¼ fLf W f
Lf fLf�1

. . .f1 Wf
1 r þ bf1

��� ���
norm

� �
. . .

� �
bf1

��� ���
norm

� �
, where Wf

lf
and bflf indicates the

weights and biases values of the lf -th FC of the encoding unit correspondingly. Next, the encoded symbols
are passed via the IFFT operation that produces the transmitting signal. Afterward, the signal is sent via the
wireless channel prior to the arrival at the receiving end. At last, the received signal gets passed to an FFT
operation and undergoes decoding by the use of SSAE. It is considered that the decoding unit contains a
set of Lg ¼ 5 sub-blocks are as same as the encoding unit. Therefore, the outcome of the decoding unit,

g yð Þ, is defined by g yð Þ ¼ fLg Wg
LgfLg�1

. . .f1 Wg
1 yþ bg1

�� ��
norm

� �
. . .

� �
þ bgLg

��� ���
norm

� �
where y is the input

of decoding unit and Wg
Lg

and bglg are the weight and bias values of the lg-th FC of the decoding unit.

The recreated symbol at the receiving end r̂, is represented as:

r̂ ¼ g � FFT �H � IFFT � f rð Þ; (7)

where H signifies the effect of the wireless channel like multipath fading and thermal noise.

3.2 Hyperparameter Optimization of SSAE Model

In order to tune the parameters of the SSAE model, MBO technique is used. The MBO technique is a
population based technique which belongs to the classification of SI techniques that are stimulated by the
nature of specific species with swarm tendencies like bees, butterflies, etc. As above mentioned, the MBO
was currently proposed by Wang et al. [22], which is depends on their concept of intelligent
characteristics of butterfly, which is native to North America. It is featured by the attractiveness of the
formation that comprises black and orange colors. The migratory performance of these butterflies is
inspired to resolve the optimization problem. There are numerous guidelines and basic ideas that should
be followed to attain the optimum result to the applied problem:

1. Each butterfly from the population is either existing in land1 (the home beforehand migration) or in land2
(the home afterward migration).

Figure 3: Structure of SSAE
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2. All children of every butterfly is made by the migration operator, nevertheless either the parent is existing
in land1 or 2.

3. The population shouldn’t alter and must be continuous forever, thus between 2 (novel child or parent)
would be detached by a fitness function.

4. The butterfly is chosen depending upon fitness function are moved to the succeeding round and hasn’t
been altered by the migration operator.

The butterfly starts migration initially in April if they exit land1 and head to land2, and the inverse
migration starts in September. The overall monarch butterflies in the lands denote the entire population
that is termed as NP.

3.1.1 Migration Operator
The migration procedure of the butterfly is demonstrated as:

X tþ1
i:k ¼ X t

r1:k (8)

where X tþ1
i:k denotes Kth component of Xiatt þ 1 generation, that illustrate the position of butterfly i, and X t

r1:k
denotes Kth component of novel generation position. Now, r denotes arbitrary number estimated as:

R ¼ rand � peri (9)

where peri denotes migration period time. Alternatively, when r > p, after that the Kth components of novel
generation position are estimated as [23]:

X tþ1
i:k ¼ X t

r2:k (10)

where X t
r2:k denotes Kth components of Xr2 at t generation of butterfly r2. Henceforth P denotes ratio of

monarch butterfly in land1.

3.1.2 Butterfly Adjustment Operator
With these techniques, the tradeoff among the way of migration from land1 to land2 is attained by

adapting the ratio of P value. When P is greater, it implies that the butterfly count would be chosen from
land1 is larger than l land22, and vice versa. The location of butterfly is adapted when the created rand is
lesser to or equivalent to P. The succeeding formula illustrates the upgraded location of butterflies
position:

X tþ1
j:k ¼ X t

best:k (11)

where X tþ1
j:k denotes Kth components of Xj at t þ 1 generation, that illustrate the butterfly j position, and

X t
best:k denotes Kth components of Xbest at the present round t at land1 and land22. Now, when the

random > P; afterward it can be upgraded as:

X tþ1
j:k ¼ X t

r3:k (12)

where BAR denotes the adaptation rate of butterfly and dx represents walk step of j butterfly which is
estimated with executing Lévy flight as:

Dx ¼ L�e vy X t
j

� �� �
(13)

a in Eq. (6) denotes weighted factor which is estimated as:

a ¼ Smax=t
2 (14)
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where Smax indicates maximal length of butterfly enters step 1 and t denotes present generation. Fig. 4
showcases the flowchart of MBO technique [24].

Alternatively, when the rand is larger than BAR, the novel position is upgraded as:

X tþ1
j:k ¼ X tþ1

j:k þ a � dxk � 0:5ð Þ (15)

3.2 Network Training on PAPR Reduction

The HPT-SSAEmodel undergoes effective training process to decrease PAPR and avoid the degradation
of BER. Initially, the HPT-SSAE is required for reconstructing the broadcast signal from the received signal
ensured that the BER remains same. Next, the HPT-SSAE produces a transmission signal which exhibits
minimum PAPR [25]. To attain the first goal, the encoding unit of the HPT-SSAE model undergo training
for determining the appropriate constellation mapping from input data, rk , to the output, Xk , and the
decoding unit of the HPT-SSAE needs decoding of the received signal. Afterward, the suitable loss
function for achieving this aim can be equated in Eq. (16):

Figure 4: Flowchart of MBO algorithm
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L1 r; r̂ð Þ ¼ jjr � g FFT H � IFFT f r; hf
� 	� 	þ e

� 	
; hg

� 	jj2; (16)

where f �; hf
� 	

and g �; hg
� 	

are the parametric depiction of the encoding and decoding units correspondingly,
and e indicates the noise at the receiver. Here, the weight matrices, bias, and activation layer are defined using
simpler matrix functions of hidden node variables, i.e., h ¼ W ; bf g. By the training, hf and hg, i.e., the
weights as well as biases of the HPT-SSAE are determined by minimizing the loss function therefore the
constellation is robust to a random channel H is obtained through the encoding unit and an effective
method of decoded the constellation mapping is attained using the decoding unit. At the same time, the
loss function L1 rð Þ employed for achieving minimum PAPR can be represented in Eq. (17):

L2 rð Þ ¼ PAPR x n½ �f gPAPR IFFT f r; hf
� 	� 	
 �

: (17)

Here, the training process takes place on two levels. During the initial level of training, the correct

corruption level, g ¼ E ej j2½ �
E rj j2½ � defining the ratio of noise power to signal power is found by loss function L1.

Later, in the next level of the training process, the weight and bias of the HPT-SSAE (hf and hg) are
learnt through the consideration of the joint loss function, L r; r̂ð Þ, integrating L1 and L2 such that the
minimization of PAPR and BER takes place. Then, the L r; r̂ð Þ is defined by:

L r; r̂ð Þ ¼ L1 r; r̂ð Þ þ �L2 rð Þ: (18)

where � represents the weight parameter determining that loss is significant i.e., L1 or L2, is dominant.

4 Experimental Validation

In this section, a detailed set of simulations were performed to highlight the better performance of the
HPT-SSAE model with other existing methods such as original OFDM, with GA, and with FSO algorithms.
The results are examined under different subcarriers such as 128, 256, and 512.

Fig. 5 illustrates the BER, SER, and CCDF analysis of the HPT-SSAE model under the presence of
128 subcarriers. From the figure, it is evident that the HPT-SSAE model has accomplished effective
performance under distinct aspects. For instance, on measuring the results interms of BER, the
experimental outcome indicated that the OFDM model has shown insignificant performance over all the
other methods by attaining higher BER. At the same time, the with-GA algorithm has accomplished
slightly reduced BER over the OFDM model whereas even improved BER has been obtained by the
with-FSO algorithm. But the presented HPT-SSAE model has resulted in effective performance and
achieved a minimum BER. The HPT-SSAE model has reached the least BER of 10–0.73 whereas the
OFDM, with-GA, and with-FSO algorithms have demonstrated an increased BER of 10–0.44, 10–0.56, and
10–0.62 respectively.

Moreover, on determining the results with respect to SER, the experimental result represented that the
OFDM technique has shown insignificant performance over all the other models by attaining higher SER.
Simultaneously, the with-GA method has accomplished slightly decreased SER over the OFDM approach
whereas even increased SER has been achieved by the with-FSO model. But the proposed HPT-SSAE
model has resulted in effective performance and achieved a minimum SER. The HPT-SSAE model has
reached the least SER of 10–0.61 whereas the OFDM, with-GA, and with-FSO techniques have
outperformed an improved SER of 10–0.11, 10–0.45, and 10–0.53 correspondingly. Lastly, on determining
the outcomes interms of CCDF, the experimental result indicated that the OFDM model has depicted
insignificant performance over all the other techniques by obtaining superior CCDF. Likewise, the with-
GA algorithm has accomplished somewhat reduced CCDF over the OFDM model whereas even higher
CCDF has been reached by the with-FSO algorithm. But the proposed HPT-SSAE model has resulted in
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effective performance and achieved a lesser CCDF. The HPT-SSAE approach has achieved a minimum
CCDF of 5.8 dB whereas the OFDM, with-GA, and with-FSO methods have outperformed an increased
CCDF of 11 dB, 6.2 dB, and 7 dB correspondingly.

Fig. 6 showcases the BER, SER, and CCDF analysis of the HPT-SSAE technique under the presence of
256 subcarriers. From the figure, it is clear that the HPT-SSAE model has accomplished effective
performance under different aspects. On evaluating the results with respect to BER, the experimental
outcome referred that the OFDM model has exhibited insignificant performance over all the other
methods by attaining higher BER. In line with, the with-GA methodology has accomplished somewhat
reduced BER over the OFDM method whereas even increased BER has been reached by the with-FSO
algorithm. But the presented HPT-SSAE model has resulted in effective performance and achieved a
minimal BER. The HPT-SSAE model has reached a minimum BER of 10–1.56 whereas the OFDM, with-
GA, and with-FSO techniques have demonstrated a maximum BER of 10–0.56, 10–0.98, and 10–1.35

respectively. On measuring the outcomes interms of SER, the experimental result represented that the
OFDM technique has illustrated insignificant performance over all the other methods by achieving
superior SER. Similarly, the with-GA method has accomplished somewhat reduced SER over the OFDM

Figure 5: Result analysis of 128 subcarriers (a) BER (b) SER (c) CCDF
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model whereas even improved SER has been reached by the with-FSO algorithm. But the presented HPT-
SSAE manner has resulted in effective performance and achieved a minimal SER. The HPT-SSAE
technique has reached the least SER of 10–0.75 whereas the OFDM, with-GA, and with-FSO algorithms
have demonstrated an increased SER of 10–0.42, 10–0.57, and 10–0.62 correspondingly. At last, on
determining the results with respect to CCDF, the experimental outcome shown that the OFDM model
has displayed insignificant performance over all the other methods by attaining higher CCDF.
Concurrently, the with-GA method has accomplished slightly decreased CCDF over the OFDM approach
whereas even improved CCDF has been attained by the with-FSO model. However, the proposed HPT-
SSAE methodology has resulted in effective performance and achieved a minimal CCDF. The HPT-SSAE
model has reached the least CCDF of 5.2 dB whereas the OFDM, with-GA, and with-FSO techniques
have demonstrated a maximum CCDF of 11 dB, 7.2 dB, and 6 dB respectively.

Fig. 7 demonstrates the BER, SER, and CCDF analysis of the HPT-SSAE technique under the presence
of 512 subcarriers. From the results, it is evident that the HPT-SSAE model has accomplished effective
performance under distinct aspects. For instance, on measuring the results interms of BER, the
experimental outcome indicated that the OFDM model has shown insignificant performance over all the

Figure 6: Result analysis of 256 subcarriers (a) BER (b) SER (c) CCDF
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other methods by attaining higher BER. At the same time, the with-GA algorithm has accomplished slightly
reduced BER over the OFDM model whereas even improved BER has been obtained by the with-FSO
algorithm. But the presented HPT-SSAE model has resulted in effective performance and achieved a
minimum BER. The HPT-SSAE model has reached a minimum BER of 10–2.11 whereas the OFDM,
with-GA, and with-FSO algorithms have demonstrated an increased BER of 10–0.90, 10–1.15, and 10–1.35

respectively. On calculating the outcomes with respect to SER, the experimental result referred that the
OFDM model has shown insignificant performance over all the other methods by attaining higher SER.
At the same time, the with-GA algorithm has accomplished somewhat reduced SER over the OFDM
model whereas even superior SER has been achieved by the with-FSO algorithm. But the projected HPT-
SSAE model has resulted in effective performance and achieved a minimal SER. The HPT-SSAE
algorithm has reached the least SER of 10–0.8 whereas the OFDM, with-GA, and with-FSO algorithms
have outperformed a higher SER of 10–0.42, 10–0.58, and 10–0.62 correspondingly. Finally, on evaluating
the results interms of CCDF, the experimental outcome indicated that the OFDM model has outperformed
insignificant performance over all the other techniques by attaining higher CCDF. At the same time, the
with-GA algorithm has accomplished slightly reduced CCDF over the OFDM approach whereas even
improved CCDF has been obtained by the with-FSO algorithm. However, the proposed HPT-SSAE
method has resulted in effective performance and achieved a minimal CCDF. The HPT-SSAE approach
has reached the least CCDF of 5.3 dB whereas the OFDM, with-GA, and with-FSO techniques have
showcased a higher CCDF of 11 dB, 5.8 dB, and 7 dB correspondingly.

Figure 7: Result analysis of 512 subcarriers (a) BER (b) SER (c) CCDF
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5 Conclusion

For addressing the PAPR problem in OFDM systems, this paper has introduced a new HPT-SSAEmodel
for PAPR reduction. The HPT-SSAE model is intended for the substantial reduction in the peaks in the
OFDM signal with no degradation of the BER. The presented HPT-SSAE model is exploited to create a
peak canceling signal dynamically depending upon the features of the input signal. In the HPT-SSAE
model, the constellation mapping and demapping of symbol take place on every individual subcarrier
dynamically using the SSAE model. In order to further enhancement in the efficiency of the SSAE
model, the hyperparameters can be tuned by the use of MBO algorithm. Extensive experimental analysis
of the HPT-SSAE model takes place to point out the betterment of the HPT-SSAE model. The obtained
experimental outcomes pointed out that the HPT-SSAE model highlighted the superior performance over
the other compared methods interms of different measures.
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