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Abstract: An NP-hard problem like Flexible Job Shop Scheduling (FJSP) tends to
be more complex and requires more computational effort to optimize the objec-
tives with contradictory measures. This paper aims to address the FJSP problem
with combined and contradictory objectives, like minimization of make-span,
maximum workload, and total workload. This paper proposes ‘Hybrid Adaptive
Firefly Algorithm’ (HAdFA), a new enhanced version of the classic Firefly Algo-
rithm (FA) embedded with adaptive parameters to optimize the multi objectives
concurrently. The proposed algorithm has adopted two adaptive strategies, i.e.,
an adaptive randomization parameter (α) and an effective heterogeneous update
rule for fireflies. The adaptations proposed by this paper can help the optimization
process to strike a balance between diversification and intensification. Further, an
enhanced local search algorithm, Simulated Annealing (SA), is hybridized with
Adaptive FA to explore the local solution space more efficiently. This paper
has also attempted to solve FJSP by a rarely used integrated approach where
assignment and sequencing are done simultaneously. Empirical simulations on
benchmark instances demonstrate the efficacy of our proposed algorithms, thus
providing a competitive edge over other nature-inspired algorithms to solve FJSP.

Keywords: Adaptive firefly algorithm; combined objective optimization;
integrated approach; flexible job-shop scheduling problem

1 Introduction

Flexible Job Shop Scheduling (FJSP) differs from the classic job shop scheduling problem in being
flexible. This flexibility assists the manufacturer in handling customized orders from customers. In FJSP,
more than one machine is available to process different operations of jobs. This availability makes FJSP
an NP-hard problem that even a slight change in the setup will increase the complexity. In FJSP, two sub-
problems have to be tackled: assignment and sequencing. First, suitable machines have to be assigned to
each operation, and then those operations have to be sequenced to process. These sub-problems can be
addressed by two methods, i.e., a hierarchical and an integrated approach. As for a hierarchical approach,
a researcher first solves the assignment and then performs the sequencing. However, as for an integrated
approach, both assignment and sequencing issues are solved concurrently. Most researchers prefer a
hierarchical approach, as it is easy to implement. Very few researchers have attempted an integrated
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approach. Since the Integrated approach solves both of the problems concurrently, it tends to solve the FJSP
more efficiently. Therefore, this paper tries to solve the FJSP by an integrated approach.

Mati et al. [1] proposed an integrated greedy heuristic where the assignment and the sequencing issues
are tackled simultaneously to solve a problem with more than two jobs. Buddala et al. [2] solved the FJSP by
teaching–learning-based optimization (TLBO) through the integrated methodology to minimize make-span.
As a new methodology, metaheuristics can solve the FJSP in less time. Nature-inspired algorithms are
gaining momentum to solve the FJSP, and it is proved to give better optimal results than the classical
approaches. New Nature-inspired algorithms, such as Firefly algorithm (FA), Crow search, Grey wolf
optimization, LeapFrog algorithm, Social Spider Optimization, Cuckoo Search, etc., have been
implemented to solve various engineering problems. Among these algorithms, the Firefly algorithm has
the advantage of getting good optimal results quickly with fewer parameters. When an update rule is
given for the Firefly algorithm, it achieves much better convergence, thereby obtaining the optimal results
in less time [3–5]. The combination of two or more metaheuristic techniques contributes to much better
results. Xia et al. [6] integrated Particle Swarm Optimisation with Simulated Annealing (SA) for
minimization of the three objectives. Li et al. [7] developed a two-tuple scheme to solve FJSP by an
integrated approach. They fine-tuned the control parameters for their proposed adaptive evolutionary
algorithm. Kato et al. [8] solved multi-objective FJSP. Specifically, they used Particle Swarm
Optimization (PSO) for the assignment subproblem and Random Restart Hill Climbing (RRHC) for the
scheduling subproblem, and they found the obtained results to be conclusive. A new (2 +
∈)-approximation algorithm without any condition was proposed by Zhang et al. [9] for a two-stage
flexible flow shop scheduling problem. Ding et al. [10] proposed an improved PSO with an enhanced
encoding-decoding strategy. Naifar et al. [11] presented Leader Tree Guided Optimization, and they
found two new optimal results for Hurink benchmark instances. Tian et al. [12] incorporated different
variants of the Genetic Algorithm (GA) with PSO and a local search, and the algorithm was tested on
Lawrence Benchmark instances. An et al. [13] solved a multi-objective problem by developing a non-
dominated sorting Biogeography method with a hybrid Variable neighborhood search (VNS). Zhu et al.
[14] studied the FJSP with job precedence constraints by evolutionary multi-objective grey wolf
optimizer (EMOGWO). Vijayalakshmi et al. [15] hybridized Cuckoo search with PSO to solve a multi-
objective problem in Wireless Sensor Network. Mohammad et al. [16] have presented a novel algorithm
which mimics the knowledge gaining and sharing of human life. This algorithm is known as Gaining
Sharing Knowledge based algorithm. The authors have implemented the algorithm for continuous
optimization of 30 benchmark problems and demonstrated the efficacy of their algorithm.

Fister et al. [17] did a comprehensive review of the firefly algorithm, which provided a good insight into
the firefly algorithm with its modified versions. Ong et al. [18] compared the prey-predator algorithm with the
Firefly algorithm and conducted a Mann–Whitney test to demonstrate the algorithm’s efficiency.
Udaiyakumar et al. [19] solved the instances of Lawrence benchmark by FA for combined objective
optimization. Bottani et al. [20] solved Flexible Manufacturing System’s (FMS) loading problem by
discrete FA with bi-objective. Khadwilard et al. [21] utilized the design of experiments for parameter
tuning in FA and implemented it for Job shop scheduling. Rohaninejad et al. [22] solved the capacitated
Job Shop Problem by Tabu search and FA following hierarchical and integrated approaches to minimize
tardiness and overtime cost.

In our extensive literature study, we found that among the different objectives that can be solved for
FJSP, minimizations of make-span, the maximum workload, and the total workload are contradictory. We
also observed that very few papers had handled these three objectives simultaneously. Likewise, we
learned that very few studies had exploited the integrated approach to solve the subproblems–sequencing
and assignment of machines simultaneously. Similarly, FA has been applied to diverse fields of
optimization, especially engineering. The Firefly algorithm in discrete form and hybrid form has been
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exploited to solve FJSP previously. However, the Firefly algorithm with adaptive features in its control
parameters is a relatively new scheme to solve FJSP. In our proposed HAdFA, we have applied two
adaptive features: i) Randomness parameter (α), where the α changes dynamically at every iteration, and
ii) A modified update rule for fireflies with a heterogeneous update strategy. By applying the adaptive
features in classic FA, premature convergence is avoided, and the search mechanism is enhanced, leading
to the exploration of new optimal solutions. Additionally, the Adaptive FA (AdFA) has been hybridized
with enhanced simulated annealing to accelerate the local search and overcome local optima entrapment
issues. Besides, regarding the literature study we have done, no previous works have solved the
benchmark instances used in this work with the proposed adaptive features.

The remainder of this article is organized as follows. Section 2 introduces the problem model and the
hypothesis. AdFA and HAdFA algorithms are explained in Section 3. Section 4 describes the results
obtained by HAdFA when it is applied to well-known benchmark instances of Brandimarte taken from
Operations Research (OR) library and Du et al. and Rajkumar et al. Some final concluding remarks are
provided in Section 5.

2 Problem Model

The main advantage of the FJSP is its flexibility. Any available machine can process any operation for
different types of jobs. This paper formulates the FJSP by a set of notations. The assumptions made in our
FJSP problem are as follows:

1. No disruption of operation is allowed during the process;

2. Jobs are not dependent on each other;

3. None of the jobs has been assigned any priority;

4. Jobs can be processed at starting time;

5. Processing time is not inclusive of any setup time or transfer time.

m: Total number of machines

n: Number of jobs in total

J: The entire set of jobs to process

i, u = job list; i, u = 1, 2, …. n

Ji: The i
th job of J

Oi: The set of all operations from Ji

ni = Number of operations of job i in total

g,v: index of operations of Ji, g, v = 1, 2, … ni

Oig: the g
th operation of Oi

Mig: Number of machines in total that are free to process

k: the index of machines, k = 1, 2 … m

Mig: the set of available machines for operation Oig

Bigk: The time taken by operation Oig to start on machine k

Figk: The time taken by operation Oig to finish on machine k

Pigk: The time taken by operation Oig to process on machine k

Fk: Finishing time of Mk
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ω1, ω2, ω3: weight variables

Xigk, Diugvk: decision variable

Xigk ¼ 1; if Mk is assigned for Oig

0; otherwise

�

Diugvk ¼ 1; if operation Oig precedes Ouv on machine k
0; otherwise

�

The three objectives to be minimized are

1. The time taken for processing all jobs known as the Make-span (MSmax) of the jobs given in Eq. (1).

2. The machine with the maximum workload, known as the Maximum machine workload (WLmax)
given in Eq. (2).

3. The total workload of entire machines (WLtotal) given in Eq. (3)

The Combined Objective Function (COF) is formulated as

min MSmax ¼ maxk2mðFkÞ (1)

min WLmax ¼ max
1 � k � m

Xn
i¼1

XPi

g¼1

PigkXigk

( )
(2)

min WLtotal ¼
Xm
k¼1

Xn
i¼1

XPi

g¼1

PigkXigk (3)

They are subjected to:

Cig � Ci g�1ð Þ � PigkXigk ; g ¼ 2; . . . . . . ;Pi; 8 i; k (4)

Bigk � Figk � Diguvk8 i � u; 8 g & k 2 Mig \Muv (5)

Bigk � Figk � 1� Diguvk8 i � u; 8 g & k 2 Mig \Muv (6)

ðBigk þ PigkÞ � Diguv ≤ Suv (7)X
k2Mig

Xigk ¼ 1;8 i; g (8)

Eq. (4) ascertains operation precedence constraint; Eqs. (5) and (6) ascertains non-violation of resource
constraint; Eq. (7) indicates a limitation that, when two operations are performed on the same machine, the
predecessor has to be processed before successor; Eq. (8) ascertains that, a machine can process only one
operation at a time. Among the different approaches to solve a combined objective problem, we take the
weighted sum approach. In the weighted sum approach, weights are assigned to each multi-objective, and
then the multi-objective is converted to a single objective. The conversion of the weighted sum of the
three objectives into a single is given by Eq. (9)

Minimize COF ¼ ω1 �MSmax þ ω2 �WLmax þ ω3 �WLtotal (9)

This is subjected to:

ω1 þ ω2 þ ω3 ¼ 1 0 � x1;x2;x3 � 1 (10)
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In Eq. (10), COF is the combined objective function. ω1, ω2, ω3 are weights given for the three
objectives. The value of weights depends upon the problem: for an objective that needs more
consideration, a higher weight value is given; else, a small value is given. The advantage of the weighted
sum approach is that the user can amend the weights of the objectives according to the requirement of the
problem. We have assigned ω1 = 0.7, ω2 = 0.15, and ω3 = 0.15 in this study.

3 Firefly Algorithm

Among the recently developed Swarm intelligence techniques, the Firefly algorithm works on the
firefly’s bioluminescence feature. Bioluminescence is a form of communication between fireflies.
The flashing of light helps the fireflies find their mates or prey or protect themselves from a predator. The
fireflies move in a swarm. Depending upon the intensity of the flashlight, the swarm may move to
brighter and more attractive positions. The movement of a firefly to better flashing firefly is correlated to
the objective function, which makes optimization of the objective function important.

The following points depict the basic working mechanism of FA: (1) All fireflies are unisexual;
therefore, the fireflies may get attracted to each other regardless of their gender. (2) If a firefly finds
another firefly brighter than it, then the former will move towards it. If a firefly can’t find a brighter
firefly, then it roams around randomly until it finds one. (3) The brightness of fireflies increases
proportionally to the objective for a maximization problem and vice versa for the minimization problem.

In standard FA, the above rules are incorporated into the algorithm’s procedure. Specifically, the
algorithm is initialized by generating an initial population of fireflies. Then, it calculates the objective
function and repeats the calculation for generations.

b is the attractiveness of a firefly, which controls the convergence of fireflies and is given by Eq. (11); the
term a (Randomness parameter) allows random exploration, and the adjustment of a can enhance
exploration [23]. The attractiveness (a) of a firefly can be calculated by

b ¼ boe
�cr2 (11)

where β0 is the attractiveness when r is 0; r is the distance between two fireflies; γ is the light absorption
coefficient.

The distance rij for two fireflies Xi and Xj is given by Eq. (12)

rij ¼ Xi � Xj

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
d¼1

ðxid � xjdÞ2
vuut (12)

where D is the problem dimension.

If a firefly Xj is brighter than Xi, then Xi starts moving towards Xj. This movement of the firefly is called
updating of a position of the firefly, and it is given by Eq. (13).

xid t þ 1ð Þ ¼ xidðtÞ þ boe
�cr2 ijðxjd tð Þ � xid tð Þ þ aei (13)

where xid and xjd are the d
th dimension value of firefly Xi and Xj, respectively; ei is a random value following

the uniform distribution of [−0.5, 0.5]; α ∈ [0, 1] denotes the step size, and t = 1, 2,… is the iteration number.
In this paper, the objective is to minimize. Therefore, the expression f (Xj) < f(Xi) indicates that firefly Xj is
better (i.e., brighter) than firefly Xi in terms of fitness value. Eq. (13) can be deduced into two main functions.
b controls the convergence of fireflies, and the term a allows random exploration, which can be enhanced by
adjusting the parameter a: The classic FA has fewer parameters, thereby reducing the computational effort.
But the classic FA has its shortcomings. Though it has fewer parameters, the parameters are fixed, e.g., the
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values of parameters β0 and α are generally taken as β0 = 1 and α ∈ [0, 1]. The value of γ is between 0 and
100 in most cases. If the parameters have fixed values, they are not updated at each step of iteration;
otherwise, the updating happens for the same fixed value. Eq. (13) consists of two main components: β
and α, which are essential for exploiting and exploring search space. A proper balance must be given for
exploitation and exploration to achieve good solution accuracy and convergence speed. Hence, in this
article, we aim to overcome these shortcomings and limitations of classic FA. The following section
explains how the classic FA is modified into Adaptive FA to solve the FJSP.

3.1 Adaptive Firefly Algorithm (AdFA)

The three parameters that play an essential role in FA are the randomization parameter α, the
attractiveness β, and the absorption coefficient γ. The performance and efficiency of FA depend upon
the parameters. In standard FA, the algorithm has a limitation of premature convergence. Also, the
parameters in standard FA cannot be modified at each iteration as they are fixed. This restriction makes
the standard FA have a limited diversification search area and limited algorithm speed. Hence, the
firefly’s capability to search effectively can be enhanced by fine-tuning the parameters α, β, γ, and
movement. Different parameter adjustment strategies have been proposed by [24–26]. In any swarm-
based algorithms, the balance of global exploration and local exploitation is essential. The fireflies have
to explore the entire search space and do not cluster on local optima, especially during the preliminary
stages of optimization. In the later stages of optimization, the convergence has to be towards global
optima to find optimal solutions efficiently.

Randomization parameter α has a significant role in moving a firefly from the current position to the
optimum position of the search space. Therefore, setting up α is an important step to get better
convergence. A fixed α decreases linearly to the generation that leads to premature convergence. From
existing studies, it is observed that fixed α does not work well for all applications. If a large α is set, then
there is a chance that α may skip the optimal solution during the search, reducing the search efficiency.
Otherwise, if a small α is set, then the convergence becomes a problem when it moves towards the global
optimum. Therefore, it is suggested that to gain a balance between the exploration of search space and
exploitation, α has to be decreased dynamically with respect to the generation number.

So, considering the importance of α and its effect on the exploration and convergence of the algorithm,
we have adopted the randomization parameter (α) strategy proposed by [27], which is given by Eq. (14)

a tið Þ ¼ exp 1� tmax
tmax � ti

� �c� �
(14)

where c denotes the integer number for determining the randomness speed decay, tmax denotes the maximum
number of iterations, and ti is the current iteration. c = 5 is set in this study. The randomization parameter is
set in the initialization stage, and it changes dynamically during optimization. By applying Eq. (14), the
randomness parameter is modified at each step during the optimization process after an initial value is set
up, thereby increasing the convergence speed.

Another adaptation we have made is in the movement step. Cheung et al. [28] proposed an adaptive
movement strategy by two mechanisms: distance-based adaptive mechanism and gray-based coefficients.
We have adopted the second mechanism, i.e., gray-based coefficients, where the search is enhanced by
applying a heterogeneous update rule.

Two updating equations are defined based on the heterogeneous rule given by Cheung [28], and they are
randomly selected during the search course. The updating equation is given in Eqs. (15a) & (15b)
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xid t þ 1ð Þ ¼
1� sð ÞxidðtÞ þ sðxjd tð Þ � xrd t þ 1ð Þ; if r and. 0:5

Gmax�t
Gmax

1� gð Þ : xid tð Þ þ g : gbestd tð Þ; else

(
(15a)

where Gmax is the number of generations in maximum; η is a gray coefficient, and rand is a random number
between [0, 1]; Xr is randomly generated by:

xrd t þ 1ð Þ ¼/ ðt þ 1Þ2i x
max
d � xmind

�� �� (15b)

By implementing these adaptations in classic FA, local optima entrapment and premature convergence
are prevented in the proposed AdFA. Fireflies’ search abilities are enhanced, and they exchange valuable
information and their flight paths adaptively. A proper balance has been achieved between exploration
and exploitation. These modifications will help the fireflies acquire beneficial information from other
fireflies, and they change the directions of flight adaptively. The movement update rule helps the search
of conditions. These modifications can improve the FA and contribute to better optimal solutions. The
pseudo-code of the Adaptive Firefly Algorithm (AdFA) is given in Tab. 1.

3.2 Implementation of HAdFA

Adaptive FA is a modification of classic FAwhere randomization α strategy and heterogeneous update
rule are used. The adaptive FA has excellent convergence speed, but it has the disadvantage of falling into

Table 1: Pseudo-code of adaptive firefly algorithm (AdFA)

Objective function F(x), x = (x1, . . . , xd)
T

Generate initial population of fireflies xi = (1, 2, … n)

Light intensity Ii at xi is ascertained by f(xi)

State each parameter γ, Gmax, α, β0

while (t < Gmax)

Determine the value of adaptive randomization parameter α from Eq. (12)

for i = 1:n all n fireflies

for j = 1:n all n fireflies

Attractiveness varies with distance r via e[−γr2]

if (Xj < Xi) then (if firefly j is better)

Update parameter value α from Eq. (12)

Move firefly Xi towards Xj according to Eq. (13) % update rule

Analyze new solutions and update light intensity

end for j

end for i

Rank the fireflies and find the current global best

End while

Postprocess results and visualization
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local optima. To address this problem and improve the solution set, we have hybridized AdFAwith SA. SA is
an approximation algorithm that is based on the annealing process of metals. With the metropolis criterion, it is
ensured that SA does not fall into local optima and it can search in a wide area. Simulated annealing is further
explained in detail in subsequent content. This paper has implemented a modified FAwith an adaptive strategy
embedded with enhanced SA to prevent premature convergence and local optima entrapment. The
experimentations should be carried out along with an adequate comparison with standard methods to show
the effectiveness of the designed model for the scheduling and controlling complications involved in the
function/working of the FJSP. At every repeated step of the algorithm, the comparatively weak schedules
showing inferior performance are detached out of the populace, and they are substituted with the fresh
individuals. The output of the algorithm is augmented with a local searching routine.

The simulated annealing method is a probabilistic search technique with effective local searchability.
The neighborhood structure and annealing rate function have a substantial influence on the algorithm.
The working and description of the algorithm are given in the following subsections, and improvement
observed in optimal solutions is discussed in relevant sections.

3.2.1 Population Initialisation
The initial population should have good quality because a good search space ensures enough diversity.

The population of fireflies determines the search space of fireflies to explore the optimal solutions. An initial
population of fireflies is generated randomly where sorting of jobs and a machine is randomly selected for
each operation.

3.2.2 Solution Representation
For encoding purposes, we have employed ‘real number encoding’ in this paper. An integrated approach

to solve routing and scheduling simultaneously is attempted [29]. The integer portion is assigned to the
operations of each job, and the fractional portion is allocated to the operation sequence on each machine.
The encoding system is explained with an example. Tab. 2 shows the three jobs and four machines
matrix with processing times on different machines. A priority table of machines is designed according to
the operation’s processing times in increasing sequence, as shown in Tab. 3. Priority values 1–4 are
given, starting from the least processing time to the most processing time. For example, job 1, O11, has
M4 with the least processing time of 3. Hence, the priority for this case is 1; M3 has the next higher
processing time of 4, so the priority for this case is 2; M2 has the next processing time of 5, so the
priority for this case is 3; finally, M4 has the highest processing time, so the priority for it is 4. If the
processing times are the same, then priority will be given to the machine with a lower number.

Table 2: Example of FJSP with 3 jobs and 4 machines

Position Operation M1 M2 M3 M4

J1 1 O11 9 5 3 4

2 O12 8 7 9 5

3 O13 5 8 3 8

J2 4 O21 5 6 4 8

5 O22 5 2 6 4

J3 6 O31 3 6 8 3

7 O32 2 6 5 2
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Tab. 4 illustrates the stochastic representation of firefly position. Random initialization of fireflies is
generated. The maximum value corresponds to the firefly position should be equal to the total number of
machines available (tnm). “One” is the least value that can be used. Therefore, in the range of (1, 1 +
tnm), firefly position values with positive integers are generated.

In Tab. 4, O11 has a value of 2.542, and 2 is the integer value. According to the priority table matrix listed
in Tab. 3, O11 is assigned to M4, the second priority machine. In the same way, all operations are assigned to
the machines. After the assignment of machines to operations, the operation has to be sequenced according to
the fractional part. For example, M4 is assigned to O11 and O12. Comparing the fractional part of the
corresponding operations, O11 has 0.542 and O12 has 0.151. It can be seen that the fractional part of O12

is smaller than that of O11. So, O12 has to be sequenced first and O11 later. Tab. 5 shows the initial
sequencing of the machines done by this method. If the fractional parts have the same values, then the
operation processing sequence is chosen randomly.

3.2.3 Firefly Evaluation
In this step, the minimization of the objective function is measured. The flashlight intensity of the firefly

is correlated to the objective function considered. As for our problem, the combined objective function is

Table 3: Priority order matrix

Job Operations Priority 1 Priority 2 Priority 3 Priority 4

J1 O11 M3 M4 M2 M1

O12 M4 M2 M1 M3

O13 M3 M1 M2 M4

J2 O21 M3 M1 M2 M4

O22 M2 M4 M1 M3

J3 O31 M1 M4 M2 M3

O32 M1 M4 M3 M2

Table 4: Stochastic representation of firefly position

Operations O11 012 013 021 022 031 032

Firefly positions 2.542 1.151 3.673 2.256 3.081 1.998 4.762

Priority level 2 1 3 2 3 1 4

Processing machine M4 M4 M2 M3 M1 M1 M2

Table 5: Initial sequence of operations

Machine 1 O22 O31

Machine 2 O13 O32

Machine 3 O21 O11

Machine 4 O12
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given in Eq. (9) is to be solved. The procedural parameters are listed in Tab. 6. After careful analysis of
different swarm sizes and iterations, we set Firefly size to 40 and the number of iterations to 500. After
these values are set, there is no substantial change in obtaining an optimal solution. Our program is
editable, thus we can change the number of fireflies and iterations according to user requirements.

3.2.4 Solution Updating
Once fireflies are assigned intensity values, the fireflies will start to explore the solution universe,

searching for brighter fireflies. In FA, the fireflies will be attracted to each other according to their
brightness, i.e., the objective function. A less bright firefly will get attracted to a much brighter firefly. A
new heterogeneous update rule is employed to calculate this movement and is given in Eqs. (15a) and
(15b). If the current new solution is best than the previous one, the current best solution replaces the
preceding inferior solution. Reiterate the preceding steps till the termination criteria. We have taken a
maximum number of generations (200) as termination criteria.

3.3 Simulated Annealing

The initial population for SA is a combination of the best solution from AdFA and the randomly
generated initial solutions. The SA prevents the solutions from falling into local optima. The parameters
for SA are established as pre-defined. After the initial temperature (T = T0) is set, the SA starts searching
for global optima of the combined objective function in the neighborhood. Search for global optima is
achieved by the continuous decrease of annealing rate of temperature. When the termination criterion is
reached, the algorithm stops after giving the optimal solution. It has been demonstrated that with
sufficient randomness and very slow cooling, SA can converge to its global optima. Since the
minimization problem is dealt with in this paper, any movement that decreases the objective value will be
retained. If the value is increased, then the movement can be maintained by a transition probability from
the Boltzmann function exp (−KT), where T is the temperature that controls the annealing. SA has very
few parameters that need to be fine-tuned. They are explained in the following subsections.

3.3.1 Neighbourhood Structure
As the local search efficiency is directly affected by the neighborhood structure, proper care has to be

taken. A random neighborhood insert is adopted in this paper, and any two vectors are selected. The larger

Table 6: Procedural parameters

Parameter Value

Firefly size in the population (D) 40

The total number of generations, (k) 200

Initial attractiveness between two fireflies (β0) 0.1

The absorption coefficient of the least intensity firefly (γ) 1

The maximum iteration size (i) 500

Randomization parameters (α) 0.5

Integer for randomness speed for α adaptiveness (c) 5

Initial temperature (T) 100

Final temperature 0.025 � Initial Temperature

Neighbourhood search structure Insert
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position number is inserted into the previous position of the smaller position number, while the smaller
position number and the subsequent number sequence are postponed.

3.3.2 Annealing Rate
Annealing rate has a significant influence on SA. Annealing rate directly influences the speed and

accuracy of the annealing method. An improved annealing rate function inspired by the Hill function is
adopted to enhance the exploitation of optimal solutions, as shown in Eq. (16).

T tð Þ ¼ b� Tn
0

Tn
0 þ tn

(16)

where T0 is the temperature threshold, and it has a relationship with the initial temperature of the annealing
method; n is the Hill coefficient, and n ≥ 1; β ∈ (0, 1) is the annealing rate coefficient; t is the iteration number.

4 Experiments and Computational Results

This section elaborates and discusses the performance metrics of the proposed AdFA and HAdFA. The
proposed algorithms have been executed and tested with Matlab R2016b and above, and a computer
equipped with Intel Core™i7 and running Windows 10 operating system. All the test results have been
run 20 times to check the stability of the algorithm. The experiments aim to conclude that the
recommended algorithm is a capable approach for flexible job shop applications. The efficiency of
the proposed AdFA and HAdFA algorithms has been tested on standard benchmark instances taken from
the OR library.

4.1 Procedural Parameters

For our study, we have implemented the AdFA and HAdFA algorithms. Different weights have to be
given to the combined objective function as we have used the weighted sum approach. After carefully
reviewing the literatures of FJSP and some trial-and-error methods, we have found that the most optimal
weights to solve MK01–MK10 instances are ω1 = 0.7, ω2 = 0.15, ω3 = 0.15. The weights are given
according to the importance of the objectives that need to be solved. We have focussed more on make-
span (MSmax), and equal weight has been assigned to total workload (WLtotal) and maximum workload
(WLmax). For Du test instances, different weights have been assigned and discussed in the relevant
section. The procedural parameters for FA are few. However, we have applied two adaptive strategies to
FA and hybridized the Adaptive FA with SA. So, few extra parameters have to be defined. The
parameters specified for our study are shown in Tab. 6. In Tab. 6, c = 5 is a parameter for α adaptive
strategy, which is an integer number to determine the randomness of speed decay. Though an additional
parameter is introduced for each adaptive strategy, there is no difference in computational time;
nevertheless, we obtain a better optimal result. Hence, it can be concluded that the adaptive strategy helps
the algorithm explore search space efficiently, and the local search is done efficiently. SA parameters are
also given in Tab. 6.

4.2 Experiment 1-BR Data

Brandimarte’s benchmark set (BRdata) consists of 10 test instances with 10 to 20 jobs for 15 to
20 machines with a maximum of 240 operations. Brandimarte’s benchmark is chosen, as it is the standard
benchmark to test the performance of any heuristic technique, and it is one of the most solved problems
in the FJSP.
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4.2.1 Performance Comparison of AdFA and HAdFA
The BRdata test problems are run for the Combined Objective Function. We have run the test instances

for three algorithms, i.e., the discrete Firefly Algorithm (DFA) [30], the adaptive firefly algorithm AdFA and
the proposed hybrid algorithm HAdFA. Tab. 7 shows the optimal results of MSmax, WLtotal, WLmax, and
COF. The last column in Tab. 7 presents the percentage improvement (PI) for COF of each problem.
Eq. (17) shows the formula for PI. We can find a significant improvement obtained by the algorithm of
hybridizing Adaptive Firefly with the local search technique of SA. The F1 column is MSmax, F2 column
is WLmax, and F3 column is WLtotal.

PI ¼ AdFA� HAdFA

HAdFA
� 100 (17)

From Tab. 7, it can be observed that best makespan values are obtained for large scale problems
especially MK10 has new makespan value of 201. Though there is not much difference in makespan
value between DFA with AdFA and HAdFA for small and mid size problems, large scale problems show
considerable improvement. Also, the COF shows a significant enhancement in all cases. This
demonstrates the importance of adaptive parameters and local search when introduced to classic FA. It is
also observed that there is a significant improvement of 2.22%, 5.79%, 1.58%, 2.27%, and 1.47% in COF
for MK 01, MK02, MK05, MK06, and MK07, respectively. Though MK03, MK04, MK08 and
MK09 show a little improvement in optimal values, this slight difference will significantly impact the
computational time.

AWilcoxon signed rank test is adopted to analyse the significant differences in the results for each test
instance. It’s a non parametric analysis used for performance comparison of two metaheuristics. A confidence
level of α = 0.05 is taken. The analysis was done for average makespan of 10 Brandimarte instances for
25 runs. The results show that the HAdFA performs better than Adaptive FA for 8 instances with p-value
< 0.0001 except MK01, MK03 and MK08 for which p-value is ‘0‘ that indicates there is no significant
difference in both algorithms. For MK07 and MK09 AdFA performs better than HAdFA.

4.2.2 Performance Comparison of HAdFA with other Techniques
Next, the proposed HAdFA is compared with other recent techniques taken from literature, and the

comparison is shown in Tab. 8. Very few studies have been done for combined objective function as
ours. We have compared the proposed HAdFA with Search Method (SM) by Xing et al. [31], HTSA by
Li et al. [32], MODE by Balaraju et al. [33], BEG-NSGA-II by Deng et al. [34], and ADCSO by Jiang
et al. [35]. In Tab. 8, the column AI is the algorithm improvement calculated by Eq. (18).

Algorithm Improvement AI ¼ ðMSbest �MSHadFAÞ=MSHadFA (18)

where MSbest is the best make-span value obtained by the techniques taken for comparison, and MSHadFA is
the make-span value of the proposed HAdFA. The row Time(s) indicates the computational time in seconds.

The results shown in Tab. 8 indicate that our technique achieves the best output for MK01–MK03 and
MK10, and it outperforms other approaches, especially in mid-scale problems. A maximum improvement
of 13% can be seen for MK06. All the problems have been run 25 times. It can be observed from Tab. 8
that the computational time has been drastically reduced. Though the computational time depends on the
operating system, coding technique, and other factors, our computational time has been reduced drastically.
If we make the direct comparison between BEG-NSGA IId and HAdFAg, coded in Matlab on an Intel
processor, it can be perceived that HAdFA takes just 0.3–2.252 s to compute for all MK problems. In
comparison, BEG-NSGA II takes about 0.36 to 12.38 s. Even HAdFA takes just 1.765 s for a larger
instance of MK10. Lesser computational time proves that our technique is superior to other methods,
thereby proving that HAdFA has high efficacy to reduce the computational effort of FJSP. From the
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computational analysis shown in Tab. 8, it can be inferred that our algorithm works effectively for both mono-
objective optimization and multi-objective optimization. There is a substantial improvement in both
computational times and the optimal results. As the actual optimal schedule for Brandimarte instances is
very challenging to be represented as Gantt charts, we have respectively shown two sample Gantt charts in
Figs. 1 and 2, and these charts are obtained from HAdFA for MK01 and MK06 for make-span. The
hatched lines indicate idle time.

Table 7: Computational results of AdFA and HAdFA

Problem Technique MSmax WLmax WLtotal COF PI for COF (%)

MK01 DFA 40 – – – 2.22

AdFA 40 36 150 45

HAdFA 40 36 150 44

MK02 DFA 26 – – – 5.79

AdFA 26 25 136 32.85

HAdFA 26 21 128 31.05

MK03 DFA 204 – – – 0.56

AdFA 204 159 831 212.05

HAdFA 204 146 822 210.85

MK04 DFA 60 – – – 0.54

AdFA 60 63 335 74.05

HAdFA 54 53 324 73.65

MK05 DFA 172 – – – 1.58

AdFA 172 171 669 198.45

HAdFA 170 170 658 195.35

MK06 DFA 59 – – – 2.27

AdFA 55 62 330 79

HAdFA 53 52 332 77.2

MK07 DFA 139 – – – 1.47

AdFA 136 139 676 159.35

HAdFA 138 136 648 157

MK08 DFA 523 – – – 0.78

AdFA 523 520 2478 619.05

HAdFA 523 506 2410 614.25

MK09 DFA 307 – – – 1.05

AdFA 299 311 2251 406

HAdFA 300 299 2249 401.75

MK10 DFA 202 – – – 1.83

AdFA 211 219 1896 305.35

HAdFA 201 212 1872 299.85
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Table 8: Comparison of results for BRdata instances

Problem MK01 MK02 MK03 MK04 MKO5 MK06 MK07 MK08 MK09 MK10

SM F1 42 28 204 68 177 75 150 523 311 227

F2 42 28 204 67 177 431 150 523 299 221

F3 162 155 852 353 702 67 717 2524 2374 1989

COF 48 34.35 236.4 82.05 203.25 91.6 178.35 623.05 412.35 314.2

HTSA F1 40 26 204 61 172 65 140 523 310 214

F2 36 26 204 61 172 62 140 523 301 210

F3 167 151 852 366 687 398 695 2524 2294 2053

COF 45.75 32.35 236.4 76.25 197.75 81.2 167.755 623.05 407.85 305.35

MODE F1 40 26 204 62 172 60 139 523 310 229

F2 36 26 133 55 172 55 138 515 299 214

F3 154 141 845 332 672 346 658 2480 2260 1890

COF NA NA NA NA NA NA NA NA NA NA

BEG-
NSGA-II a

F1 42 26 204 60 173 60 139 523 310 224

F2 36 26 133 55 173 54 138 515 299 211

F3 154 140 847 339 674 330 657 2484 2265 1864

COF NA NA NA NA NA NA NA NA NA NA

Time
(s)

0.36 0.7 3.66 1.63 1.96 1.85 3.12 8.34 10.15 12.38

ADCSOb F1 40 27 204 62 173 66 143 523 311 225

F2 36 27 204 62 173 60 143 523 300 209

F3 167 143 914 362 685 397 698 2524 2293 1943

COF 45.75 32.8 239.5 77 198.6 81.65 170.75 623.05 408.45 308.5

Time
(s)

49.5 50.7 308.5 181.8 102.3 384.4 182.2 909.7 948.6 1532.4

HAdFAc F1 40 26 204 54 170 53 138 523 300 201

F2 31 21 146 53 170 52 136 506 299 212

F3 143 128 822 324 658 332 648 2410 2249 1872

COF 44 31.05 210.85 73.65 195.35 77.2 157 614.25 401.75 299.85

Time
(s)

0.369 0.198 1.517 0.304 0.331 0.418 1.566 0.593 2.252 1.765

AI 0% 0% 0% 11% 1% 13% 1% 0% 3% 6.46%

Notes:

where F1-MSmax; F2-WL max; F3-WL total
aThe CPU time on an Intel Core i3, 2.67 GHz processor with 4 GB RAM in MATLAB R2014a
bCoded in FORTRAN and run on VMware Workstation with 2 GB main memory under WinXP
cThe CPU time on an Intel Core ™i7, 2.67 GHz processor with 8 GB RAM in MATLAB R2016b
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Figure 1: Gantt chart of problem MK01 for make-span (MSmax = 40)

Figure 2: Gantt chart of problem MK06 for make-span (MSmax = 53)

Table 9: Computational results of experiment 2

Problem 8x5x20 12x5x30 8x8x27

GA MSmax 27 33 –

WLmax 27 33 –

WLtotal 109 145 –

COF F(0.5-0.3-0.2) 43.4 55.4 –

F(0.3-0.2-0.5) 68 89 –

F(0.2-0.3-0.5) 51.6 66.6 –

Time (s) – – –

GRASP MSmax 24 33 16

WLmax 24 33 13

WLtotal 101 138 73

COF F(0.5-0.3-0.2) 39.4 54 26.5

F(0.3-0.2-0.5) 62.5 85.5 43.9

F(0.2-0.3-0.5) 47.1 64.5 31.6

Time (s) NA NA –

DFA MSmax 28 34 16

WLmax 25 32 13

WLtotal 102 139 73

COF F(0.5-0.3-0.2) 41.9 54.4 26.5

F(0.3-0.2-0.5) 64.4 86.1 43.9

F(0.2-0.3-0.5) 49.7 64.5 31.6

Time (s) 0.18 0.37 0.41

HDFA MSmax 24 31 15

WLmax 24 30 12

WLtotal 101 140 75
(Continued)
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4.3 Experiment 2-Du Test Instances and Rajkumar Instance

For further study, the proposed AdFA and HAdFA have been tested on three problem instances taken
from [36,37]. The computational results obtained by AdFA and HAdFA are given in Tab. 9. Tab. 9 also
shows the COF obtained for different weights and performance comparison with other algorithms,
including GA by Du et al. [36], GRASP technique by Rajkumar et al. [37], Discrete FA (DFA), and
Hybrid Discrete FA (HDFA) by Karthikeyan et al. [38]. The ‘-’ indicates that the data is unavailable. The
time taken for computation is given in seconds. It is validated that the proposed AdFA and HAdFA
perform superiorly to the other algorithms in reference to the results shown in Tab. 9. The computational
time has been reduced drastically in comparison to other algorithms. The computational time of AdFA
and HAdFA has significantly less difference. There is a significant improvement in COF values. Figs. 3–5
depicts the Gantt chart of solutions. J (11), J (12), and so on represent the job number and operation in
Gantt charts. Hatched lines show the machine’s idle time.

Table 9 (continued)

Problem 8x5x20 12x5x30 8x8x27

COF F(0.5-0.3-0.2) 39.4 52.5 26.1

F(0.3-0.2-0.5) 62.5 85.3 44.4

F(0.2-0.3-0.5) 47.1 63.2 31.5

Time (s) 0.45 0.93 0.85

AdFA MSmax 24 31 15

WLmax 24 30 12

WLtotal 100 140 75

COF F(0.5-0.3-0.2) 39.4 52.8 26.5

F(0.3-0.2-0.5) 62.5 85.1 44

F(0.2-0.3-0.5) 47 64.1 31.5

Time (s) 0.28 0.4 0.45

HAdFA MSmax 22 30 14

WLmax 18 30 12

WLtotal 97 140 75

COF F(0.5-0.3-0.2) 39.4 51.5 25.85

F(0.3-0.2-0.5) 60 85 43.2

F(0.2-0.3-0.5) 45 62.9 31.5

Time (s) 0.25 0.39 0.4
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5 Conclusions

In this article, a new novel Hybrid Adaptive Firefly algorithm (HAdFA) has been proposed to optimize
the scheduling of FJSP. We have modified the classic FA by adopting and employing adaptive strategies to
update the randomization parameter (α) dynamically. Also, a heterogeneous update rule is exploited to
enhance the searchability of fireflies. By implementing a heterogeneous update rule, the exploitation is
done efficiently, preventing premature convergence. We have hybridized the Adaptive Firefly with
simulated annealing to analyze further if there is an improvement in optimal solutions. The performance
of both AdFA and HAdFA has been tested on the renowned benchmark instance of Brandimarte and
three test instances of Du et al. and Rajkumar et al. Combined objective optimization of three objectives

Figure 3: Gantt chart of problem 8 × 5 with 20 operations

Figure 4: Gantt chart of problem 12 × 5 with 30 operations

Figure 5: Gantt chart of problem 8 × 8 with 27 operations
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has been done, including minimizing make-span, total workload, and critical workload. A less used
integrated approach with real number encoding has been implemented to solve the FJSP. All the
problems have been programmed in Matlab. The computational results and statistical analysis showed
that our technique outperforms other meta-heuristics in getting better optimal results, and new solutions
are found in some cases. Likewise, the computational time has been reduced considerably. The algorithm
works effectively in both mono-objective and multi-objective optimization. It has also been observed that
with an increased number of iterations and swarm size, the performance of the algorithm also increases.

Moreover, to the best of our knowledge, there are no studies that have employed the Firefly algorithm
with adaptive parameters to solve Brandimarte instances and Du-Rajkumar problems for the combined
objectives of MSmax, WLmax, WLtotal. For a future study of the algorithm, we intend to

� Test it for other benchmark instances and real-world problems.

� To use the hierarchical method to solve the subproblems of assignment and sequencing.

� Include some random breakdown or preventive maintenance or job insertion.

� Explore dynamic and real-time scheduling problems.

� Other combinatorial optimization problems can also be attempted.
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