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Abstract: Despite the advances mobile devices have endured, they still remain
resource-restricted computing devices, so there is a need for a technology that
supports these devices. An emerging technology that supports such resource-con-
strained devices is called fog computing. End devices can offload the task to
close-by fog nodes to improve the quality of service and experience. Since com-
putation offloading is a multiobjective problem, we need to consider many factors
before taking offloading decisions, such as task length, remaining battery power,
latency, communication cost, etc. This study uses the multiobjective grey wolf
optimization (MOGWO) technique for optimizing offloading decisions. This is
the first time MOGWO has been applied for computation offloading in fog com-
puting. A gravity reference point method is also integrated with MOGWO to pro-
pose an enhanced multiobjective grey wolf optimization (E-MOGWO) algorithm.
It finds the optimal offloading target by taking into account two parameters, i.e.,
energy consumption and computational time in a heterogeneous, scalable, multi-
fog, multi-user environment. The proposed E-MOGWO is compared with MOG-
WO, non-dominated sorting genetic algorithm (NSGA-II) and accelerated particle
swarm optimization (APSO). The results showed that the proposed algorithm
achieved better results than existing approaches regarding energy consumption,
computational time and the number of tasks successfully executed.

Keywords: Fog computing; computation offloading; computational time;
metaheuristic; grey wolf optimization

1 Introduction

Today’s devices have an array of sensors embedded to continuously monitor their surroundings in real-
time. The internet of things (IoT) devices generally has inadequate battery power, computational capability,
and memory capacity, which leads to poor performance and reduces the quality of service (QoS) for
computational-intensive applications [1]. Cisco predicts that 500 billion IoT devices will be in use by
2025 [2]. The enormous increase in connected devices and their demands enforce a gigantic paucity in
communication networks and computational resources [3]. Computation offloading (CO) is used to
improve the performance of IoT devices by executing computation-intensive parts of the application on
remote machines or servers [4]. For CO, the end devices send computational tasks to the remote server
over resource-limited communication channels such as long-term evolution (LTE), wireless channels, 5G

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.032883

Article

echT PressScience

mailto:yadav.jyoti007@gmail.com
http://dx.doi.org/10.32604/iasc.2023.032883
http://dx.doi.org/10.32604/iasc.2023.032883


systems etc [5]. Then the remote server executes the tasks and returns the results to the IoT devices. Using
this technique, the resource-intensive tasks are executed in coordination with the offloading server.
Therefore, CO strategy design is critical for selecting the right offloading server. During offloading
decisions, we have to deal with many questions such as when, what, why, and where to offload [6].
Suppose we choose the where factor, the target can be a fog or cloud layer. When we offload to the
cloud, the task is completed, and the cloud server returns the results. However, new research indicates
that offloading to the cloud is never a good idea when some delay-sensitive applications must be
completed by a certain deadline. Moreover, cloud computing (CC) has higher communication costs and
transmission delay [7]. For latency-sensitive tasks, the availability of computational resources via fog
computing (FC) is advantageous [8]. It offers a distributed infrastructure, which results in faster response
and lower latency to application requests [9]. The computational capability and resources of fog nodes
are lesser compared to CC. Hence the offloading destination should be wisely selected based on different
conflicting parameters like delay, energy consumption, computational time, throughput etc. Only properly
offloaded tasks can result in a higher quality of experience and services. Developing a task offloading
scheme in the FC environment is a little more difficult than in normal CC, where an IoT device simply
selects whether or not to transmit a task to the cloud [10]. In FC, the number of offloading destinations
increases in proportion to the number of fog nodes. Moreover, fog nodes have limited computing
capabilities and resources compared to cloud resources [11]. Furthermore, earlier studies assumed single-
user single fog node scenarios, single-user single with single cloud server scenarios, or multi fog server
with single cloud server scenarios, which are impractical. Few studies have focussed on task offloading in
multi-user, multi-fog, and cloud server scenarios.

The full potential of fog computing can be realized using the offloading technique. Moreover, the
offloading problem is np hard, and its complexity increases with the number of tasks. In this article, we
use the MOGWO technique for the CO problem. MOGWO is integrated with gravity reference points to
enhance the performance further. The proposed strategy significantly contributes by identifying the best
computing server for every task based on two QoS parameters, i.e., computational time and energy
consumption.

The following is a summary of the paper’s main contribution:

� We investigate a multiobjective CO problem for a heterogeneous multi-user, multi-fog server and
cloud environment.

� MOGWO algorithm is used to select the best offloading server on the basis of minimum energy
consumption and computational time.

� A gravity reference point method is also integrated with MOGWO to improve its performance as it
has a better solution spread set.

� Lastly, the simulation of the proposed model and comparison of results with two other multiobjective
algorithms have been carried out in a three-layer architecture.

The rest of the article is as follows: Section 2 of this paper details the literature review related to CO
using metaheuristic techniques. Section 3 goes over the system model in detail, including the
computational and energy models and the problem definition. The proposed algorithm is described in
Section 4. Section 5 describes the simulation’s findings, and Section 6 describes the paper’s conclusion.

2 Literature Review

Various studies have been conducted for CO problems in FC till now. Various authors published review
papers [12–16] on task offloading in FC as a research direction. Many researchers use the queuing theory
[17–19], game theory [20–22], dynamic programming and clustering techniques [18,23,24] to solve CO
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problems. It has been observed that each has separately investigated essential parameters, for example, delay,
execution time, service time, communication cost, computational cost, quality of service and energy
consumption etc. In reality, the offloading problem is multiobjective and np-hard. As a result, only some
researchers have investigated meta-heuristic techniques for CO in FC. However, metaheuristic offloading
techniques in FC are new and require extensive augmentation to maximize the QoS and end-user
experience. These algorithms are motivated by natural, physical phenomena and animal behaviour [25].
Authors in [26] proposed two swarm intelligence-based schedulers named ant colony optimization (ACO)
and particle swarm optimization (PSO) to efficiently balance the workload of IoT devices by taking into
account response time and cost over fog nodes. Finally, the authors declared that ACO outperformed PSO
and round-robin (RR) in case of response time. Authors in reference [27] proposed adaptive GA-PSO
(Genetic algorithms and particle swarm optimization) to find near-optimal scheduling algorithms for
scheduling resource-intensive components of an application. The authors combined genetic algorithm
(GA) and PSO, where GA is used for exploration, and PSO is used for exploitation for optimal
offloading with deadline constraints. GA was also used in [28] to improve response time and load
balancing while finding the best destination for the offloaded task. Here queuing model is also utilized to
calculate waiting time and service time. Authors in [29] also proposed a multiobjective optimization non-
dominated sorting genetic algorithm that finds an optimal offloading approach for all workflow
applications. Authors in [30] proposed a fruit-fly-based CO algorithm which improves resource allocation
and offloading to gain nominal energy usage.

Most of the problems were either single objectives or converted to a single objective by assigning weight
to the parameters. As a multiobjective problem, literature has no sufficient discussion to solve the offloading
problem. Also, offloading is a multiobjective problem and its complexity increase with the number of tasks.
Thus, developing a multiobjective grey wolf to solve the CO problem is an open issue.

3 System Model

We propose a three-layer system model in our proposed work: IoT devices layer, fog server (FS) layer,
and cloud server (CS) layer. The FS layer is at the network’s edge and connects end devices with the cloud
server. Suppose there are X IoT users U ¼ U1; U2; U3; U4 . . . Uxf g. Each IoT user submits a T number
of computation-intensive or resource-sensitive tasks. The task set in a time interval dt is represented as
T ¼ T1; T2; T3; . . . ;Txf g. Here, we define Tx ¼ Lx; Dx in; Dx o; sxf g where Lx represents task length,
Dx in represents request size, Dx o represents response size, sx represents the maximum delay a task can
tolerate. It is also considered that there are M fog servers FS ¼ FS1; FS2; FS3; FS4; . . . FSMf g and N
cloud servers CS ¼ CS1; CS2; CS3; CS4; . . . CSNf g. Let there are R computation servers deployed in
an area S ¼ S1; S2; S3; S4; . . . SRf g where Re CS; FSf g. FS have a higher computing capacity than
IoT devices, but less than cloud servers CCCPU

IoT ,CCCPU
fog ,CCCPU

cloud. We’ll utilize a binary version of

CO in which a computational task is either calculated locally or submitted to a remote computing server
for processing. A task cannot be divided and must be accomplished entirely on a single server. Our
objective is to find the best computational server for tasks to be offloaded based on the multiobjective
optimization problem.

3.1 Computation Model

This model is used to compute computational time, which is the time it takes to execute a task. It is
determined by the computational capabilities of the remote server or local device and the communication
medium’s latency. It is calculated using Eq. (1).
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CTu
i; j ¼ ETu

i; j þ Li; j where jeS; ieX (1)

Here CTu
i; j represents the computational time of task i generated from device u and executed on device j.

Here j can be the IoT device itself, or it can be a remote server belonging to set S. ETu
i; j represents the

execution time of task i, which is calculated as ETu
i; j ¼ Lx=CCCPU

j .

The latency between end device i and the remote computing server j is calculated on the basis of the
network’s bandwidth and distance.

Li; j ¼ PDi; j þ SDi; j 8 i; jð Þ (2)

Here PDi; j denotes propagation delay and SDi; j denotes serialization delay. The PDi; j is the ratio of
distance (Di; j) between device i and j and bandwidth (BWi; j) of the network i.e., Di; j=BWi; j. Where

Di; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXj � XiÞ2 þ ðYj � YiÞ2

q
in 2-D area X ; Yð Þ. However, SDi; j is calculated by dividing the size of

the task by the transmission rate i.e., Lx=Tr. Here we consider two cases for the calculation of
computational time.

Case1: Local Execution

Here the task is processed at the end device itself, so the computational time is calculated using Eq. (3).

CTu
i; j ¼ ETu

i; j (3)

The task is processed locally, so the latency (Li; j ¼ 0) is zero.

Case 2: Remote Execution

The computational task is forwarded to the fog or cloud layer depending on the task’s latency and
resource sensitivity. The computational time required to execute an application on a remote server is
calculated using Eq. (4).

CTr
i; j ¼ ETu

i; j þ Li; j (4)

3.2 Energy Consumption Model

Two factors primarily determine the energy utilization: (i) computational energy, which is consumed
when the device is busy in executing the task, while (ii) transmission energy is the energy consumed
during to and fro transmission of the task to a remote computational server. The energy consumed during
execution is calculated as follows:

Case1: Local Execution

The energy consumed when a task executes at a local device is calculated using Eq. (5).

ECu
i; j ¼ ETu

i; j � Ec
r (5)

where Ec
r represents the energy consumption rate while executing a task.

Case 2: Remote Execution

The energy consumed when a task executes at a remote device is calculated using Eq. (6).

ECr
i; j ¼

Dx in

Tr
� Ec

r up þ
Dx o

Tr
� Ec

r down þ ETu
i; j�Ec

r (6)

ECr
i; j represents energy consumption when a task executes at the remote device. In Eq. (6) Ec

r up=E
c
r down

represents the rate of energy consumption for sending the request and receiving back the results.
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3.3 Problem Definition

Min F xð Þ ¼ F1 xð Þ; F2 xð Þð Þ (7)

where F1 xð Þ refers computational time

F2 xð Þ refers energy consumption

F1 xð Þ ¼
Xx

i¼o
CTu

i; j þ CTr
i; j

� �

F2 xð Þ ¼
Xx

i¼o
ECu

i; j þ ECr
i; j

� �

Subject to

C1: Tx;i;j ¼ 1; Tx;i;je 0; 1½ �// Constraint is used for binary offloading

4 MOGWO for Computation Offloading Problem

4.1 Multiobjective Optimization Problem

Multiobjective optimization (MOO), which was introduced by Vilfredo Pareto, determines the best
solution values for multiple goals [19]. The MOO’s use is justified by the fact that complex equations are
no longer required for problem-solving. Objective functions here are vectorized. The vector
corresponding to an objective function is also a function of the solution vector. Moreover, multiple
solutions exist corresponding to each function in the problem definition. The two techniques, i.e., Pareto
technique and scalarization, are used for solving the MOO problem. However, these two techniques are
different to each other. Suppose we consider different desired outcomes and performance matrices. The
Pareto technique then gives a conciliation solution (trade-off) that may be represented as a Pareto front
(PF) [31]. The scalarization technique produces a scalar function, which is then implemented using the
fitness function. So, to tackle the described problem here, we employed the MOGWO approach.

4.2 GWO Algorithm

GWO is a nature-inspired meta-heuristic approach motivated by the grey wolf’s hunting style and social
hierarchy [30]. Grey wolves live in packs of five to twelve members. Four rankings are assigned to wolves
a; b; d; xð Þ in a particular pack. a wolf is the decision-makers about hunting, living places etc. The
b; d; x wolves give feedback to the alpha wolf and aid in decision-making. The best candidate for an
optimal solution is a. In contrast, b and d are the second and third best solutions. Grey wolves hunt by
encircling their victim and attacking it from all sides. The first phase of encircling the prey is represented
using Eqs. (8) and (9)

~D ¼ Cv
�!

: XP
�!

tð Þ � XG
�!

tð Þ
��� ��� (8)

XG
�!

tþ 1ð Þ ¼ XP
�!

tð Þ � Av
�!

: ~D
��� ��� (9)

where ~D denotes distance-vector, ~XP indicates the prey’s location, t represents the current iteration, ~XG

denotes the grey wolf’s location and Av
!
, Cv
�!

represents the coefficient vectors calculated using Eqs. (10)
and (11):
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Av
�! ¼ 2:~a:r1

!�~a (10)

Cv
�! ¼ 2:r2

! (11)

where r1
! and r2

! are random vectors with value between [0, 1]. The value of~a decreases from 2 to 0 during
the course of the experiment. Other wolves alter their positions based on a; b; and d wolves. The hunting
behaviour of grey wolves is simulated using Eqs. (12)–(18).

Da
�! ¼ Cv1

�!
: Xa
�!� XG

�!
tð Þ

��� ��� (12)

Db
�! ¼ Cv2

�!
: Xb
�!� XG

�!
tð Þ

��� ��� (13)

Dd
�! ¼ Cv3

�!
: Xd
�!� XG

�!
tð Þ

��� ��� (14)

Position if we follow alpha, then

X1
�! ¼ Xa

�!� Av1
�!

:Da
�!��� ��� (15)

Position if we follow beta, then

X2
�! ¼ Xb

�!� Av2
�!

:Db
�!��� ��� (16)

Position if we follow delta, then

X3
�! ¼ ��� Xd

�!� Av3
�!

:Dd
�!��� (17)

The final position of the wolf is calculated using Eq. (18).

XG
�!

t þ 1ð Þ ¼ X1
�!þ X2

�!þ X3
�!� �

=3 (18)

The final stage of attacking the prey has been formulated using the vector~a. The value of~a lies between
�a; a½ �; and its value decreases from 2 to 0 during the iteration and is calculated using Eq. (19) as follows:

~a ¼ 2� t:
2

maxIter
(19)

The maxIter represents the total number of iterations, t indicates the current iteration.

4.3 Multiobjective Grey Wolf Optimization Technique

The GWO approach was developed to tackle one optimization problem at a time. Because of this, it
cannot be used to solve multiobjective problems directly. MOGWO was proposed in 2016 by Mirjalili
et al. [32]. Although it has been used for a variety of real-world problems, it has yet to be utilized to
offload issues in FC. It has good exploration and exploitation and has a faster convergence rate with
fewer parameter tuning. Therefore MOGWO is used to solve CO problems in FC. Two new mechanisms
were integrated into the original GWO. Initially, storage was utilized to store the solutions called
archives. Then a leader selection strategy is utilized to select the first, second, and third leaders from the
archive.

Here we assume that all IoT devices’ probable CO decisions create a single position for the grey wolf as
follows:

1068 IASC, 2023, vol.36, no.1



Step 1: Randomly initialize the wolf population

GW ¼

GW1

GW2

GW3

. . .
GWn

2
66664

3
77775 ¼

GW1;1 :: GW1;d

GW2;1 :: GW2;d

GW3;1 :: GW3;d

:: :: ::
GWn;1 :: GWn;d

2
66664

3
77775

Here n represents the number of wolves, and d represents the dimension

Step 2: Calculate the objective function value of the wolf population. For each wolf, there are two
objective functions to evaluate, i.e., F1 and F2.

FW ¼
F1ðGW1Þ F2ðGW1Þ
F1ðGW2Þ F2ðGW2Þ

:: ::
F1ðGWnÞ F2ðGWnÞ

2
664

3
775

FW ¼

Time Energy
GW1 2 0:7
GW2 3 0:6
GW3 3 0:7
GW4 4 0:5
GW5 5 0:45
GW6 5 0:6

It can be clearly observed thatGW1 dominateGW3; GW2 dominateGW3 andGW6; GW4 dominateGW6;
and GW5 dominate GW6. Here {GW1; GW2; GW4, and GW5} form a non-dominating set and are also
called Pareto optimal front. However, no clear winner is identified. When two solutions have the same
non-dominated rank, the one in a less crowded region is selected.

FW ¼

Time Energy
GW1 2 0:7
GW2 3 0:6
GW4 4 0:5
GW5 5 0:45

F1 GWmaxð Þ ¼ 5
F1 GWminð Þ ¼ 2
F2 GWmaxð Þ ¼ 0:7
F2 GWminð Þ ¼ 0:45

The crowding degree (CD) of all the non-dominated solutions is computed using Eq. (20).

CDi ¼
X2
j¼1

f iþ1j � f i�1j

f max
j � f min

j

(20)

where i denotes the ith solution, all the values are arranged in decreasing order of CD and represented as set
St. The optimal solution is then chosen using the roulette wheel selection method. It does not ensure that the
fittest solution will be chosen, but it does increase the probability that it will be chosen [33]. The probability
of selection is calculated using Eq. (21).

PðFijStÞ ¼ k � iþ 1Pk
j¼1 j

(21)

where Fi is the destination function of the ith solution, St is the set of solutions, and k denotes the number of
the St.
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Algorithm 1: MOGWO Algorithm

1. Randomly initialize the grey wolf population of size n and set it as GWp½ �
2. Initialize a, Av and Cv

3. Compute the objective function value for each search agent

4. EAP  ½ � // EAP denotes external archive

5. Find non dominated solution and initialize the archive

6. Choose the best solution from the archive as Xa

7. Temporarily eliminate α from archive to prevent the selection of the same solution

8. Choose second-best solution from the archive Xb

9. Temporarily eliminate β from an archive to avoid selection of the same solution

10. Choose the third-best solution from an archive Xd

11. Add selected solution back to the archive

12. t = 1

13. While (t,max number of iterations) do

14. For each wolf do

15. Update the location of the current wolf by using the Eqs. (12) to (19)

16. End for

17. Update a, Av and Cv

18. EAP; XP
�!� �

¼ CD sort EAP; GWP; capacityð Þ
19. Select the best solution from storage as Xa

20. temporarily eliminate α from the archive to prevent the selection of the same solution

21. Select second-best solution from the storage Xb

22. temporarily eliminate β from storage to avoid selection of the same solution

23. Select the third-best solution from the storage Xd

24. Add a and b back to the storage

25. t = t + 1

26. end while

27. return EAP

Algorithm 2: CD_sort

Function : (EAP, XP
�!

) = CD_sort (EAP, GWP, capacity)

Input: EAP, GWP, capacity

Output: EAP, XP
�!

1. Add GWP to EAP

2. update EAP with non dominated solution of GWP based on objective functions in Eq. (7).

3. The solutions in EAP are sorted by crowding degree using Eq. (20).

4. If size (EAP . capacity) then

(Continued)
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5. Poor crowding degree solutions are excluded

6. End if

7. Then the roulette wheel selection method is used to select the optimal solution using Eq. (21).

4.4 E-MOGWO for Computation Offloading in Fog Computing

Since the solution set of the gravity reference point technique is more evenly distributed, integrating it
with MOGWO can boost its performance even more. E-MOGWO is a new hybrid method that combines the
gravity reference point technique with MOGWO as shown in Fig. 1.

Algorithm 2 (continued)

Figure 1: Flow chart of E-MOGWO

IASC, 2023, vol.36, no.1 1071



The weight coefficient increases when the gravity reference point is closer to the current solution. This
work defines two functions of computational time and energy consumption usage. When F1 Xð Þ takes the
min value, then the resultant solution is called X1

*
. When F2 Xð Þ takes the min value, then the resultant

solution is called X2
*

. When X ¼ X1
*

then F1 Xð Þ and F2 Xð Þ are calculated based on Eq. (7), known as
CT1 and EC1. When X ¼ X2

*
The value corresponding to functions F1 Xð Þ and F2 Xð Þ are called CT2 and

EC2. Then compute the weight and distance parameter for each set as follows:

Calculate the energy consumption and computational time of the current solution, and then estimate the

distance between X1
*
; X2

*
and the current solution.

D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT � CT1ð Þ2 þ ðEC � EC1Þ2

q
(22)

D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT � CT2ð Þ2 þ ðEC � EC2Þ2

q
(23)

Compute the weight parameters

WT1 ¼ D1 þ D2 � D1

D1 þ D2
¼ D2

D1 þ D2
(24)

WT2 ¼ D1 þ D2 � D2

D1 þ D2
¼ D1

D1 þ D2
(25)

The current solution is updated using Eq. (28).

D1
* ¼ Cv

�!
: X1
�!� ~X tð Þ

��� ��� (26)

D2
* ¼ Cv

�!
: X2
�!� ~X tð Þ

��� ��� (27)

~X t þ 1ð Þ ¼ WT1 � Xt
!� Av

!
:D1
�!��� ���þWT2 � jXt

!�~Av:Daj
�!

(28)

Algorithm 3: Gravity Reference Algorithm

Function EAG ¼ Gravity EAP; Capacityð Þ
1. Input EAP and capacity

2. Output EAG

3. EAG  EAP

4. For each entry in EAP, do

5. Revise the location of the current wolf by using Eq. (28)

6. End for

7. EAG; XP
�!� �

¼ CD_sort (EAP, EAG, capacity)

5 Results and Analysis

This part presents a simulation scenario for evaluating the proposed algorithm’s performance. The
simulation has been performed using a pure edge simulator. All experiments are run on a system with an
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intel i5 processor, 8 GB RAM, 1TB hard disk and windows 10 operating system. The proposed E-MOGWO
is compared with two multiobjective metaheuristic algorithms APSO [34] and NSGA-II [35]. The parameters
of each algorithm are settled according to related references, as shown in Tab. 1. For the experiment,
100 search agents are investigated for 50 iterations. Each algorithm runs independently 50 times. The
archive size of 50 is considered for all algorithms.

The simulator has been designed to simulate a three-layer system, i.e., IoT devices, fog server and cloud
server. In the first layer, three different types of IoT applications of health, intelligent transport systems and
augmentation reality are deployed on IoT devices. Each device generates a task according to deployed
application and task generation rate. The experimental setup of IoT devices, fog nodes and cloud are
shown in Tab. 2.

Table 1: Parameter settings

Algorithm Parameters

E-MOGWO Grid inflation parameter (GIP) a ¼ 0:1
Leader selection parameter (LSP) b ¼ 4

MOGWO Grid inflation parameter (GIP) a ¼ 0:1
Leader selection parameter (LSP) β = 4

APSO w = 0.5
Personal learning coefficient (PLC) c1 ¼ 1
Global learning coefficient (GLC) c2 ¼ 2
GIP: a ¼ 0:1, LSP: b ¼ 4

NSGA-II Cross over rate (CR) = 0.5
Mutation rate (MR) = 0.1

Table 2: Simulation parameters settings

Parameters Values

Minimum number of IoT nodes 100

Maximum number of IoT nodes 1000

WLAN bandwidth 500 (Mbits/s)

End device counterstep 100

Task generation rate 5 Task/Device/Minutes

Propagation delay 0.2(s)

WAN bandwidth 500 (Mbits/s)

Request length (MI) 50–2000

Request size (megabits) 1–16

Processing power of IoT devices (MIPS) 1000–2000

RAM memory size of IoT devices (MB) 256–512

Processing power of fog nodes (MIPS) 4000–8000

RAM memory size of fog nodes (MB) 512–1024

Processing power of each cloud server (MIPS) 12000–30000

RAM memory size of cloud server (MB) 2048–4096
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Comparison Analysis: To evaluate the proposed technique, We analyzed energy consumption,
computational time, the overall percentage of successful tasks, and the number of tasks completed at each
level (local, fog, cloud).

5.1 Computational Time

It is the time required to execute a task either on a local IoT device or a fog or cloud server. It is defined
by both the time required to complete a task on the device and the time required to transmit the task to the
remote server. A comparative analysis of computational time is represented using Fig. 2. The performance
improvement rate (PIR) [36] has been calculated to determine the improvement of the proposed algorithm
over the existing algorithm using Eq. (29).

PIR %ð Þ ¼
P

old Value�
P

New ValueP
old Value

� �
� 100 (29)

E-MOGWO algorithm reduces computational time by 5.10% over MOGWO, 6.10% over APSO and
9.72% over NSGA-II, as presented in Tab. 3.

e
mi

Tla
noitat

u
p

moC

Number of Devices

Figure 2: Comparison of computational time

Table 3: PIR (%) of computational time

Number of
devices

E-
MOGWO

MOGWO APSO NSGA-
II

PIR (%) over
MOGWO

PIR (%) over
APSO

PIR (%) over
NSGA-II

100 150.05 152.32 152.68 153.56 1.49028361 1.72255698 2.2857515

200 330.23 336.45 336.98 340.42 1.84871452 2.00308624 2.99336114

300 610.24 625.42 630.2 634.45 2.42716894 3.16724849 3.81590354

400 940.87 984.52 985.08 1008.36 4.43363263 4.48796037 6.69304613

500 1345.98 1412.44 1413.12 1488.66 4.70533262 4.75118886 9.58445851

600 1878.02 1988.22 1992.88 2128.48 5.54264619 5.76351812 11.7670826

700 2456.03 2638.42 2686.36 2812.14 6.91284936 8.5740556 12.6633098

800 2937.78 3164.3 3223.22 3422.22 7.15861328 8.85574053 14.1557235

900 3623.54 3922.42 4002.38 4286.36 7.61978574 9.46536811 15.4634702

1000 4261.35 4680.42 4854.32 5188.22 8.95368364 12.2153051 17.8648939

Mean % improvement 5.10927105 6.10060284 9.72870008
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5.2 Energy Consumption

The total amount of energy used is the sum of computational and transmission energy. Most tasks in the
simulation are handled at the fog layer or local device rather than the cloud layer. The cloud is only used for
the most resource-intensive tasks. As fog nodes are deployed close to the end device, they assist in reducing
transmission energy and total energy usage.

The proposed E-MOGWO algorithm significantly improved energy consumption over MOGWO,
APSO and NSGA-II Algorithms. This algorithm reduces energy usage by 15.10% over MOGWO,
17.29% over APSO, and 21.91% over NSGA-II, respectively, as presented in Tab. 4. A comparative
analysis of energy consumption is displayed in Fig. 3.

5.3 Number of Tasks Successfully Executed

The analysis of the percentage of the number of tasks successfully executed using the various algorithms
is presented in Fig. 4. The percentage of tasks successfully executed by E-MOGWO is 0.63% more than
MOGWO, 1.06% more than APSO and 1.80% more than NSGA-II. A task may fail due to high delay,

Table 4: PIR (%) of energy consumption

Number of
devices

E-MOGWO MOGWO APSO NSGA-II PIR (%) over
MOGWO

PIR (%) over
APSO

PIR (%) over
NSGA-II

100 1.5 1.9 1.98 2.07 21.0526316 24.2424242 27.5362319

200 2.08 2.6 2.69 2.78 20 22.6765799 25.1798561

300 2.92 3.58 3.66 3.89 18.4357542 20.2185792 24.9357326

400 3.87 4.68 4.82 5.12 17.3076923 19.7095436 24.4140625

500 5.18 6.22 6.32 6.82 16.7202572 18.0379747 24.0469208

600 5.98 7.02 7.12 7.84 14.8148148 16.011236 23.7244898

700 7.89 9.12 9.38 9.97 13.4868421 15.8848614 20.8625878

800 9.54 10.66 10.98 11.68 10.5065666 13.1147541 18.3219178

900 11.23 12.54 12.89 13.54 10.446571 12.8782002 17.0605613

1000 13.89 15.13 15.46 15.96 8.19563781 10.1552393 12.9699248

Mean % improvement 15.0966768 17.292939 21.9052285
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Figure 3: Comparison of energy consumption
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unavailability of resources and low remaining battery. The task failure rate in E-MOGWO is lower than in
other algorithms. Fig. 5 shows the number of tasks executed at different levels either to the fog node, cloud
node and IoT devices.

E-MOGWO provides good results than other algorithms. Because this algorithm has a good balance
between exploration and exploitation, which allows the escape of local optima stagnation. This method
also has fewer parameters than others, which is advantageous. Moreover, it has only one position vector
compared to APSO, which has two vectors, i.e., velocity and position. Hence it requires less memory
space. Moreover, when the total number of iterations is finished, the obtained solutions are stored as non-
dominated solutions set. These are chosen from the less crowded region of the solution space using a
leader selection algorithm. APSO and NSGA-II, on the other hand, save previously discovered solutions,
resulting in solution duplication and premature convergence due to the rapid loss of diversity. This can be
avoided with a grid mechanism that removes the current solution from the archive when it fills up and
replaces it with a better one. The computational complexity of E-MOGWO is OðMN 2) where N is the
population size, M is the number of objectives, and the complexity is the same as other well-known
multiobjective algorithms.

6 Conclusion

A metaheuristic-based multiobjective offloading technique is proposed in this work. The optimal
computing destination for each task is selected based on minimum energy consumption and minimum
computational time. The E-MOGWO algorithm allocates delay-sensitive applications to local devices or
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Figure 4: Comparison of percentage of tasks successfully executed
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Figure 5: Number of tasks executed at different levels
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fog nodes. In contrast, resource-sensitive applications are assigned to the fog or cloud layers. It decreases the
energy consumption and processing time of offloaded applications, as specified in the results section. The
simulation results showed that the proposed offloading approach reduces energy consumption by 15.10%
over MOGWO, 17.29% over APSO, and 21.91% over NSGA-II, and reduces computational time by
5.10% over MOGWO, 6.10% over APSO and 9.72% over NSGA-II. In the future, we will be examining
the alternative service level agreement constraints and other parameters to enhance the algorithm’s
performance further.
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