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Abstract: Nowadays, quantum machine learning is attracting great interest in a
wide range of fields due to its potential superior performance and capabilities.
The massive increase in computational capacity and speed of quantum computers
can lead to a quantum leap in the healthcare field. Heart disease seriously threa-
tens human health since it is the leading cause of death worldwide. Quantum
machine learning methods can propose effective solutions to predict heart disease
and aid in early diagnosis. In this study, an ensemble machine learning model
based on quantum machine learning classifiers is proposed to predict the risk
of heart disease. The proposed model is a bagging ensemble learning model
where a quantum support vector classifier was used as a base classifier. Further-
more, in order to make the model’s outcomes more explainable, the importance of
every single feature in the prediction is computed and visualized using SHapley
Additive exPlanations (SHAP) framework. In the experimental study, other stand-
alone quantum classifiers, namely, Quantum Support Vector Classifier (QSVC),
Quantum Neural Network (QNN), and Variational Quantum Classifier (VQC)
are applied and compared with classical machine learning classifiers such as Sup-
port Vector Machine (SVM), and Artificial Neural Network (ANN). The experi-
mental results on the Cleveland dataset reveal the superiority of QSVC compared
to the others, which explains its use in the proposed bagging model. The Bagging-
QSVC model outperforms all aforementioned classifiers with an accuracy of
90.16% while showing great competitiveness compared to some state-of-the-art
models using the same dataset. The results of the study indicate that quantum
machine learning classifiers perform better than classical machine learning classi-
fiers in predicting heart disease. In addition, the study reveals that the bagging
ensemble learning technique is effective in improving the prediction accuracy
of quantum classifiers.
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1 Introduction

Healthcare is one of the most influential fields on the global population’s safety. The continuous
evolution of the healthcare sector facilitates disease prediction, treatment, diagnosis, and cure. The
advancement of research and technologies in healthcare and public health has significantly decreased
global mortality, with the advanced healthcare system helping in the prevention of disease progression
and improvement of life quality. However, the healthcare sector has recently experienced an explosion of
data and increased system complexity. The scope and quality of healthcare data open up new
opportunities for healthcare practitioners to utilize advances in data science to extract valuable insights
from these enormous databases. Advancements in data analytics, computing power, and algorithms are
rapidly changing the prospect of healthcare by improving clinical and operational decision-making [1].
Artificial intelligence’s (AI) ability to derive conclusions from input data has the potential to revolutionize
the delivery of care and assist in addressing a variety of healthcare challenges. Indeed, AI can improve
healthcare outcomes, healthcare systems, patient experience, and treatment. The investment of AI
in healthcare is growing rapidly, as it increases the efficiency and effectiveness of care delivery and
enables healthcare systems to provide care to more people [1]. Machine learning (ML) is a subfield of
artificial intelligence used to solve specific problems, such as predictive problems, by teaching a model to
learn from an input dataset to predict the output. Machine learning plays a crucial role in the healthcare
industry, where it is primarily used to assist in decision-making for a variety of diseases involving
prediction, diagnosis, and medical image analysis [2]. Ensemble learning (EL) is a notable technique for
enhancing the performance of these machine learning models. EL refers to the application of ensemble
methods in which multiple ML models individually contribute to the prediction task. They have been
demonstrated to be a successful addition to the field of predictive ML models, as their predictive
performance is superior to that of their constituents. On another side, quantum machine learning (QML),
the intersection of classical machine learning and quantum computing, is a recently developed field that
has attracted researchers from a variety of disciplines due to its flexibility, representation power, and
promising scalability and speed results. Quantum computers take advantage of quantum mechanical
properties to improve the processing efficiency of classical computers. Consequently, QML algorithms
running on quantum computers have the potential to perform extremely rapid calculations for problems
that are challenging to solve with classical computers. QML can handle complex medical situations and
improve system performance, thereby providing substantial benefits to the healthcare industry. Quantum
computing can enable a variety of quantum use cases that are essential to the ongoing transformation of
healthcare, such as diagnostic assistance, precision medicine, and price optimization. Numerous studies
have demonstrated that QML algorithms offer substantial advantages over traditional machine learning
algorithms for a variety of applications, including healthcare [3,4].

Cardiovascular diseases (CDVs) is a medical term that refers to diseases that affect both the heart and
blood vessels and can lead to heart attack, stroke, and heart failure. According to the World Health
Organization (WHO), CDVs cause approximately 17.9 million deaths annually, or 32% of all deaths
worldwide. Among the risk factors for these diseases are high blood pressure, high blood glucose levels,
obesity, and high blood lipid levels [5]. Heart disease is among the most prevalent cardiovascular diseases
that threaten global public health. The prevalence of heart disease and consequently the increased risk of
death pose a grave threat to human security. In order to prevent the disease’s progression and lessen its
long-term effects, it is crucial to investigate the early detection of heart disease through specific physical
indicators. The treatment of heart disease has been an active area of research for a very long time, so that
preventative measures can be taken in the early stages. Consequently, a number of researchers utilized
machine learning techniques to predict heart disease risks. A variety of medical fields have adopted
machine learning strategies, as researchers strive to enhance and optimize medical decision-making.
Methods of machine learning are primarily used to automatically detect patterns in the intended dataset,
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without the need for human intervention. However, classical machine learning approaches can be enhanced
to obtain better results and more reliable models by employing various machine learning techniques, such as
ensemble learning, which has been shown to improve the performance of models in predicting heart disease
[6–10]. Alternatively, quantum computing can provide a more efficient framework for machine learning than
classical approaches. Quantum machine learning is a relatively new field of study that has made considerable
progress in recent years. Motivated by the development of various machine learning models to predict the
risk of heart disease and in an effort to improve classification performance, the objective of this study
was to explore the potential of ensemble learning in addition to quantum machine learning for predicting
the risk of heart disease by designing an ensemble learning model based on a quantum machine learning
model. Given the fact that machine learning methods can provide accurate solutions for predicting the
presence of heart disease, the research was conducted using both well-known classical machine learning
algorithms and quantum machine learning algorithms.

This research utilized a four-step methodology: Initially, the data are prepared using multiple pre-
processing techniques, including feature selection, feature extraction, and normalization. Second,
analyzing the performance of classical machine learning classifiers such as Support Vector Classifier
(SVC) and Artificial Neural Network (ANN) and quantum machine learning classifiers to investigate the
potential of QML models in comparison to traditional ones. Then, applying three distinct quantum
machine learning classifiers namely Quantum Support Vector Classifier (QSVC), Quantum Neural
Network (QNN), and Variational Quantum Classifier (VQC)). The objective of this step is to identify the
best performing QML model for the given dataset. Finally, designing, applying and evaluating a Quantum
Support Vector Classifier-based bagging ensemble learning model (Bagging-QSVC). In addition to
explaining the significance and indication of the findings, the interpretation of a machine learning model
facilitates the understanding of why a particular decision was made. The interpretability of the proposed
model, where the importance and contribution of each feature to the prediction are computed and
visualized using the SHapley Additive exPlanations (SHAP) framework, is thus another novel aspect of
this work. To evaluate the models, several performance metrics, including accuracy, recall, precision, F1-
score, and ROC, were calculated, with the results indicating that the quantum classifiers outperform the
classical classifiers in terms of performance. In addition, the study demonstrated that ensemble learning
yields superior predictive performance for quantum classifiers compared to classical classifiers. In
addition, it can be deduced that combining ensemble learning with quantum classifiers can produce
successful results.

The remaining sections are organized as follows. In Section 2, a review of related work is presented.
Section 3 is devoted to the description of the background material used in this study, which is comprised
of the two main ingredients EL and QML, as well as the methodology employed, with a focus on the
data set, the investigated models, and the proposed ensemble model. Section 4 provides the experimental
study, obtained results, and model interpretation. In Section 5, conclusions and future work are drawn.

2 Related Work

Machine learning classification algorithms are vastly utilized in many fields to solve numerous
problems. A field such as healthcare is considered a rich machine learning domain, where machine
learning can be employed to tackle various medical decisions. Heart disease is a major health problem
investigated by researchers using novel machine learning methods. Ensemble learning is one of the
machine learning methods that has proven to boost machine learning performance. A remarkable number
of previous works utilized ensemble learning to improve the accuracy of heart disease prediction using
multiple methodologies. In the light of recent past studies, Gao et al. [6] used boosting and bagging
ensemble learning methods besides Principal Component Analysis (PCA) and Linear Discriminant
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Analysis (LDA) feature extraction algorithms to improve heart disease prediction. The study also applied five
different classical machine learning algorithms and compared their performance with the performance of the
ensemble learning methods. The results of the experiment indicated that the bagging ensemble learning
method based on the decision tree classifier and principal component analysis feature selection achieved
the highest accuracy. Another study conducted by Mienye et al. [7] proposed an enhanced machine
learning method that splits up the dataset randomly into smaller subsets, and the different subsets are then
modelled by making use of the Classification and Regression Tree (CART). An ensemble learning model
is then generated from the different CART models using a modified version of the Weighted Aging
classifier Ensemble approach (WAE) known as Accuracy-Based Weighted Aging classifier Ensemble
(AB-WAE). Latha et al. [8] presented a more comprehensive study that applied to the Cleveland heart
disease dataset using bagging, boosting, majority voting, and stacking ensemble learning techniques. The
result of the study showed that the majority voting approach induced the highest improvement of
accuracy. In a slightly different manner, Anuradha et al. [9] modelled eXtreme Gradient Boosting
(XGBoost), and Category Boosting (CatBoost) classifiers together with hard majority voting ensemble
classifier on three different datasets, namely, Cleveland, Statlog, and South African heart disease. The
outcomes of the study revealed that the hard majority vote ensemble classifier achieved the best
performance on the Statlog dataset. Practically, Uddin et al. [10] evolved an intelligent agent using an
ensemble method-based Multilayer Dynamic System (MLDS) to predict cardiovascular disease. In every
layer, three classification algorithms (i.e., Random Forest (RF), Naïve Bayes (NB), and Gradient Boosting
(GB)) were applied to construct the ensemble model. Uddin and Halder used a realistic dataset consisting
of 70,000 instances to test the proposed model effectively. The test results showed that MLDS has proven
to be able to efficiently predict the risk of cardiovascular disease compared to five other different models.
In the same context, Rahim et al. [11] suggested a Machine Learning-based Cardiovascular Disease
Diagnosis framework (MaLCaDD) to improve the prediction accuracy of cardiovascular diseases. Rahim
et al. stated that increasing the accuracy of the prediction using various feature selection and classification
methods has taken the most attention of the researchers. However, handling missing values and class
imbalance problems gained less attention while improving accuracy. In a more improved manner, Ali
et al. [12] enhanced the automation process of heart disease prediction by developing a smart monitoring
framework that consists of a heart disease prediction system based on an ensemble deep learning
approach in addition to an ontology-based recommendation system. The ensemble deep learning model
comprises a feed-forward neural network along with back-propagation techniques and gradient algorithms
to minimize the errors. In the past decade, Das et al. [13] investigated the performance of bagging,
Adaptive Boosting (Adaboost), and random subspace ensemble learning methods for diagnosing valvular
heart disease. The empirical results of the study proved the efficiency of the ensemble learning approach
over the single classifiers.

Among several studies, the majority voting ensemble learning approach is largely used in the literature
of heart disease [2,8,10,14]. Raza [2] ensembled three different classifiers (i.e., Logistic Regression (LR),
Naïve Bayes (NB), and Artificial Neural Network (ANN)), and combined the results of these classifiers
using a majority voting combiner which provided better performance over other combiners. Raza
mentioned the three different forms of majority voting approach, which are unanimous voting, simple
majority, and plurality voting. Likewise, Mehanović et al. [14] applied an ensemble learning model using
Artificial Neural Network (ANN), k-Nearest Neighbour (KNN), and Support Vector Machine (SVM)
classifiers to predict heart disease in patients using binary classification (0 for the absence of disease and
1 for the presence), and multi-classification (0 for the absence of disease and 1, 2, 3, 4 for the presence).
In both classification cases, the highest accuracies were gained by using the majority voting approach.

On other hand, few researchers have addressed the ensemble learning approach besides quantum
machine learning to solve the heart disease prediction problem [4]. Schuld et al. [15] applied quantum
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ensemble learning on quantum classifiers, where quantum classifiers were assessed in parallel, and their
integrated decision was accessed by a qubit measurement. Kumar et al. [4] utilized QML to detect heart
failure on the Cleveland dataset. The empirical study proved that quantum-enhanced machine learning
algorithms such as Quantum K-Nearest Neighbour (QKNN), Quantum Gaussian Naïve Bayes (QGNB),
Quantum Decision Tree (QDT), and Quantum Random Forest (QRF) present better results than traditional
machine learning algorithms in heart failure detection. In another context, Maheshwari et al. [16]
implemented multiple ensemble learning models that combine classical and quantum methods on a diabetes
dataset. The classical ensemble learning methods used in the study were Random Forest (RF), XGBoost,
and Adaboost, whereas, the Quantum Boosting (QBoost) classifier was the quantum ensemble learning
method that uses Quantum Annealing (QA) to find the best learners collection. Our work expands on these
efforts by investigating the potential of quantum machine learning-based ensemble learning in heart disease
prediction while explaining the model’s outcomes. This study investigates several classical and quantum
machine learning classifiers as well as a novel heart disease prediction model to achieve accurate heart
disease prediction. The novel model combines ensemble learning with quantum machine learning. In
addition, this is the first study to propose an interpretation of the heart disease prediction model using the
Cleveland data set and the proposed model based on the SHapley Additive exPlanations (SHAP)
framework. To the best of our knowledge, no previous studies have looked into this.

3 Materials and Methods

3.1 Ensemble Learning

The field of machine learning investigates algorithms and techniques that allow computers to
automatically find solutions to complex problems that traditional programming methods cannot solve.
Machine learning can be leveraged to provide insights into the pattern in a dataset by trying to design an
efficient model that learns from a training dataset to predict outcomes [17,18]. Typically, the success of
machine learning algorithms is determined by the structure of the data, which can be learned in a variety
of ways. However, the ML model’s balanced complexity is critical for obtaining accurate results. All ML
algorithms have some level of bias and variance, where a model with higher bias does not fit training and
test data well due to the model’s low complexity, whereas a model with higher variance does not fit test
data well but has a much lower error on training data due to the model’s high complexity. In general,
there are four learning models in machine learning, namely, supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning [17]. Machine learning applications are used in a
wide range of fields, including Natural Language Processing (NLP), speech processing, computer vision,
text classification, and computational biology [18].

Ensemble learning is a popular machine learning approach that combines several models and then
assembles their outputs to make more accurate predictions [18,19]. In fact, each learning algorithm has
strengths and weaknesses since it is not expected for a single model to fit all scenarios correctly. As a
result, rather than creating a single model that may result in poor performance, ensemble learning
techniques aggregate various models to achieve better generalization performance than any of the
ensemble model’s single basic components [19,20]. Ensemble learning was initially developed to reduce
variance in automated decision-making systems, but it has since gained widespread attention due to its
flexibility and effectiveness in a variety of machine learning areas and experimental applications. A
variety of machine learning problems, including feature selection, class imbalanced data, confidence
estimation, incremental learning, missing feature, and error correction, have been addressed using
ensemble learning systems [21]. In general, three approaches are commonly used to generate ensemble
systems: bagging, boosting, and stacking, as well as improved versions of these methods that developed
to solve specific problems [22].
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The bagging or (bootstrap aggregation) method produces one model at a time from a random sample or
(bootstrap sample) that has the same size as the dataset [19]. As a result, models trained on dissimilar
bootstrap samples will differ depending on the random bootstrap sample used to train the model [2]. The
final prediction is generated after fitting and aggregating the models by calculating the average or
majority voting of the overall prediction models. When results from multiple models are combined, the
bagging ensemble model can produce an optimal model with higher confidence, lower variance, and
lower bias error than single models. Random Forests (RF), which is based on the decision-tree algorithm,
and K-Nearest Neighbour (KNN) subspace bagging, which is based on the k-Nearest Neighbour
algorithm, are two significant extensions of the bagging approach [22].

3.2 Quantum Machine Learning

Personal computers are working on the concept of classical mechanics, which uses a bit of 0 or 1 as a
fundamental unit of electronic circuits. However, quantummachines employ a quantum bit (or qubit) that can
simultaneously occupy two fundamental states, 0 and 1 [23]. This property of quantummachines is known as
the superposition of states, in which a qubit can be in both |0⟩ and |1⟩ states at the same time. The
superposition of the states allows the operations to run in parallel rather than sequentially, reducing
the number of operations required in any algorithm [24]. Furthermore, quantum computers make use
of the entanglement property, which allows quantum particles to gain a stronger correlation by connecting
to the properties of other particles. As a result, despite large physical distances, the qubits can be
correlated with each other [25]. These quantum physics behaviours give quantum machines an advantage
over classical machines by speeding up many tasks that would otherwise take a very long time using
classical algorithms [23]. In quantum mechanics, the basis states 0 and 1 are represented by two-
dimensional vectors, where:

~0 ¼ 1
0

� �
~1 ¼ 0

1

� �
(1)

The state of a quantum system is given by a vector that has a particular notation in quantum systems
called the Dirac notation which is denoted by ∣ψ⟩ [20]. The state ∣ψ⟩ can demonstrate the linear
combination of the basis states |0⟩ and |1⟩ as presented in Eq. (2).

wi ¼ aj j0i þ b j1i (2)

The linear coefficients alpha (α), and beta (β) belong to the complex numbers, i.e., α, β ∈ ℂ. The
complex numbers α and β indicate that the qubit has a probability of aj j2 to appear in state |0⟩ and a
probability of to appear in state |1⟩ [23]. Thus, the sum of the probabilities of a qubit to appear in each
one of the basis states is equal to 1 as shown in Eq. (3).

aj j2 þ jbj2 ¼ 1 (3)

A qubit can be visualized using a Bloch sphere which is a geometric representation of the qubit states.
The continuous combination of the two states |0⟩ and |1⟩ can be placed in any potential points on the Bloch
sphere. A qubit is represented on a Bloch sphere as a point on the surface of the sphere. Hence, a generic
quantum state |ψ⟩ can be represented by the three parameters θ, c and f of real numbers, Where, 0 ≤ θ ≤
π and 0 ≤ f ≤ 2π, as shown in Eq. (4).

wj i ¼ eic cos
h
2

� �
0j i þ ei[ sin

h
2

� �
1j i

� �
(4)

The global factor eig has no noticeable impact among other factors, thus it can be neglected in the
equation. Therefore, Eq. (5) illustrates the final equation after omitting the eig factor [26].
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wj i ¼ cos
h
2

� �
0j i þ ei[j1i (5)

The states in quantum computing can be represented in the Bloch sphere as a vector that starts at the
original centre and ends on the sphere surface, where the vector is represented by an arrow pointing to a
location on a sphere. The three-dimensional graphical representation of a single qubit using the Bloch
sphere is represented in Fig. 1.

Quantum Machine Learning (QML) field represents the intersection between the concepts of machine
learning and quantum computing [25]. Quantum algorithms were developed in quantum machine learning
to handle classical algorithms using quantum computers [27]. Quantum machine learning offers a great
opportunity to improve the computational proficiency of classical machine learning algorithms and handle
some of the more computationally complex problems that classical machine learning algorithms cannot
effectively solve [23,28]. Quantum machine learning applies classical machine learning methods in
quantum systems by using various quantum properties such as superposition and entanglement that were
mentioned previously. The superposition of states property produces parallelism in quantum computers,
allowing the evaluation of multiple input functions at the same time. Furthermore, the entanglement
property provides a method for increasing storage capacity [27]. These two and other QML properties
improve the performance of classical machine learning algorithms by providing significant computational
acceleration at run-time based on complexity. Grover’s Algorithm and the Harrow-Hassidim-Lloyd
(HHL) Algorithm [25] are the two main quantum algorithms used by machine learning techniques to gain
speedup. Regardless of the speedup property of QML, research on quantum machine learning focuses on
other types of QML properties that represent advancements in quantum machine learning techniques over
classical ML, such as model complexity, sample complexity, and robustness to noise [29]. Furthermore,
several quantum algorithms, such as the Quantum Support Vector Machine (QSVC), Quantum Clustering
technique, Quantum Neural Network (QNN), and Quantum Decision Tree, were developed to run
classical algorithms on quantum computers (QDT). As a result, using supervised and unsupervised
quantum algorithms implemented through quantum models, the data can be classified, categorized, and
analysed [27].

3.3 Methodology

The purpose of this study is to investigate the potential of quantum machine learning algorithms for
predicting heart disease. As a result, the research was divided into four distinct phases, the first of which
dealt with the Cleveland dataset using various pre-processing techniques, including Recursive Feature

Figure 1: Qubit representation using Bloch sphere
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Elimination (RFE) for feature selection, Principal Component Analysis (PCA) for feature extraction, and
Min-Max normalization. In the second phase, classical classifiers (SVC and ANN) were compared to
quantum classifiers. Three different quantum machine learning classifiers (QSVC, QNN, and VQC) were
investigated in the third phase. Finally, a bagging ensemble learning model based on Quantum Support
Vector Classifier (Bagging-QSVC) has been designed and implemented.

3.3.1 Dataset
This research uses the UCI machine learning repository’s [30] Cleveland benchmark dataset. The

Cleveland dataset consists of 303 instances and 14 attributes, with a two-level target attribute representing
a binary classification where label 1 indicates patients with heart diseases and 0 indicates patients without
heart disease. Since 165 instances have label 1 and 138 instances have label 0, the dataset is roughly
balanced. Tab. 1 describes the Cleveland dataset’s features.

Table 1: Features description of heart disease dataset

Feature
code

Feature name Data type Description

Age Age Numerical
(continuous)

Age in years

Sex Sex Categorical
(binary)

1 = male, and 0 = female

CP Chest Pain types Categorical
(multi-
valued)

Chest Pain types:
1 = typical angina, 2 = atypical angina, 3 = non-angina
pain, and 4 = asymptomatic

Trestbps Resting blood
pressure

Numerical
(continuous)

Resting blood pressure (in mm Hg)

Chol cholesterol Numerical
(continuous)

Serum cholesterol (in mg/dl)

Fbs Fasting blood sugar Categorical
(binary)

Fasting blood sugar > 120 mg/dl:
1 = true, or 0 = false

Thalach Maximum heart rate Numerical
(continuous)

maximum heart rate reached during thallium test

Restecg Resting
electrocardiographic

Categorical
(multi-
valued)

Resting electrocardiographic result:
0 = normal, 1 = having ST-T wave abnormality,
2 = showing probable or definite left ventricular
hypertrophy

Exang Exercise-induced
angina

Categorical
(binary)

Exercise-induced angina:
0 = no, and 1= yes

Oldpeak ST depression Numerical
(continuous)

ST depression caused by exercise relative to rest

Slope ST slope Categorical
(multi-
valued)

The peak exercise ST segment slope: 1 = ascending,
2 = flat, 3 = descending

(Continued)
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3.3.2 Quantum Support Vector Classifier (QSVC)
In quantum computers, Quantum SVC is the quantum counterpart of the classical SVC. Since the classical

SVC handles problems in higher dimension space, the computational resources required to solve them on
classical computers can be costly and time-consuming [26]. The QSVC has a quantum advantage over the
classical SVC in situations where it is difficult to estimate the feature map classically. Using a quantum
kernel in QSVC algorithms, quantum computers can accelerate learning in SVC by using a quantum kernel.
To investigate the potential of QSVC, the classical-quantum (CQ) method was used, which entails utilizing
a classical dataset on quantum computers. Using quantum feature maps that map data points to quantum
states, classical data can be encoded to be processed by a quantum computer [24]. Fig. 2 depicts the
structure of the QSVC algorithm, in which the dataset was divided into training and testing datasets with
ratios of 80:20 respectively, and pre-processed with RFE and Min-max normalization. The classical feature
vectors were subsequently mapped to quantum spaces using a 5-qubit feature map (the number of qubits in
the circuit is equal to the number of selected features namely Number of major vessels, Chest Pain types,
Thallium heart test, Exercise-induced angina, and ST-slope. By taking the inner product of the quantum
feature maps, the quantum kernel maps the quantum state data points into higher-dimensional space. After
fitting the QSVC classifier to the training data and evaluating the performance of the model using the test
data, for each classical input, the binary measurements decode the quantum data into the corresponding
classical output data (a classical value of 0 or 1).

Table 1 (continued)

Feature
code

Feature name Data type Description

Ca Number of major
vessels

Categorical
(multi-
valued)

Number of main vessels:
0, 1, 2, 3, and 4

Thal Thallium heart test Categorical
(multi-
valued)

Exercise Thallium heart test result:
1 = normal, 2= fixed defect, and 3 = reversible defect

Target Heart disease Categorical
(binary)

Heart disease diagnosing:
(1 = yes, 0 = no)

Figure 2: QSVC outline
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3.3.3 Quantum Neural Network (QNN)
Quantum Neural Networks combine the fundamentals of conventional ANN with quantum computation

models that outperform conventional ANN [31]. QNN is an algorithm for machine learning that employs
quantum computers to classify datasets by training various parameters within quantum circuits. QNN can
be used to solve problems requiring a large amount of memory and capacity [24]. Fig. 3 depicts the
structure of the QNN algorithm where the dataset was divided into training and testing datasets using 8-
fold cross-validation, and pre-processed using RFE, PCA and Min-max normalization. Thereafter, the
classical feature vectors are mapped to quantum spaces using a feature map of 2 qubits (the number of
qubits in the circuit is equal to the number of PCA components). A CircuitQNN network that is based on
a parametrized quantum circuit was constructed after that to get the input data and weights as parameters
and produces a batch of binary output. After fitting the QNN classifier with the training data and testing
the model performance using cross-validation iterators, the binary measurements decode back the
quantum data into appropriate output data (a classical value of 0 or 1).

3.3.4 Variational Quantum Classifier (VQC)
Variational Quantum Classifier [24] is a quantum supervised learning algorithm that employs variational

circuits to perform classification tasks. In quantum variational classification, the data is mapped to a quantum
state using the feature map circuit, and a parameterized and trained short-depth quantum circuit is applied to
the feature state [32]. Fig. 4 presents the outline of the VQC algorithm where the dataset was divided into
training and testing datasets with ratios of 80:20 respectively, and pre-processed using RFE, PCA and
Min-max normalization. Thereafter, the classical feature vectors are mapped to quantum spaces using a
feature map of 2 qubits (the number of qubits in the circuit is equal to the number of PCA components).
After fitting the VQC classifier with the training data and testing the model performance using the test
data, the binary measurements decode the quantum data into a classical value of 0 or 1.

3.3.5 The Proposed Bagging Model for Heart Disease Prediction
Since it has been proven that ensemble learning enhances the performance of the models, the model

proposed in this work consists of a bagging ensemble model with QSVC Classifier (Bagging-QSVC).
QSVC was chosen with the bagging model because it achieved the highest performance among the three
quantum classifiers. Nevertheless, in the bagging ensemble method, each model was trained on a random
sample of the dataset, where the random samples (or bootstrap samples) have the same size as the
original dataset. Bagging models make use of sampling with a replacement that duplicates or ignores
some instances from the original dataset in each bootstrap sample. Therefore, each subsample had
different instances, and these subsamples were used to train 100 different QSVC models that fitted in

Figure 3: QNN classifier outline
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parallel. Subsequently, once the separated models in the ensemble had been trained, the ensemble aggregated
their predictions by returning the class that gained the majority of the votes to get the final output of the
ensemble model. The proposed Bagging-QSVC model is illustrated in Fig. 5.

Figure 4: VQC outline

Figure 5: Bagging-QSVC architecture
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4 Experimental Study and Results

4.1 Experimental Setups

The experimental study was conducted using qiskit in jupyter notebook and python. The code is
accessible at [33]. In addition to quantum and classical classifiers, the Bagging-QSVC model was
implemented on a simulator. The simulator was operating on a computer system with a 7th generation
Core i7 processor and 8 GB of RAM.

4.2 Results and Discussion

To evaluate the performance of the predictive models applied in this work (QSVC, SVC, QNN, ANN,
VQC, and Bagging-QSVC), a set of performance measures including accuracy, precision, recall, F1-measure
and area under the curve (AUC) or ROC index have been used. The definitions and equations of these
performance measures are provided below Eqs. (6)–(9), where True Positive (TP) represents the positive
instances classified correctly, True Negative (TN) represents the negative instances classified correctly,
False Positive (FP) represents the positive instances classified incorrectly, and False Negative (FN)
represents the negative instances classified incorrectly.

– Accuracy: The percentage of the total number of instances that are correctly classified relative to the
number of all tested instances.

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(6)

– Precision: The ratio between the number of positive instances that are correctly classified and all
instances predicted as positive. The precision presents how confident an instance predicted with a
positive target actually has a positive target level.

Precision ¼ TP

TP þ FP
(7)

– Recall (or sensitivity): The ratio between the positive instances and the number of all actual positive
instances. The recall presents how confident all the instances with a positive target the model found.

Recall ¼ TP

TP þ FN
(8)

– F1-measure: The harmonic mean of precision and recall measures. The F-measure, precision, and
recall can assume values in the range [0,1], where the larger values indicate better performance.

F1measure ¼ 2� Precision� Recallð Þ
Precisionþ Recallð Þ (9)

– The ROC index (or Area Under the Curve): The ROC curve relates the True Positive Rate (TPR) (the
positive points correctly predicted as positive) to the False Positive Rate (FPR). The diagonal of
the ROC curve represents the expected performance of a model with random predictions, while the
closer the curve is to the upper left corner (or a higher AUC value), the more predictive the model.
The ROC index or AUC can take on values between 0 and 1, with larger values indicating superior
model performance [19].

Tab. 2 shows the results based on the aforementioned performance measures of the classical and
quantum classifiers, as well as the proposed model (Bagging-QSVC). According to the results of the
experiment, QSVC achieved an accuracy of 88.52%, while traditional SVC achieved 85.24%. Similarly,
QNN achieved an accuracy of 86.84%, whereas ANN only achieved 85.24%. QSVC, QNN, and VQC
achieved the highest performance for quantum classifiers with 88.52%, 86.84%, and 85.25%,
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respectively. This indicates that quantum classifiers are capable of producing better results than their
counterpart classical classifiers. On the other hand, Tab. 2 depicts the improvement of the proposed
model (or Bagging-QSVC) relative to other quantum and classical classifiers through the use of ensemble
learning. The Bagging-QSVC outperformed all other classifiers with an accuracy of 90.16%, indicating
that ensemble learning improves the performance of quantum classifiers. Tab. 3 also depicts the confusion
matrix and the ROC curve of the predictive models.

Table 2: Performance results of the predictive models

Classifier Accuracy Precision Recall F1-score

SVM 85.24% 0.85 0.85 0.85

ANN 85.24% 0.85 0.85 0.85

QSVC 88.52% 0.88 0.89 0.89

QNN 86.84% 0.88 0.86 0.87

VQC 86.89% 0.85 0.85 0.85

Bagging-QSVC 90.16% 0.90 0.90 0.90

Table 3: Confusion matrixes and the ROC curves of the predictive models

Classifier Confusion matrix ROC curve

SVM

ANN

(Continued)
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Table 3 (continued)

Classifier Confusion matrix ROC curve

QSVC

QNN

VQC

(Continued)
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The comparative analysis shows that the proposed Bagging-QSVC outperforms some previous studies
in predicting heart disease with improved accuracy. Tab. 4 compares the results of our proposed model and
models of other studies applied to the same dataset using different ensemble learning approaches.

4.3 Model Interpretation

The SHapley Additive exPlanations (SHAP) framework was used to interpret and explain the model
results [36]. As a result, the SHAP python library was used to compute and visualize the significance of
each and every feature in the prediction. The calculation of SHAP values is the foundation of this
framework. A SHAP value is a feature contribution measure that is used to improve the interpretability of
machine learning models. SHAP values explain how to get from the predicted or base value E[f(x)] to the
actual output f if the features are unknown (x). These values also show how features influence prediction
by indicating the direction of the relationship between the features and the target variable. A feature with
a SHAP value closer to 1 or −1 has a strong positive or strong negative contribution to the prediction of a
specific data point, whereas a feature with a SHAP value closer to 0 has a small contribution to the
prediction [36]. Several plots that help to understand the contribution of features can be obtained using
this framework.

Table 3 (continued)

Classifier Confusion matrix ROC curve

Bagging-
QSVC

Table 4: Comparison of our study with other studies on the Cleveland dataset

Study Ensemble learning method Accuracy achieved

Latha et al. [8] Majority voting 85.48%

Tama et al. [34] Stacking ensemble learning 85.71%

Mehanović et al. [14] Majority voting 87.37%

Alim et al. [35] Random Forest 86.94%

Kumar et al. [4] Quantum random forest 89%

Our proposed model Bagging-QSVC 90.16%
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4.3.1 SHAP Beeswarm Plot
The Beeswarm plot represents feature importance in descending order, as well as feature impacts on

prediction, whether positive or negative. The SHAP values are used to depict the impact of higher and
lower feature values on the model output. The feature determines the position on the y-axis, and positive
and negative SHAP values determine the position on the x-axis. Each point in the plot represents a single
observation, and the colour represents how the higher and lower values of the feature affect the result,
with red representing a higher value and blue representing a lower value of a feature. Fig. 6 shows the
Beeswarm plot for our model. It can be observed clearly that the number of major vessels has the greatest
influence on the predictions, followed by the thallium heart scan. Exercise-induced angina, on the other
hand, has the smallest change in the prediction of heart disease probability and thus has the least
importance. The feature values are also shown in Fig. 6 to represent the impact of each feature on the
prediction. For example, ST slop values (1 = ascending, 2 = flat, and 3 = descending) indicate that
ascending and flat ST slop are associated with a lower risk of heart disease, whereas descending ST slop
is associated with a higher risk of heart disease.

4.3.2 SHAP Force Plot
The SHAP force plot visualizes the SHAP values of each feature as a force that either increases or

decreases the prediction, representing the contribution of each feature to the model’s prediction of a
particular observation. Each feature's force is represented by a red or blue arrow, depending on whether it
increases or decreases the model's score. The features that have a greater influence on the prediction are
located closer to the dividing line, and the size of the arrow represents the magnitude of this influence. The
force plot illustrates the significance of each feature in adjusting the model to increase or decrease the
prediction based on a SHAP value baseline. These characteristics counterbalance one another to determine
the final prediction of the data instance. Fig. 7 shows our model’s force plot for a random observation. As
can be seen, it reveals that the Chest Pain type has the greatest influence on the prediction, followed by
Number of major vessels and Exercise-induced angina, respectively. These three predictive characteristics
raise the model’s score (to the right), which should result in a final prediction of 1. Otherwise, Thallium
heart scan and ST slop have less influence, which reduces the model’s predictive accuracy (to the left).

Figure 6: SHAP Beeswarm plot

Figure 7: SHAP force plot
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4.3.3 Stacked SHAP Force Plot
As implied by its name, the Stacked SHAP force plot combines multiple force plots, each of which

depicts the prediction of an instance in the dataset. The Staked plot depicts the predictions for all samples
in the dataset in a single plot by rotating the force plots of each instance by 90 degrees and stacking them
vertically next to one another based on their clustering similarity. Each x-axis position represents an
instance of the data, while each y-axis position represents the baseline prediction. The red SHAP values
result in a higher prediction, whereas the blue SHAP values result in a lower prediction, and the values at
the top of the vertical axis indicate a higher probability of being classified as class 1, whereas the values
at the bottom of the vertical axis indicate a higher probability of being classified as class 0. Fig. 8 shows
the model stacked SHAP force plot. Higher values on the vertical axis denote a greater likelihood of heart
disease risk, whereas lower values denote a lesser likelihood of heart disease. Features that appear in red
raise the model score (to the top), while features that appear in blue lower it (to the bottom).

5 Conclusion

Heart disease is a major cause of death, and early detection can help prevent the disease’s progression.
Consequently, the objective of this study was to investigate the potential of quantum machine learning for
predicting the risk of cardiovascular disease by developing an ensemble learning model based on
quantum machine learning algorithms. The Bagging-QSVC model involves randomly subdividing the
dataset into smaller subsets and modelling each subset using QSVC. Afterwards, an ensemble was
formed using the majority voting method. On the Cleveland dataset, the proposed ensemble model
achieved a higher classification accuracy of 90.16%, compared to 88.52%, 86.84%, and 85.25% for
QSVC, QNN, and VQC, respectively, and 85.24% for both SVC and ANN. Accordingly, the various
performance measures and ROC curves showed that the proposed model performed better than other
machine learning models. According to the findings of this study, quantum classifiers are more effective
than classical classifiers. Furthermore, results showed also that ensemble learning models can enhance the
performance of quantum classifiers. In addition to predicting and diagnosing other cardiovascular diseases
and aiding in medical decision-making, the model proposed in this study can be used for the early
prediction of heart disease risk to avoid any serious consequences, as well as for predicting and
diagnosing other cardiovascular diseases.

Figure 8: Stacked SHAP force plot
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