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Abstract: Classification is the last, and usually the most time-consuming step in
recognition. Most recently proposed classification algorithms have adopted
machine learning (ML) as the main classification approach, regardless of time
consumption. This study proposes a statistical feature classification cubic spline
interpolation (FC-CSI) algorithm to classify emotions in speech using a curve fit-
ting technique. FC-CSI is utilized in a speech emotion recognition system
(SERS). The idea is to sketch the cubic spline interpolation (CSI) for each audio
file in a dataset and the mean cubic spline interpolations (MCSIs) representing
each emotion in the dataset. CSI interpolation is generated by connecting the fea-
tures extracted from each file in the feature extraction phase. The MCSI is gener-
ated by connecting the mean features of 70% of the files of each emotion in the
dataset. Points on the CSI are considered the new generated features. To classify
each audio file according to emotion, the Euclidian distance (ED) is found
between each CSI and all MCSIs of all emotions in the dataset. Each audio file
is classified according to the nearest MCSI to the CSI representing it. The three
datasets used in this work are Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS), Berlin (Emo-DB), and Surrey Audio-Visual
Expressed Emotion (SAVEE). The proposed work shows fast classification and
high accuracy of results. The classification accuracy, i.e., the proportion of sam-
ples assigned to the correct class, using FC-CSI without feature selection (FS),
was 69.08%, 92.52%, and 89.1% with RAVDESS, Emo-DB, and SAVEE, respec-
tively. The results of the proposed method were compared to those of a designed
neural network called SER-NN. Comparisons were made with and without FS.
FC-CSI outperformed SER-NN on Emo-DB and SAVEE, and underperformed
on RAVDESS, without using an FS algorithm. It was noticed from experiments
that FC-CSI operated faster than the same system utilizing SER-NN.

Keywords: Classification methods; machine learning; cubic spline interpolation;
Euclidean distance; emotional speech dataset; RAVDESS; Emo-DB; SAVEE

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.018045

Article

echT PressScience

mailto:husam.a@sc.uobaghdad.edu.iq
http://dx.doi.org/10.32604/iasc.2022.018045


1 Introduction

Numeric data are often difficult to analyze, and functions to link the data are hard to find. In 1998, cubic
spline interpolation (CSI) was proposed, which connects pairs of data points using unique cubic polynomials,
generating a continuous and smooth curve [1]. A spline curve is described by a sequence of polynomials
called spline curve segments, and a spline surface is a mosaic of surface patches [2,3].

Interpolation has many applications, all with the purpose of smoothening. The fundamental concept of
CSI is based on the engineer’s tool used to draw smooth curves through several points. The spline consists of
weights attached to a flat surface. A flexible strip is bent across each of these weights, resulting in a pleasingly
smooth curve. The mathematical spline is similar in principle. The points, in this case, are numeric data. The
weights are the coefficients of cubic polynomials used to interpolate the data. These coefficients “bend” a line
so that it passes through each data point without erratic behavior or breaks in continuity [1]. CSI is used to
determine rates of change and cumulative change over an interval. CSI was applied to compute the heat
transfer across the thermocline depth of three lakes in the study area of Auchi in Edo State, Nigeria [4].
Spline interpolation methods include linear, quadratic, cubic Hermite, and cubic [5], with different
applications. A planning path method based on cubic spline interpolation was proposed to smooth a
robot’s moving path [6]. Biodiesel production from waste cooking oil was optimized using CSI and
response surface methodology in a mathematical model [7].

We propose an algorithm with third-order CSI curves to classify emotions in three datasets. We are
aware of no previous use of CSI in classification, although some research has adopted the idea of this
work to discover the wave behavior of an audio signal to classify emotions, using a convolutional neural
network (CNN) and not CSI. Related work discovered signal behavior directly from raw data, while FC-
CSI works with features extracted from raw data. A network based on time distribution CNN, CNN, and
RNN was proposed, without traditional feature extraction to classify emotions, achieving 88.01%
classification accuracy on the seven emotions of Emo-DB [8]. A time continuous end-to-end SER
prediction system to classify valence and arousal emotions in the RECOLA dataset was proposed [9]. A
combination of CNN and LSTM networks learned the representation of a speech signal from raw data. A
CNN was proposed to learn and classify emotional features from the spectrogram representation of a
speech signal [10], merging feature extraction and classification, with respective classification accuracies
of 79.5% and 81.75% on the RAVDESS and IEMOCAP datasets.

CSI has been used in many applications other than classification. Third-order polynomial CSI was used to
fit the stress-strain curve of a standardized specimen of SAE 1020 steel hot-rolled flat [11]. Market power points
were calculated in different operating conditions and CSI was used to interpolate between them to suggest an
appropriate operating condition for a given level of market power [12]. Damage to buildings after a seismic
event was assessed by setting boundary conditions based on data from accelerometers at the base and roof
and estimating the influence on the other floors [13]. CSI was used in an empirical mode decomposition
method to analyze nonstationary and nonlinear signals in communication [14]. Based on its local
characteristics in the time domain, the signal was decomposed to a series of complete orthogonal intrinsic
mode functions. CSI was used to connect the minimum and maximum signal values to lower and upper
envelopes, respectively, and calculate their means. CSI was used to visualize data generated by millions of
trajectory frames of molecular dynamic simulations by speeding up the calculation of the atomic density
(volumetric map) with a 3D grid from molecular dynamic trajectory data [15].

We propose a classification method utilizing CSI. Classification methods are used in applications such as
speech emotion recognition. Regardless of the high accuracy performance achieved by classification
algorithms adopting ML methods, their training time is high. We aim to minimize this and propose a
classification algorithm that uses cubic spline interpolation, which is a new field in classification research.
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The limitation of FC-CSI is the conversion of features from 1D to 2D. To draw a curve on a 2D plane,
features must be represented in 2D coordinates, i.e., X and Y. In the proposed algorithm, the feature value is
considered the Y-axis, and the sequence of the feature is the X-axis. The distance between features on the X-
axis is determined by trial and error, which affects the accuracy, and to find the perfect distance affects system
time consumption.

The remainder of this paper is organized as follows. Section 2 explains the proposed algorithm, Section
3 discusses experimental results, and Section 4 relates our conclusions and proposes future work.

2 Proposed Method

We design and implement a classification method. Fig. 1 shows its block diagram. Below, we discuss the
blocks in Fig. 1 and explain the data flow of the proposed work.

2.1 Hardware and Software Platform

All experiments were performed using MATLAB R2019a on a computer with an Intel Core I7-8750H
CPU @2.2 GHz with 32 GB of RAM and a Windows 10 operating system.

2.2 Datasets

The RAVDESS [16], Emo-DB [17], and SAVEE [18] datasets were used in this work, and were chosen
according to the following criteria:

� Recorded in three frequencies;

� Representing the main emotions according to Paul Ekman’s definition [19];

� Two languages were used in recording them;

� Gender balance was required to be available.

The specifications and properties of the datasets are shown in Tab. 1.

Dataset Feature 
Extraction

Pre-processing

Cubic Spline Curve 
Generation

2182 features/
each file

Convertor
80%

20%
Testing 

Standard Deviation of each 
cubic spline segment

MCSI curves

Euclidean 
Distance

Feature Selection

SER-NNResults SERS Framework

FC-CSI Algorithm Selection

Figure 1: Block diagram of proposed SERS system
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2.3 Experimental Setup

Each audio file in a dataset was converted to a one-dimensional vector. Three preprocessing functions
were applied to each vector:

1. All files were grouped according to emotion;

2. Silent parts at the beginning and end (and not in the middle) of each audio file were removed. This
was the first function applied to the data.

3. Data in each audio vector were normalized between 0 and 100:

xi ¼ xi �Minð Þ
Max�Minð Þ � 100; (1)

where x is the data read from the audio file; i is the number of values representing the audio file; and Min and
Max are the minimum and maximum values, respectively, found in the file. The factor of 100 was discovered
through trial and error. This step was applied after feature extraction.

One way to evaluate the performance of the classification method was to compare its results with those
of a predefined neural network (NN). We used one hidden layer with 10 nodes. The audio files in each of the

Table 1: Datasets used in this work

RAVDESS Emo-DB SAVEE

Actors 24
(12 Females, 12 Males)

10
(5 Females,
5 Males)

4
(Males only)

Language English
(North American)

Germany English
(British)

Texts used to record the dataset 2 10 15

Number of emotions 8
(6 main emotions)

7
(5 main
emotions)

7
(6 main
emotions)

Emotions represented (Number of
samples by emotion)

Fear (192), Disgust (192), Happy
(192), Neutral (96),
Sad (192), Anger (192), Surprise
(192), Calm (192)

Fear (69),
Disgust (46),
Happy (71),
Neutral (79),
Sad (62),
Anger (127),
Bored (81)

Fear (60), Disgust
(60),
Happy (60),
Neutral (120),
Sad (60), Anger
(60),
Surprise (60)

Number of features 2182 2182 2182

Number of samples 1440 535 480

Speech signal frequency 48000 Hz 16000 Hz 44100 Hz

Sample size 16 bits 16 bits 16 bits

Average human classification
accuracy

72% 84% 66.5 ± 2.5 %

Bit rate 768 kbps 256 kbps 705 kbps
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three datasets were randomly divided into subsets of 70% for training, 15% for validation, and 15% for
testing, and no files were in multiple subsets. The training function used was “trainscg,” the divide
function was “dividerand,” and the divide mode was “sample” [20].

2.4 Feature Extraction

The number of features extracted from each audio file was 2182. Fifteen feature types were extracted
from each audio file: entropy, zero crossing (ZC), deviation of ZC, energy, deviation of energy, harmonic
ratio, Fourier function, Haar, MATLAB fitness function, pitch function, loudness function, Gammatone
cepstral coefficient (GTCC) according to time and frequency, and MFCC function according to time and
frequency. The deviations (SDs) of these 15 features were calculated using 10 degrees on either side of
the mean (including 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, and 2.5). The feature extraction function
will be called the feature extraction mean deviation (FE-MD) function.

2.5 Converter

This step receives its input from feature extraction and sends its output to cubic spline curve generation,
as shown in Fig. 1. It is known that each feature is represented by one numeric value. In order to find the CSI
between all features, each feature has to be converted to a two-dimensional coordinate (X and Y). Hence, we
assumed the value of the feature to be the Y-axis, and assumed the feature sequence index in the feature
vector of each audio file to represent the X-axis of that specific feature. Many experiments were tested,
choosing the best spacing between each two features on the X-axis, (i.e., the length of the cubic spline
segment), and the best segment length found was 30, which means the first three features will have
values of zero, 30, and 60, respectively, on the X-axis, and so on. These are called the control points, or
knots, in interpolation [21].

2.6 Cubic Spline Interpolation Generation

Numeric data are commonly difficult to analyze, and a function to successfully link data is hard to find.

In 1998, mathematicians came up with CSI [1]. Fig. 2 shows an example of a single polynomial between
control points (xi-1, yi-1) and (xi, yi). A spline curve is composed of a sequence of polynomials called spline
curve segments, and a spline surface is a mosaic of surface patches [2,3].

Interpolation algorithms find sets of unique polynomials that form the main spline curve to interpolate all
the control points and generate new secured points between them. Changes in control point positions can
affect the curvature of the generated polynomials. We chose spline interpolation for three reasons: 1)
regardless of polynomial degrees, interpolation error can be small; 2) it avoids Runge’s phenomenon

Pn (Xn, Yn)

polynomial i-1

knots 
(Control points)

P0 (X0, Y0)

Pi (Xi, Yi)

Pi-1 (Xi-1, Yi-1)

Figure 2: Interpolation with cubic splines between seven points, using flexible rulers bent to follow
predefined points (“control points”) in yellow
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[22,23] because when high-degree polynomials are used, oscillation can occur between points; 3) the
generated polynomials serve as a technique to sketch smooth secured curves [24].

Interpolation has many applications, and all follow the concept of smoothening [1,21]. We first explain
the concept of the degree of a polynomial. A polynomial is a mathematical expression that can be formed
from constants and symbols (like x and y), which are also called variables or indeterminants. The
constants and variables are connected by means of multiplication, addition, and exponentiation to positive
integer powers. A polynomial of a variable (x) can be written as

anx
n þ an�1x

n�1 þ . . .þ a2x
2 þ a1x

1 þ a0 (2)

where a0, a1;…, an are constants, and x is the variable (indeterminant). The word “indeterminant” indicates
that x represents no specific value, and therefore can take any value. A function that maps the result of
substitution with a value is called a polynomial function. Eq. (2) can be written as

Xn
k¼0

akx
k (3)

Therefore, a polynomial can be written as either zero or as a sum of a limited number of nonzero terms,
each the product of a number (coefficient) and a finite number of variables raised to a positive integer power.
The power is called the degree, and the degree of a polynomial is the largest degree among all terms with
nonzero coefficients. An example of a cubic polynomial is

�5x3 þ 4x2 þ 1xþ 7 (4)

The degree of the second term is 2, and the coefficient of the term is +4. The degree of the polynomial is
the degree of the highest term, i.e., three.

A third-degree spline is called a cubic spline. Let us assume a cubic spline in the interval x0 ≤ xi ≤ xn is
generated by a set of piecewise polynomials si (x). The standard form of the cubic spline is

Ri xð Þ ¼ ai þ bi x� xið Þ þ ciðx� xiÞ2 þ diðx� xiÞ3; (5)

where i = 1, 2,…, n-1; and n is the number of control points. Hence, n-1 is the number of cubic polynomials
that will form the cubic spline interpolation. The first and second derivatives of these n-1 equations are
fundamental in cubic spline interpolation methodology, and these are respectively shown as [25]

Ri
0 xð Þ ¼ bi þ 2ciðx� xiÞ þ 3diðx� xiÞ2 (6)

Ri
00 xð Þ ¼ 2ci þ 6diðx� xiÞ: (7)

From these functions, three matrices can be generated (see Fig. 3), and we can write

Ax ¼ b: (8)

Eq. (5) can be solved to obtain coefficients a, b, c, and d of the cubic spline polynomial [26–29].

2.7 Standard Deviations of Cubic Spline Segments

This step generates CSI with equal lengths, so 10 deviation degrees (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2
(standard deviation), 2.25, and 2.5) will be found for all points in each polynomial to construct the final spline
curve. After this step, CSIs representing all audio files in the dataset will be randomly divided into two parts,
70% to find the MCSI curves and 30% for testing.
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2.8 Finding Mean Cubic Spline Interpolation Curves

Each MCSI curve represents a different emotion, so the number of MCSI curves is the number of
emotions represented in the dataset, i.e., 8, 7, and 7 for RAVDESS, EMO-DB, and SAVEE, respectively.
MCSI is calculated as

MCSIðmÞ ¼ n
m ¼ 1

� �
x ¼ 21820

j ¼ 1

� ��Xy mð Þ

i¼1

CSI i; jð Þ=length y mð Þð Þ
�
; (9)

where m = 1, 2, …, n; n is the number of emotions in the dataset; j = 1, 2, …, x, where x is the number of
points forming each CSI representing each audio file; i = ∈ y(m), where vector y(m) stores 70% of the audio
files indices randomly selected from each emotion. The feature subset is (fij, fi+1j, fi+2j,…, fnj), where length
(y(m)) equals 1152, 428, and 384, for RAVDESS, EMO-DB, and SAVEE, respectively. At the end of this
step, m MCSIs will be generated, where m equals the number of emotions. Each MCSI represents a
different emotion though a unique curve. The summation will add the same 70% sample from each
feature subset, as defined in Tab. 2. The MATLAB code of MCSI generation is shown in Fig. 4.

2.9 Testing

The audio files in the dataset will be divided into two groups, training and testing. The 70% for training
will be used to find the MCSIs, and the remaining 30% of the audio files in the dataset, will be used to test the
classification accuracy of the proposed work. This 30% is 432, 160, and 144 audio files for RAVDESS,
EMO-DB, and SAVEE, respectively.

Figure 3: Matrices used to find the four coefficients (a, b, c, and d) of CSI

Table 2: Structure of features extracted from CSI
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2.10 Euclidean Distance

The standard Euclidean distance function is used in this work [30]:

EDnm ¼
Xn¼21820

i¼j¼1

ffiffiffiffi
ðð

p
Xjm � XinÞ2 þ ðYjm � YinÞ2Þ; (10)

where (Xin, Yin) are the coordinates of the CSI samples determined for testing, and (Xjm, Yjm) are the
coordinates of the MCSI curve that represents one of the emotions in the dataset. The matrix that will be
generated from Eq. (10) and the MATLAB code in Fig. 5 will be an n × m matrix, where n is the number
of testing audio samples and m is the number of emotions in the dataset. Each audio sample will be
classified according to the closest MCSI to the CSI that represents it.

3 Experimental Results

We analyze the performance of SERS. The best classification accuracy results will be discussed
with respect to the fewest features selected. Experiment 1.1 (Exp1.1) and experiment 1.2 (Exp1.2)
were respectively performed before and after deploying the pre-designed feature selection t-test fitness
(FS-TF) algorithm.

3.1 Experiment 1.1: SERS Performance Analysis Before Deploying Feature Selection Algorithm

Through Exp1.1, the classification performance of SERS is calculated in two different approaches. First,
utilizing the FC-CSI algorithm and second through utilizing the SER-NN. Both approaches are implemented
without deploying the FS-TF algorithm.

3.1.1 SERS Accuracy Performance
Figs. 6–8 show the classification accuracy results of Exp1.1 after running the FC-CSI classification

algorithm. Figs. 9–11 show the classification accuracy results of Exp1.1 after running the SER-NN
classification algorithm. Tab. 3 shows the results of Exp1.1 implemented on the 2182 FE-MD features
extracted from the RAVDESS, EMO-DB, and SAVEE datasets, without feature selection.

Figure 4: MATLAB code for MCSI generation

Figure 5: MATLAB code for Euclidean distance function
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We observe the following after analyzing the results:

� Results from Exp1.1 show that FC-CSI outperformed SER-NN FC on Emo-DB and SAVEE and
underperformed on RAVDESS. This leads to the conclusion that, FC-CSI does not perform well
on datasets of low human-accuracy performance.

� The most misclassified samples are those of the sad and fear emotions in RAVDESS, and neutral, sad,
and disgust in SAVEE, which shows the drawback of FC-CSI in recognizing low-amplitude emotions.
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3.1.2 SERS Influence on Dataset and Emotion
Fig. 12 shows the results of Exp1.1, the influence of the FC-CSI and SER-NN classification algorithms

on the three datasets, and the emotions represented in those datasets.
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Figure 9: Exp1.1, SERS, SER-NN, confusion matrix with RAVDESS, without FS
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Figure 10: Exp1.1, SERS, SER-NN, confusion matrix with EMO-DB, without FS

Figure 11: Exp1.1, SERS, SER-NN, confusion matrix with SAVEE, without FS
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We observe the following:

� FC-CSI showed lower performance for emotions with low amplitude, such as calm and bored;

� FC-CSI showed average performance for emotions that contain many silent fragments, such as
neutral;

� FC-CSI failed to improve performance for the anger emotion on all three datasets;

� The performance for all emotions of FC-CSI on RAVDESS did not appear similar to that of Emo-DB
and SAVEE, except for the happy emotion, where FC-CSI performed better on all three datasets.

3.2 Experiment 1.2: SERS Performance Analysis After Deploying FS-TF Feature Selection Algorithm

Through Exp1.2, the classification performance of SERS was calculated by two different approaches,
first utilizing the FC-CSI algorithm, and then SER-NN. Both approaches were implemented by deploying
the FS-TF algorithm.

3.2.1 SERS Accuracy Performance
The column charts in Figs. 13 and 14 compare the performance of FC-CSI and SER-NN after applying

FS-TF on the 2182 FE-MD features. FC-CSI suffered from feature selection because, with more features, the
possibility of different shapes of CSI curves increased. Therefore, decreasing the number of features affected
the performance of FC-CSI, but improved the performance of SER-NN.

Regardless of the best classification accuracy results gained from the NN, the proposed classification
method accomplished the results shown in Tab. 3 using a smaller number of features, as shown in Tab. 4,
which shows less complexity.

Table 3: FC-CSI classification accuracy compared to designed SER-NN

Proposed classification method NN

RAVDESS 69.07% 86.1%

Emo-DB 92.52% 96.3%

SAVEE 89.1% 91.7%

neutral calm happy sad anger fear disgust
surpris

e
bored

Total
Accura

cy

RAVDESS NN Without FS 66.7 92.6 65.4 73.7 91.7 76.9 86.2 81.1 80.1

RAVDESS FC-CSI Without FS 78.94 84.21 68.42 44.73 81.57 47.36 78.94 68.42 69.07

Emo-DB NN Without FS 100 50 85.7 96.4 90.9 100 100 91.3

Emo-DB FC-CSI Without FS 100 78.57 83.33 92 100 100 93.75 92.52

SAVEE NN Without FS 100 71.4 90.9 100 58.3 83.3 100 87.5

SAVEE FC-CSI Without FS 78.26 90.9 90.9 81.81 90.9 100 90.9 89.1
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Figure 12: Exp1.1, SERS bar chart, result comparison between FC-CSI and SER-NN, without FS
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3.2.2 SERS Influence on Dataset and Emotion
We compared the performance of FC-CSI before and after FS-TF to show how SERS suffered from the

FS algorithm, and how it affected the emotions in each dataset (see Fig. 14). The results show that the neutral,
calm, happy, anger, disgust, surprise, and bored emotions were quite affected by the FS algorithm, except for
sad and fear, which means that FS generally affected the performance of FC-CSI on all three datasets.

neutral calm happy sad anger fear disgust
surpris

e
bored

Total
Accura

cy

RAVDESS FC-CSI with FE-MD 71.8 79.3 65.9 50.6 75.8 61 60.1 60.9 67.3

RAVDESS FC-CSI without 78.94 84.21 68.42 44.73 81.57 47.36 78.94 68.42 69.07

Emo-DB FC-CSI with FE-MD 78.26 71.42 100 89.47 65 100 91.66 85.11

Emo-DB FC-CSI without 100 78.57 83.33 92 100 100 93.75 92.52

SAVEE FC-CSI with FE-MD 72.8 83.7 90.9 78.4 83.9 83.6 82 81.2

SAVEE FC-CSI without 78.26 90.9 90.9 81.81 90.9 100 90.9 89.1
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Figure 14: Exp1.5, SERS bar chart, results comparison study between FC-CSI before and after FS

neutral calm happy sad anger fear disgust surprise bored
Total

Accurac
y

RAVDESS FC-CSI FS 71.8 79.3 65.9 50.6 75.8 61 60.1 60.9 67.3

RAVDESS SER-NN FS 85.7 97.4 81.5 92.6 100 93.1 95 96.6 93.5

Emo-DB FC-CSI FS 78.26 71.42 100 89.47 65 100 91.66 85.11

Emo-DB SER-NN FS 100 92.9 100 100 100 100 100 98.8

SAVEE FC-CSI FS 72.8 83.7 90.9 78.4 83.9 83.6 82 81.2

SAVEE SER-NN FS 100 100 100 100 100 100 100 100
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Figure 13: Exp1.2, SERS bar chart, results comparison between FC-CSI and SER-NN, with FS

Table 4: Number of features used to classify features using proposed classification method and designed NN.

Proposed classification method NN

RAVDESS 285 333

Emo-DB 104 247

SAVEE 89 270
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3.2.3 General Clarification Aspects of FC-CSI Algorithm Performance
We clarify the results of FC-CSI. As discussed, the algorithm finds MCSI curves through the mean of

80% of the audio samples in the dataset, where each MCSI represents a different emotion. We find the
Euclidean distance between the CSIs of each audio sample in the testing samples and classify each
sample to the nearest MCSI. The MCSI curves that represent the emotions in RAVDESS, Emo-DB, and
SAVEE are shown in Figs. 15–17, respectively.

Figure 15: Exp1.1, SERS MCSI curves with RAVDESS, without FS

Figure 16: Exp1.1, SERS MCSI curves with EMO-DB, without FS
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It is obvious from looking at the curves in Figs. 15–17 that the MCSI curves related to Emo-DB and
SAVEE are not similar. They intersect in some areas and are parallel in others, but as observed, each
MCSI curve has a part that is not similar to any other MCSI curve in the same dataset, whereas the
RAVDESS MCSI curves are parallel in many areas and intersect in others, which indicates the low
performance of FC-CSI with RAVDESS.

4 Conclusions and Future Work

FC-CSI introduces a new research area in classification. No related work was found that deployed curves
in classification, specifically the CSI. The most important conclusion is that CSI is a powerful data analysis
tool. Splines correlate data efficiently and effectively, no matter how random the data may seem. Once the
algorithm for spline generation is produced, interpolating data becomes easy. It was also noticed that
statistical classification methods need less time than SER-NN methods, because SER-NN’s need time to
learn and validate, whereas statistical methods require no learning. A set of speech signals representing a
certain emotion shares a similar CSI behavior, which can be used in SER systems. Curve classification
does not suffer from distinguishing conflicted emotions such as calm and neutral, or happy and anger,
and they are gender-, speaker-, and language-independent. Possible future work based on this work is as
follows. First, it would be more challenging to develop the proposed classification algorithm to deal with
audio samples of unequal length. Second is to deploy a more complex distance measurement function,
such as Fréchet distance. Third, we used CSI, but it is worth trying other types of curves, such as Bezier
curves, with a higher dimension, such as three dimensions.

The proposed FC-CSI classification algorithm can also be applied to voice, speaker, and gender
recognition, and can be used in classification systems such as image detection and object recognition. It
can also be used to detect diseases and infections.

Figure 17: Exp1.1, SERS MCSI curves with SAVEE, without FS
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