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Abstract: The brain tumor is an abnormal and hysterical growth of brain tissues,
and the leading cause of death affected patients worldwide. Even in this technol-
ogy-based arena, brain tumor images with proper labeling and acquisition still
have a problem with the accurate and reliable generation of realistic images of
brain tumors that are completely different from the original ones. The artificially
created medical image data would help improve the learning ability of physicians
and other computer-aided systems for the generation of augmented data. To over-
come the highlighted issue, a Generative Adversarial Network (GAN) deep learn-
ing technique in which two neural networks compete to become more accurate in
creating artificially realistic data for MRI images. The GAN network contains
mainly two parts known as generator and discriminator. Commonly, a generator
is the convolutional neural network, and a discriminator is the deconvolutional
neural network. In this research, the publicly accessible Contrast-Enhanced Mag-
netic Resonance Imaging (CE-MRI) dataset collected from 2005-to 2020 from
different hospitals in China consists of four classes has been used. Our proposed
method is simple and achieved an accuracy of 96%. We compare our technique
results with the existing results, indicating that our proposed technique outper-
forms the best results associated with the existing methods.

Keywords: GAN network; CE-MRI images; convolutional neural network; brain
tumor; classification

1 Introduction

In the current age, many computer vision and image processing techniques have substantially influenced
medicinal image examination and diagnosis to achieve the results of competent medical experts [1,2]. The
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development of computer-aided systems and deep learning techniques in the medical field has become the
most prominent research area to meet the current age challenges in different medical fields. Although
medical imaging data is increasing day by day, with an increasing number of robust systems, newly
developed techniques are the main backbone to executing the success of different deep neural networks [3].

Brain tumors (BT) occur due to brain cells’ hysterical and atypical evolution [4]. There are many types
of brain tumors, but the most common is glioma tumor (GT). The GT occurs due to glial cells in the central
nervous system responsible for handling the nutritional elements of a human brain [5]. Moreover,
meningioma, the word originated from three membranes surrounding the brain and spinal cord. It
originates in these membranes [6]. The pituitary is a small gland located at the back of the nose. Its
irregular growth affects other brain glands and many functions in the body [7].

Additionally, medical imaging-related applications are increasing daily to facilitate the medical experts
[8]. The convolutional neural networks (CNNs) have been applied to increase radiology practice efficiency,
elastic registration between 3DMRI images, separation of brain tumors, neuropsychiatric illnesses, cancer in
the breast, and medically ultrasound-based images [9].

The classification of brain tumorous MRI is the latest research topic centered on many deep learning
techniques for qualitative analysis of brain tumors [10]. According to medical experts, brain tumor is one
of the dangerous diseases that leads to the maximum number of deaths of all ages [11]. That’s why the
accurate diagnosis process of BT during the curing process is crucial and needs a maximum level of
specialization for medical experts to complete the diagnosis process. So, a Generative Adversarial
Network (GAN) is prosed to handle this challenge.

On the other hand, the proposed technique known as GAN is the well-known machine learning
technique consisting of two neural networks contended with each other to be most accurate in prediction
results [12]. The GAN network consists of the generator model and discriminator model. The generator is
the CNN, and the discriminator is the de-convolutional neural network. The generator’s function is to
create the output artificially, while the discriminator is used to verify the artificially created output by the
generator. GAN creates its training data to generate the higher quality output for text to image translation,
image editing, creating and recreating with higher resolution, and 3-D object creation. Conversely, the
discriminator model grows into a better network to verify the artificially created output [13].

Identifying the desired end product and collecting an original training dataset depends on those
parameters is the initial phase in creating a GAN network. The achieved information known as random
input is fed into the generator till it reaches a baseline level of resultant output. After that, these features
are fed up with discriminators with authentic data points. The discriminator analyses the authenticity of
each image data and produces a probability between 1 and 0 for true and fake correlates [14]. The
achievement of these results is manual-based checking, and the method is repetitive till the preferred
outcomes are achieved, as shown in Fig. 1.

As a contribution to our proposed work for brain tumor classification, this research presented a new
strategy known as the GAN network. The contributions of the proposed work are given below:

� The GAN network created artificial medical image data to improve the learning ability of physicians
and other computer-aided systems for the generation of augmented data.

� GAN network initially goes through a training process on different MRI images to generate realistic
images of brain tumors that are entirely altered from the original ones.

The remaining paper structure is presented as the second part presents the interrelated work, the third
part explains the overall methodology, fourth one describes the experimental-based results and
discussions, and the last section indicates the conclusion of the whole research work.
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2 Related Work

Along with other traditional methods [15], CNNs [16,17] have a prominent role in medicinal image-
based analysis, including brain segmentation of magnetic resonance images (MRIs) [18]. MR imaging
consists of harmful ionizing radiations, but these radiations do not affect the patients and provide
information related to the brain tumor’s size, shape, type, and position. Glioma and meningioma are the
two hazardous types of brain tumors (BTs) detected by MRI scans. If these BTs are not detected initially,
they can be very dangerous and lead to death [19].

Glioma is the famous type of BTs in humans worldwide [20]. The famous institute, known as the World
Health Organization (WHO), categorizes the tumor into four grades. Grade I and II is the lower level of brain
tumor known as meningioma, and grade III and IV is identified as a more severe type of tumor-like glioma
[21]. More or less 20% is the meningioma type of brain tumor and treated as slowest in growth. The initial
stage diagnosis of this type of tumor can save many people’s lives [22].

The interpretation of MRIs by trained medical experts of brain tumorous disease is a considerably more
time-consuming, sensitive, and complicated job. In many cases, the brain tumor size is slightly different in
color concentration, form, and surface [23]. Noisy images and fewer concentration factors for the trained
medical expert are the other two issues for misinterpretation of brain tumors. Therefore the correct decision
about the diagnosis of BT is a much more challenging task for the trained neurologists and surgeons [24].

On the other hand, the author applied three classifiers known as CNN, random forest classifier, and fully
connected neural network for the brain tumor analysis in [25]. The best accuracy obtained by CNN is
90.26%. In this technique, the CNN consists of different parameters such as convolutional, fully
connected, and pooling layers for the identification process [26]. Moreover, a capsule net was used to
organize three brain tumors fed with MRI images. The classification accuracy obtained is 86.56% with
the segmentation process and 72% with new brain tumor MRIs [27].

A Generative Adversarial Networks (GANs) was presented in the paper [28], which contains two nets
first one is a generator known as a convolutional neural network, and the second one is a discriminator
famous as a deconvolutional neural network. The generator attempts to yield actual output created on real
distributed data to step out of the discriminator model. It is used to differentiate the actual data as
generated by the generator. Moreover, the generator produces more real output and discriminator tries to
create the most realistic copies of accurate data during the training process [13].

In another work, GAN was used to produce realistic images of faces, buildings, and other places that
were not easily detected by human eyes [29]. GAN was used for the semantic BT segmentation
extensively [30]. Consequently, the segmented process is used as a generator, and the discriminator is

Figure 1: General GAN network architecture
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used to construct the additional GANs [31]. The discriminator delivers the fractional reality of the data
without labels in the unsupervised learning process [32]. In another research, deep CNN used a deep
convolution-based GAN for both generator and discriminator models.

Most of the researchers used data augmentation techniques [33] to enhance the quantity of the dataset.
These techniques based on the GAN network create realistic data but almost new sample images to enhance
the performance [28]. These newly created data images cover the place of accurate data, which is used to
increase the output accuracy [12]. The GAN network is also used for classification facilitation [34,35],
object detection [36,37], and separation [38] to handle the deficiency of trainable data images.

Additionally, adversarial learning is also used for medicinal imaging for genuine retinal and computed
tomography image creation to enhance the output values [39,40]. A recent study shows a valuable
performance for liver classification by using CNN based technique for GAN training data [41]. However,
GAN-based MRI image generation is not so far appropriate because of low contrast MRI images and
intra-classification variations. In another work, the author generated 64 � 64/128 � 128 MRIs by using
conventional GANs even medical experts could not distinguish between real and synthetic images [42].

Recently, many researchers in medical imaging have begun to use the GAN network to generate the
super-resolution images, anomaly detection, and estimation of computed tomography (CT) images from
the related MR images [43]. Additionally, the generation of medical images from GAN as the realistic
data augmentation GAN-based model is one of the best solutions for the training of physicians for MRI
brain tumor images [44].

3 Methodology

The methodology section consists of the overall proposed methodology. A GAN is proposed in this
work, which comprises two models known as generator and discriminator. The details of the applied
methodology are given below.

3.1 Generator Model

The first model is recognized as a generator. It is also famous as ordinary CNN. The generator model
creates a sample in the domain from a fixed-length random vector as input. The Gaussian distribution
randomly draws vector space and seals it to the generative process. During the training process, the
vectors in the vector space correspond to the respective points in the domain space and form the
distribution map. After that, it creates the random latent space variables which we cannot directly observe.

During the example of GAN, the generator allots sense to topics in a specified latent space, letting new
facts pinched from the same space be delivered as the input and applied to yield new and various output
samples. It attempts to yield actual output based on accurate spread data to mislead the discriminator. It is
used to differentiate the actual data produced by the generator, as shown in Fig. 2a.

The generator model behaves like an ordinary CNN. The presented CNN model have own architecture
and working environment. The generator takes input as random sample and produces new samples. This
workflow uses seventeen layers to generate the generator model. The first layer is the input and image
size is known by setting the channel’s weight, height, and size. The kernel size, the network’s learning
rate, and stride are indicated using the convolution layer as shown in Eq. (3).

For the swiftness of the network, a batch normalization layer is fed to the framework. On the other hand,
an activation function is added in the form of the rectified linear unit (ReLU) as presented in Eq. (1). More
input is distributed into numerous pooling sections, and the max-pooling layer calculates the peak value for
every region. The overall structure of the used layers is presented in Tab. 1 and Fig. 3 using various
constraints and kernel dimensions that vary from 4 to 16, and the learning rate value is 0.001 with an
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epoch value of 50. Subsequently, the fully connected layer pools all the yields of earlier layers; in other
words, it chains all the learned characteristics of the layers to acknowledge the enormous configurations
as revealed in Eq. (2). Additionally, the softmax layer works as an activation function for normalization.
By applying the possibilities, the classification layer categorizes it into stated classes.

fðaÞ ¼ 0; for b , 0
b; for b � 0

�
(1)

Figure 2: Representation of generator model (a) and discriminator model view (b)

Table 1: Generator model layers description

Learning rate 0.001, epoch size:50

[layer1:input] [height,width,chanel]

[layer2:convolutional] [kernel 3 � 3, kernal:4, stride:1]

[layer3:batch normalization] [kernel size 3 � 3, stride:1]

[layer4:ReLU] [kernel size 3 � 3, stride:1]

[layer5: maxpooling] [kernel size 3 � 3, stride:1]

[layer6:convolutional] [kernel size 3 � 3, kernal:8, stride:1]

[layer7:batch normalization] [kernel size 3 � 3, stride:1]

[layer8:ReLU] [kernel size 3 � 3, stride:1]

[layer9:maxpooling] [kernel size 3 � 3, stride:1]

[layer10:convolutional] [kernel size 3 � 3, kernal:16, stride:1]

[layer11:batch normalization] [kernel size 3 � 3, stride:1]

[layer12:ReLU] [kernel size 3 � 3, stride:1]

[layer3:maxpooling] [kernel size 3 � 3, stride:1]

[layer14:dropping] [rate = 0.7]

[layer15:fully connected] [classification]

[layer16:softmax] [classification]

[layer17:classification] [classification]
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Here, f (a) is the ReLU layer functionality and b the target value as revealed in Eq. (1).

f c ¼ rFc ðf c�1Þ ¼ ððf c�1ÞÞtwc
i þ ac (2)

In Eq. (2), f c show the output of fully connected net, F is the number of filters r the input, w weight and a
indicate the constant.

c ¼ ðrd þ 2pa � f dÞ
str

þ 1 (3)

Here Eq. (3) is the convolutional layer c, rd is the dimension of input, pa shows padding, fd indicate the
filter dimensions and str represent the stride.

3.2 Discriminator Model

The second part of the GAN model is known as the discriminator model. The function of the
discriminator is used to verify the artificially created output by the generator. The discriminator model
inputs a domain sample and forecasts a true or false binary class label .The real-world example is taken
from the trainable dataset. The generator model only generates examples. A normal classification model
is used as a discriminator. The discriminator model is discarded after training because the generator

Figure 3: GAN model workflow
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indicate the interesting space. As it has learned to abstract features from examples in the problematic domain,
the generator can be repurposed in some cases. On the other hand, transfer learning programs can use similar
or equal input data for all feature extraction layers, as shown in Fig. 2b.

It behaves like an ordinary deconvolutional neural network. This model applied overall ten layers of
CNN with various constraints and filters for the classification purpose. The number one layer is input
layer having restrictions as weight, height, and size of the channel. In the convolutional layer number of
filters, size and stride are defined, while the kernel values are specified from 4 to 16. Moreover, the
learning rate for the training process is 0.001, with an epoch value of 40. The comprehensive layers
explanation is given in Tab. 2, and workflow is also revealed in Fig. 3.

3.3 Overall Training Process

The workflow in Fig. 3 displays the complete training of the GAN network. At the initial level pre-
trained CNN model is used as a discriminator in a GAN to distinguish real MRIs produced by the
generative model from real ones. The discriminator can extract and learn the features of MRIs in this
way. After that, pre-trained CNN is combined for brain tumor brain tumor classification. During the
classification module, the last fully connected net is replaced with a softmax layer to enhance
classification accuracy. GAN was accomplished to handle 8 to 64 batches for each brain tumor image.
Every batch contains two pixel-wise mini-batch images. The first few images are from datasets of actual
MRIs, while a few images are from a generator model with a randomized vector as input from a specific
latent space. In this way, the generator generates some sample images. Additionally, the discriminator
gets the real image as input, passes it through the deconvolutional model, and creates binary classification
for real and fake images in the training and testing process as revealed in Fig. 3.

4 Results and Discussion

All the models in this research have been implemented by using Python (3.6.6) with supportive libraries
as NumPy array (np), Keras models (2.2.4), layers and utils, matplotlib, sklearn utils and metrics, TensorFlow
models, pandas, and seaborn. These libraries support the development of machine-learning applications. The
proposed model was calculated on the system with Core i9 11th generation, Nvidia graphic card 6 GB, and
16 GB of RAM.

Table 2: Discriminator model layers description

Learning rate 0.001, epoch size:40

[layer1:input] [height,width,chanel]

[layer2:convolutional] [kernel size 3 � 3, kernal:4, stride:2]

[layer3:maxpooling] [kernel size 3 � 3, stride:2]

[layer4:convolutional] [kernel size 3 � 3, kernal:8, stride:2]

[layer5:maxpooling] [kernel size 3 � 3, stride:2]

[layer6:convolutional] [kernel size 3 � 3, kernal:16, stride:2]

[layer7:maxpooling] [kernel size 3 � 3, stride:2]

[layer8:full connected] [classification]

[layer9:softmax] [classification]

[layer10:classification] [classification]
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4.1 Dataset Details

The freely accessible CE-MRI dataset (https://figshare.com/articles/braintumor dataset/1512427) has
been used. It consists of 2-dimensional images with a large slice gape. The dataset was collected from
2005 to 2020 from different hospitals in China. The dataset consists of four tumor classes: glioma,
meningioma, pituitary, and no tumor [45], as revealed in Fig. 4. A glioma tumor is a common brain
tumor that originates in the glial tissues surrounded by neurons [46].

In contrast, meningioma is a tumor that arises from meninges tissues surrounding the brain and spinal
cardinal system [47]. A pituitary tumor is due to the abnormal growth of pituitary glands in the back of the
nose [48]. The size of each image in the dataset is 512� 512 pixels, as shown in Fig. 2. The CE-MRI dataset
was separated into training 70%, validation 15%, and testing 15%. The description of dataset is given
below in Tab. 3.

Figure 4: Sample images of CE-MRI dataset

Table 3: Dataset Details

Tumor Types Number of Images

Glioma 826

Meningioma 822

Pituitary 827

No tumor 395

Total 2870

134 IASC, 2023, vol.36, no.1

https://figshare.com/articles/braintumor


4.2 Preprocessing

The images in the dataset are 2-dimensional with 512 � 512 pixels, as shown in Fig. 4. The dataset is
checked with duplication, missing values, label name, and extension during the cleaning. Moreover, all the
images are made noise-free using a histogram equalizer. In this work, the images are directly fed to the
convolutional neural network, and the kernel is applied to resize the images. The results are highly
dependent on these values. However, these values are not fixed and vary according to the image pixel
sizes. To remove these intensity variations, normalization is used. So before giving values to the CNN
model, all the values are normalized, having the same size range. Now the size of the images is 224 �
224 after normalization and resizing. In this way, the training process speeds up by resizing images and
requires less memory.

4.3 Statistical Evaluations

The proposed GAN network for brain tumor classification and detection is calculated with the help of
different arithmetical calculations specified underneath Eqs. (4)–(7). The correctly classified images are
known tp, negatively true classified images are denoted as tn, while fp are the positively incorrect
classified images. Moreover, fn represents the total number of negatively classified images. The statistical
equations are given below:

Precision ¼ tp

ðtpþ fpÞ (4)

Recall ¼ tp

ðtpþ fnÞ (5)

F1� score ¼ 2ðSensitivity � PrecisionÞ
Sensitivity þ Precision

(6)

Accuracy ¼ ðtpþ tnÞ
ðtnþ tpþ fpþ fnÞ (7)

4.4 Discussion

After completion of the training and testing process, the GAN network creates some fake images to
enhance the dataset to increase the training of the model, as shown in Figs. 5A, 5B, 5C and 5D. Fig. 7
shows the GAN model confusion matrix for the four-class classification of the test dataset. The test
dataset consists of four tumor classes glioma, meningioma, pituitary, and no tumor. On the other hand
Fig. 6 shows the training process confusion Metrix. The numbers in the boxes of the confusion matrix
show the overall number of images used for the classification purpose. Fig. 12 displays the graphical
demonstration of accuracy and loss for training and validation. The statistical values are also shown in
Tab. 2 with average precision: 0.92, recall: 0.93, F1-score: 0.93 and accuracy 0.98 values.

Figs. 8, 9, 10 and 11 shows the graphical demonstration using the GAN network’s 8, 16, 32, and
64 mini-batches. The y-axis depicts the loss, and the x-axis represents the GAN network simulation batch
numbers. The blue line indicates the generator model evaluation. The orange line represents the
discriminator model values and overlaps for some values.

During the simulation process, the batch number increases up to 17500 with almost 5.5 percent loss for
8 batch size simulation, as shown in Fig. 8. On the other hand, mini-batch 16 decreases to 8000 with almost 6,
as shown in Fig. 9. Additionally for mini-batch 32, the batch number values decrease to 4000 with a loss
value of almost 6, as shown in Fig. 10. Moreover, the values for mini-batch 64 decrease upto 2000 with
almost 6.5 loss as shown in Fig. 11.
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Tab. 4 displays the statistical values of the GAN model after the simulation with generator and
discriminator models. The average statistical values are given in Tab. 4 as precision: 0.92, recall: 0.93,
F1-score: 0.93 and accuracy 0.98 values.

Figure 5: Fake data generation by GAN network (A) 8 batches (B) 16 batches (C) 32 batches (D) 64 batches

Figure 6: GAN model four-class classification confusion matrix for the training dataset
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The Tab. 5 compares the accuracy values for all the existing model values. The proposed GAN
architecture shows the best accuracy of 0.96% due to its generator and discriminator structures. The other
existing approaches show the lowest accuracy. The accuracy value for the GAN proposed model is the
highest one as 0.96 shown in Tab. 4.

Figure 7: GAN model four-class classification confusion matrix for the test dataset

Figure 8: Graphical demonstration of 8 batches loss for GAN network
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Figure 9: Graphical demonstration of 16 batches loss for GAN network

Figure 10: Graphical demonstration of 32 batches loss for GAN network

138 IASC, 2023, vol.36, no.1



Figure 11: Graphical demonstration of 64 batches loss for GAN network

Figure 12: Graphical demonstration of training and validation accuracy and loss

Table 4: All models statistical results

Category GAN Model

Precision Recall F1-Score Accuracy

Glioma 0.94 0.94 0.94 0.96

Meningioma 0.93 0.87 0.90

Pituitary 0.92 0.98 0.95

No tumor 0.91 0.95 0.93

Average 0.92 0.93 0.93
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5 Conclusion

We have proposed a deep learning method known as Generative Adversarial Network (GAN) in this
research. It consists of two parts, famous as generator and discriminator. First, a pre-trained CNN model
is applied in the discriminator model to extract the robust features and learn the basic structures of MRI
images in CNN layers. Then a profound CNN model is applied to differentiate between four tumor
classes. The publically available CE-MRI images dataset is used to evaluate the GAN model. It achieved
an accuracy of 96%, which is the highest one as compared to the existing techniques. In medical terms,
the proposed model would help the generation of real medical image data to maximize the training of the
medical experts for the acute prediction of medical diseases.
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