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Abstract: Many search-based algorithms have been successfully applied in sev-
eral software engineering activities. Genetic algorithms (GAs) are the most used
in the scientific domains by scholars to solve software testing problems. They imi-
tate the theory of natural selection and evolution. The harmony search algorithm
(HSA) is one of the most recent search algorithms in the last years. It imitates the
behavior of a musician to find the best harmony. Scholars have estimated the simi-
larities and the differences between genetic algorithms and the harmony search
algorithm in diverse research domains. The test data generation process represents
a critical task in software validation. Unfortunately, there is no work comparing
the performance of genetic algorithms and the harmony search algorithm in the
test data generation process. This paper studies the similarities and the differences
between genetic algorithms and the harmony search algorithm based on the ability
and speed of finding the required test data. The current research performs an
empirical comparison of the HSA and the GAs, and then the significance of the
results is estimated using the t-Test. The study investigates the efficiency of the
harmony search algorithm and the genetic algorithms according to (1) the time
performance, (2) the significance of the generated test data, and (3) the adequacy
of the generated test data to satisfy a given testing criterion. The results showed
that the harmony search algorithm is significantly faster than the genetic algo-
rithms because the t-Test showed that the p-value of the time values is 0.026 <
α (α is the significance level = 0.05 at 95% confidence level). In contrast, there is
no significant difference between the two algorithms in generating the adequate
test data because the t-Test showed that the p-value of the fitness values is
0.25 > α.
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1 Introduction

Many search-based algorithms, particularly genetic algorithms [1,2] and harmony search algorithms
[3,4], have been successfully employed in a wide range of software engineering fields. GAs are
considered the most utilized search-based algorithms in solving software engineering problems [5]. GAs
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imitate the theory of natural selection and evolution. HSA is regarded as the most recent search algorithm in
the last years, proposed by Geem et al. in 2001. It imitates the behavior of a musician to find the best
harmony.

Scholars have conducted comparative studies to estimate the similarities and differences between
genetic algorithms and harmony search algorithms in diverse research domains [6–10].

Peraza et al. [6] compared HSA and GAs using a set of mathematical problems to estimate the efficiency
of each algorithm. The obtained results showed that the efficiency of the harmony search algorithm is better
than the efficiency of genetic algorithms in solving the selected mathematical problems. Kim et al. [7]
compared the harmony search algorithm with genetic algorithms in solving the max-cut problem. The
suggested harmony search algorithm gave superior results to genetic algorithms. Ghozi et al. [8]
employed the harmony search algorithm and genetic algorithms to solve the geometry optimization
problem of a steel structure. The results showed that the harmony search algorithm is 53% faster than
genetic algorithms. Zongo et al. [9] used the harmony search algorithm to solve the power dispatch
problem and compared the obtained results with genetic algorithms and particle swarm optimization
techniques. The obtained results showed that the harmony search algorithm produces the minimum cost
of production of real power and the minimum power loss in the system. Khan et al. [10] employed and
compared HSA and GAs to find the solution to generator maintenance scheduling problems for water and
power development authorities. The results of the experiments conducted by HSA are superior to those
obtained by GAs. In addition, HSA is completely fast and needs less time for execution.

Genetic and harmony search algorithms have been successfully employed in many software testing
processes. GAs have been successfully used in software testing [11,12], cost estimation [13], project
management, and others [14]. Lately, the harmony search algorithm has been successfully used in several
software engineering processes [15,16] (e.g., software testing [17] and cost estimation [18], software
modularization [19], fault prediction [20], and software architecture design [21]). Both genetic algorithms
and the harmony search algorithm have been utilized in many similar tasks in software engineering.
Therefore, many comparative studies are needed to estimate the efficiency of GAs and HSA in these
tasks and explore the similarities and differences between them.

This paper assesses the similarities and the differences between the genetic algorithms and the harmony
search algorithm in the software engineering domain. The current paper introduces a comparative study
between the genetic algorithms with the harmony search algorithm in the test data generation process.
This study explores the similarities and differences between genetic algorithms and harmony search
algorithms based on the ability to find the required test data. This study compares the HSA and GAs
experimentally by conducting an empirical comparison and statistically by applying the t-Test to the
results of the empirical study. The study investigates the efficiency of the harmony search algorithm and
the genetic algorithms according to the time performance, the significance of the generated test data, and
the adequacy of the generated test data to satisfy a given testing criterion. The comparison results showed
that the harmony search algorithm is significantly faster than the genetic algorithms. In contrast, there is
no significant difference between the efficiency of the harmony search algorithm and the genetic
algorithms in generating adequate test data.

The structure of the paper is as follows. Section 2 introduces the concepts of genetic algorithms, the
harmony search algorithm, and test data generation. Section 3 presents the details of the comparison
between HSA and GAs and the obtained results as well. The conclusion of the paper is given in Section 4.
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2 Background

This section briefly gives the concepts of the two compared algorithms (the GAs and the HSA) and the
software testing criterion employed to compare the two algorithms.

2.1 Genetic Algorithm

Genetic algorithms (GAs) [1,2] were proposed to find the optimal solutions for some optimization
problems. They imitate the theory of natural selection and evolution. GAs use a random set of solutions
as the initial population (P). Then, GAs repeatedly apply two evolution processes (crossover and
mutation) to the initial set of solutions to get the optimal solution. The pseudocode of the standard
genetic algorithm is given in Fig. 1. Besides, a brief description of this procedure is given below.

The basic procedure of GAs consists of five phases. In the first phase, a set of PS elements is randomly
generated. Each element in that set represents a candidate solution for the given problem. Every element in
the solution set is called a chromosome, and the solution set is called a population. Each chromosome
comprises N values called genes. Genes’ values can be numerical, binary, or characters. For example, the
initial population c1; c2; c3; and c4, which has a size = 4 and the length of each chromosome = 7 is :

The population size (PS) is experimentally determined, while the length (N) of the chromosome is
problem-based. The binary values in each chromosome are decoded into numerical values to get the
required inputs. In the test input generation process, the chromosome is a suite of inputs of the tested
software [11], and the length N depends on the domains of these inputs.

The second phase is the most critical phase in GAs and all search-based algorithms. The importance of
this stage comes from the Fitness Function (f), which represents the problem to be solved. All search-based
algorithms aim to find the optimal solution for the fitness function. This fitness function assesses each
candidate solution (chromosome). In the test data generation process, the fitness function can be the
coverage ratio of paths or branches in coverage testing [11,12] or the killing ratio in mutation testing
[22]. After assessing each chromosome using f, each chromosome gets a fitness value as below.

Figure 1: Pseudocode of genetic algorithms

PS = 4
N = 7

c1 1 0 1 1 0 0 1

c2 1 1 1 1 0 0 0

c3 1 0 0 0 1 1 1

c4 1 1 0 0 1 1 0
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The third phase is the selection phase. Some solutions/chromosomes (mating bowl) are selected for
breeding and reproduction to find new solutions. Selecting the solutions in the mating bowl can be
performed by the roulette wheel, rank selection method, or others [1,2]. The roulette wheel method
selects the chromosome based on the ratio of its fitness value to the total fitness. The roulette wheel finds
for each chromosome the total fitness (F), the probability (pi), the cumulative probability (qi), and a
random number r from the range [0, 1]. Later, if r, q1 then the first chromosome (c1) is selected; else
the chromosome ci is selected. Then, the mating bowl consists of c1; c2; c3; and c1.

The fourth phase (Crossover) [1,2] is the vital process in the GAs. In the crossover, two chromosomes
are selected from the mating bowl. Then, a body of genes is exchanged between the chromosomes chosen to
produce two new offsprings. Crossover creates a random number r from [0, 1] for each chromosome on the
mating bowl and compares it with the cp value (crossover probability). If r < cp for a chromosome, then this
chromosome will participate in the crossover operation.

To produce the new offsprings, every couple of the picked chromosomes (parents) exchange their genes
at a randomly chosen position. This process is repeated over and over till the population is completed.

PS = 4 c1 f = 0.43 Accepted

c2 f = 0.62 The best

c3 f = 0.12 The worst

c4 f = 0.54 Accepted

Ci f pi probability qi cumulative probability r

c1 0.43 0.251 0.251 0.119 , q1
c2 0.62 0.363 0.614 0.617 . q1
c3 0.12 0.070 0.684 0.821 . q1
c4 0.54 0.316 1.000 0.089 , q1
Total F = 1.71 pi ¼ f=F qi ¼

Pi
m¼1 pm r 2 [0, 1]

Genes r cp

Mating bowl c1 1 0 1 1 0 0 1 0.45 0.85

c2 1 1 1 1 0 0 0 0.92 0.85

c3 1 0 0 0 1 1 1 0.22 0.85

c1 1 0 1 1 0 0 1 0.56 0.85

parent1 1 0 1 1 0 0 1

parent2 1 1 1 1 0 0 0

offspring1 1 0 1 1 0 0 0

offspring2 1 1 1 1 0 0 1
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The fifth phase is the Mutation operation [1,2] that takes place after the crossover operation. For each
chromosome in the current population, the mutation operator creates a random number r from the range
[0, 1] for each gene. If r < mp (mutation probability), then the value of this gene is flipped as follows.

Finally, this procedure is repeated over and over till getting the optimal solution or reaching the
maximum number of generations. Scholars used cp = 0.85 and mp = 0.15, which are problem based.

2.2 Harmony Search Algorithm

The harmony search algorithm (HSA) is one of the most recent search algorithms. HSA has been
developed by Geem et al. [3] to solve some optimization problems. It imitates the behavior of a musician
to find the best harmony. HSA starts its operations with a set of randomly generated solutions
(harmonies) and saves them in the Harmony Memory (HM). Then, a new solution is randomly created
based on two factors (Harmony Memory Considering Rate (HMCR) and Pitching Adjustment Rate
(PAR)). If the new solution is better than the worst one in the HM, then the new solution takes the place
of the worst one in the HM. The pseudocode of the harmony search algorithm is given in Fig. 2, and its
description is given below.

offspring1 1 0 1 1 0 0 0

r 0.59 0.13 0.08 0.82 0.34 0.41 0.12

mp 0.15 0.15 0.15 0.15 0.15 0.15 0.15

New offspring 1 1 0 1 0 0 1

Figure 2: Pseudocode of harmony search algorithm
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Firstly, the five critical factors of the harmony memory search algorithm are selected. These factors are
(1) the number of solutions in the HM or the harmony memory size (HMS), (2) HMCR (the harmony
memory considering rate), (3) PAR (the pitch adjustment rate), (4) the maximum number of generation
(MaxGen), and (5) the distance bandwidth between variables or pitch adjustment bandwidth (BW). The
PAR and the HMCR values are randomly selected from the range [0, 1], while the bandwidth value (BW)
is computed using the following formula.

BW genð Þ ¼ BWmax � ec�gen

and c ¼ ln
BWmin
BWmaxð Þ

MaxGen

(1)

where BWmax is the maximum bandwidth, BWmin is the minimum bandwidth, gen is the generation number,
and MaxGen is the maximum number of generations.

Secondly, a random set of solutions is generated after setting up the parameters of the HSA. This set
consists of HMS elements (solutions), and every element consists of N values. This set is called the
harmony search memory (HM). Therefore, this set can be considered as a matrix with HMS rows and N
columns. The general form of this matrix is given below.

HM ¼

x11 x12 . . . x1N�1 x1N
x21 x22 . . . x2N�1 x2N
..
. ..

. ..
. ..

. ..
.

xHMS�1
1 xHMS�1

2 . . . xHMS�1
N�1 xHMS�1

N
xHMS
1 xHMS

2 . . . xHMS
N�1 xHMS

N

2
666664

3
777775

Each solution is a row or set of values as S1 ¼ x11; x
1
2; x

1
3; . . . :x

1
N where Sj is a solution and

j ¼ 1; 2; . . . ::;HMS; and xji is numerical value where i = 1, 2, …, N; and xji 2 ½lb; ub�, where lb and ub
are the upper and lower boundaries. The following HM contains three solutions. Each solution has two
values selected from the range [10, 40].

HM ¼
S1

S2

S3

2
4

3
5 ¼

11 21
17 18
33 35

2
4

3
5

The third step is evaluating the fitness of each solution. As in genetic algorithms, this step is the most
critical in the HSA. The task of this step is formulating the Fitness Function (f), which represents the problem
to be solved. Preparing this function is the main challenge for the HAS, and HSA aims to find the optimal
solution for the fitness function. The fitness function assesses each solution. Then, the best and the worst
solutions in the HM are marked. In test input generation, the fitness function can be the proportion of the
number of the covered branches to the total number of branches in the control-flow graph.

The fourth step is the vital process in the HSA, which improvises the new harmony (solution) based on
the HMCR, the PAR, and the BW. This process is performed as follows.

Suppose the new solution is Snew ¼ xnew1 ; xnew2 ; . . . ; xnewN . The value of each xnewj¼1::N in Snew is created as
follows.

In the beginning, a number r 2 ½0; 1� is randomly created. If r.HMCR then xnewj ðj ¼ 1; 2; . . . ;NÞ is
computed via the formula xnewi ¼ lbi þ rand 0; 1ð Þ � ubi � lbið Þ. Otherwise, if r � HMCR, one of the
solutions stored in the HM is randomly picked, e.g., k where 1 � k � N . Then, xnewi is picked by the
corresponding value of the solution k from the HM as xnewi = xki . Then, a random number r 2 ½0; 1� is
produced; if r � PAR, then xnewj is computed using the formula xnewj ¼ xnewj þ e�BW, where e is a
random number between −1 and 1, and BW is calculated by Eq. (1).
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Finally, the fitness value of xnewj is computed and compared with the fitness value of the worst solution in
the HM. If the new solution is better than the worst one, the worst solution is replaced by the new one;
otherwise, it is discarded. The above procedure is repeated until the optimal solution, or the maximum
number of generations, is reached.

2.3 Test Data Generation

Test data [23,24] are a set of inputs utilized to execute the program under test and prove its correctness
by exploring errors’ existence. For example, the set of test data {(4, 5, 6), (5, 5, 5) (3, 3, 4)} consists of three
test input groups for the triangle classifier program. The volume of the detected errors measures the quality of
the test data. The adequacy of the test data can be measured by the satisfaction of a specific test coverage
criterion [25,26].

Generating the test data [23,24], whether manual or automatic, is a critical issue in the software testing
process. The manual generation of the test data is time-consuming and isn’t a successful technique in
producing the desired data. This dilemma drives the tester to create the test data automatically to reduce
the consumed time.

The scholars introduced several methods for the automatic generation of these data. The first class of
these techniques depends on the random generation of the test data [27,28]. The second class of these
methods depends on mutation testing to generate the test data [29,30]. The third class of these methods
depends on the search-based algorithms that are the most used techniques in generating the test data
[11,17]. The last class of these methods depends on merging two or more of the previous approaches to
find the test data. [31].

3 Harmony Search Algorithm vs. Genetic Algorithms

This section introduces the details of the comparative study. This study compares the harmony search
algorithm and genetic algorithms theoretically and empirically.

3.1 The Analytical Comparison

The analytical comparison illustrates the necessary settings for each algorithm of the compared
algorithms and the efficiency of each one according to the previous comparative studies. Tab. 1 gives the
differences and similarities between HSA and GAs based on the theoretical analysis of the related work.

Table 1: Theoretical differences and similarities between the HSA and GAs

Concept HSA GAs Classification

Parameters HMS, HMCR, PAR, BW, MaxGen PS, cp, mp, MaxGen Difference

Solution
representation

Row of numerical values Array of bit values Difference

Solution length
(N)

Number of input variables Total number of bits in the
input variables

Difference

Number of
solutions

Harmony memory size (HMS) Population size (PS) Similarity

Initial solutions Random generated Random generated Similarity

Number of
generations

MaxGen MaxGen Similarity

(Continued)
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From Tab. 1, there are many similarities between the harmony search algorithm and the genetic
algorithms. Both HSA and GAs can formulate the given optimization problem as a fitness function and
solve it significantly. Both HSA and GAs start with a random set of solutions with configurable size, and
each algorithm evolves the initial set many times to find the targeted solution. The HSA and the GAs
have been utilized in several software engineering aspects. The genetic algorithms have been successfully
used in software testing [11,12], cost estimation [13], project management, and others [14]. The harmony
search algorithm has been successfully used in several software engineering processes such as software
testing [17], cost estimation [18], software modularization [19], fault prediction [20], and software
architecture design [21]. The harmony search algorithm [17] and the genetic algorithms [11] have been
successfully used in test data generation. The applications of the harmony search algorithm and the
applications of genetic algorithms are surveyed in ref [15] and ref [5], respectively.

From Tab. 1, there are some differences between the harmony search algorithm and genetic algorithms.
The significant difference between the harmony search algorithm and the genetic algorithm is the
reproduction process. Genetic algorithms use two operations (crossover and mutation) to generate the
new solution. In contrast, the harmony search algorithm improvises a new solution using a specific
formula in terms of HMCR, PAR, and BW. The harmony search algorithm represents the solution as an
array of numerical values, but genetic algorithms represent the solution as an array of binary values. The
length of this array depends on the number of input variables in the given problem. According to the
previous comparative studies [6–10], the harmony search algorithm is faster than the genetic algorithms
in solving the given problem.

3.2 The Empirical Comparison

The empirical comparison aims at estimating the similarity and dissimilarity between the harmony
search algorithm and the genetic algorithms and their efficiency in generating the test data. The settings,
procedure, and results of the comparative study given below depend on the guidelines proposed by
Coccia et al. [32]. To illustrate this comparison, the triangle classifier program (Fig. 3) will be the
program under test. This program gets three non-zero positive numerical values and returns the type of
the triangle according to its sides as equilateral, isosceles, and scalene. Suppose the domain of each one
of the input variables x, y, and z is [1, 10].

Table 1 (continued)

Concept HSA GAs Classification

Fitness function Problem based Problem based Similarity

Reproduction
operations

Improvise a new harmony based on
HMCR, PAR, and BW.

Crossover and mutation Difference

Replacement Replace the worst solution by the best one Replace population by a
new one

Difference

Stop conditions Get the target solution or reach MaxGen Get the target solution or
reach MaxGen

Similarity

Usage Test data generation and others [15] Test data generation and
others [5]

Similarity

Efficiency Solved the target problem significantly Solved the target problem
significantly

Similarity

Performance HSA results are more significant and HSA is faster than GAs
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3.2.1 Settings of the Study
For the fairness between the two compared algorithms (HSA and GAs), the settings of these algorithms

were adjusted similarly (see Tab. 2).

The parameters of the harmony search algorithm were adapted as follows: HMS = 20, MaxGen = 100,
HMCR = 0.88, PAR = 0.1, BWmin ¼ 1; and BWmax ¼ 2. The parameters of genetic algorithms were adapted
as follows: PS = 20, MaxGen = 100, cp= 0.85, and mp = 0.15. The harmony search algorithm represents the
solution as an array of numerical values (e.g., 6, 4, 5 for triangle classifier program, therefore N = 3) and the
genetic algorithms represent the solution as a binary array of (e.g., 0110 0100 0101 these three binary blocks
represent the values 6, 4, and 5, respectively, therefore N = 12).

Figure 3: Java triangle classifier program

Table 2: Settings of HSA and GAs

Concept HSA GAs

Parameters HMCR = 0.88, PAR = 0.1
BWmin ¼ 1;BWmax ¼ 2

cp = 0.85, mp = 0.15

Solution
representation

Row of numerical values as 2, 3, 6, 8 Array of bit values as
10011000111

Solution length (N) Number of input variables Problem based Total number of bits in the input
variables Problem based

HMS = PS 20 20

Initial solutions 20 random solutions 20 random solutions

MaxGen 100 100

Fitness function Killing Ratio ¼ no:mutants
total no:mutants�no:equivalent mutants

Reproduction
operations

Improvise a new harmony based on HMCR,
PAR, and BW.

Crossover and mutation

Replacement Replace the worst solution by the best one Replace population by a new one

Stop conditions Maximizing the killing ratio or getting 100 generations

Usage Create test data to reveal the faults in the tested program
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HM ¼

5 9 8
10 3 6
4 6 2
8 9 9
8 6 1
6 7 7
3 7 8
10 4 3
1 3 10
6 1 6
1 10 7
6 9 2
5 5 10
7 1 2
9 8 7
4 5 8
4 10 4
2 9 3
7 1 9
1 5 6

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

P ¼¼

0101 1001 1000
1010 0011 0110
0100 0110 0010
1000 1001 1001
1000 0110 0001
0110 0111 0111
0011 0111 1000
1010 0100 0011
0001 0011 1010
0110 0001 0110
0001 1010 0111
0110 1001 0010
0101 0101 1010
0111 0001 0010
1001 1000 0111
0100 0101 1000
0100 1010 0100
0010 1001 0011
0111 0001 1001
0001 0101 0110

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

The harmony search algorithm randomly generates a two-dimensional matrix to be the initial set of
solutions (e.g., HM = 20 × 3 matrix for the triangle classifier program) and genetic algorithms randomly
generate a two-dimensional matrix to be the initial set of solutions (e.g., P = 20 × 12 matrix for the
triangle classifier program). For fairness, the harmony search algorithm and genetic algorithms start with
the same initial set of solutions (HM and P). HM and P can be matrices as the following.

To evaluate the fitness of each solution in HM and P, both the compared algorithms use the killing ratio
as the fitness function. The compared algorithms used the following formula to evaluate the fitness of the
solutions.

Fitness function Killing Ratioð Þ ¼ no:mutants

total no:mutants� no:equivalent mutants

A mutant is considered “killed” if the result of executing the original code using one of the test inputs is
unlike the result of this mutant. On the other hand, a mutant is considered “alive” if the result of the original
code is similar to the result of this mutant. If the execution of the mutant gives the same result as the original
code for all inputs in the given set of test inputs, this mutant is considered an “equivalent” one. These mutants
can be constructed using the “MuJava” tool [33].

In reproduction operations, the harmony search algorithm uses the procedure and formulas given in the
fourth step of Section 2.B. In contrast, the GAs use the crossover and mutation operations presented in the
fourth and the fifth steps of Section 2.A. The processes of each algorithm will stop after getting
100 generations, or the killing ratio reaches at least 95%.

3.2.2 The Procedure of the Study
The study follows the following procedure (see Fig. 4).

� The MuJava-analysis tool is executed on each tested programs to construct m mutated versions of the
program (m mutants).
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� Both the harmony search algorithm and the genetic algorithm are executed on each tested program to
generate a suite of test inputs consisting of k solutions (k = HMS = PS).

� During the execution of HSA and GAs, each tested program and its m mutated versions are executed
using each of the k tests in the test suit generated by the HSA and the one generated by GAs.
Subsequently, the killing ratio is computed to get the fitness of each solution in the test suit.

� The execution of the HSA and GAs is repeated n times; then, the maximum, minimum, average,
median, and standard deviation are computed.

3.2.3 The Tested Programs
The tested programs are picked from refs [34,35]. The tested programs are nine Java programs with

various structures. The tested programs are Mid (finds the middle of three values), Max (finds the
maximum of three values), Rem (finds the remainder of the division of two values), Tri (finds the
triangle’s type), Pow (finds the power of a value), Day (finds the number of days between two dates),
Ecld (Euclide’s algorithm that finds the highest common divisor of two values), Prim (finds the prime
numbers), and Root (calculates square root).

3.2.4 The Results of the Study
The comparative study investigates the efficiency of the harmony search algorithm and the genetic

algorithms according to three criteria. These criteria are (1) the time performance, (2) the significance of
the generated test data, and (3) the adequacy of the generated test data to satisfy a given ratio.

Time Performance
The genetic and harmony search algorithms were executed 270 times to estimate the time performance.

The results showed that the harmony search algorithm consumed 400 s to execute its procedure 270 times,
while the genetic algorithms consumed 500 s to perform its process the same number of times.

Fig. 5 shows the time curves of the harmony search algorithm and the genetic algorithms. The time curve
of the harmony search algorithm is constantly below the time curve of the genetic algorithms. From the
results, the harmony search algorithm finished the target number of iterations (e.g., 50, 100, 150, 200,
250, and 300) before the genetic algorithms. Therefore, the harmony search algorithm is continuously
faster than the genetic algorithms.

Figure 4: The procedure of the comparative study
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Figs. 6 and 7 show the scattering of the time values of the harmony search algorithm and the genetic
algorithms, respectively. Tab. 4 shows the median, mean, and STD of the run time of the HSA and the
GAs. In addition, most time values of the harmony search algorithm lie in the range from 40 to 60 s,
while most time values of the genetic algorithms lie from 80 to 105 s. Therefore, the time values of the
harmony search algorithm are more compact than the time values of the genetic algorithms.

1 21 41 61 81 101 121 141 161 181 201 221 241 261

0

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

400

450

500

1 21 41 61 81 101 121 141 161 181 201 221 241 261

Ti
m

e
in

se
co

n
d
s

HSA GA

Time performance

Number of Generations

Figure 5: Time performance of HSA and GAs
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Figure 6: Scattering of the time values of HSA
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Figure 7: Scattering of the time values of GAs
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The most frequent time value of the harmony search algorithm is 60 s (MODE(HSA) = 60 s), while the
most frequent time value of the genetic algorithms is 80 s (MODE(GAs) = 80 s).

The Significance of the Generated Test Data
The harmony search algorithm and the genetic algorithms were executed 30 times on each tested

program to estimate the significance of the generated test data; the median, mean, and standard deviation
(STD) of the fitness values were computed.

Tab. 4 gives the values of median, mean, and STD of the fitness values of the harmony search algorithm
and the genetic algorithms. The results showed that the fitness values of the genetic algorithms are more
significant than the values of the harmony search algorithm. According to the values of the fitness
function, the values of the mean for GAs lie between 79 and 98, while the mean values for HSA lie
between 77 and 92. Fig. 8 shows the progress of the fitness value with time passing for the harmony
search algorithm and the genetic algorithms. The curve of the fitness function for the harmony search
algorithm is constantly below the curve of the fitness function for the genetic algorithms. For the same
number of generations, the values of the fitness function for the genetic algorithms are better than the
corresponding values for the harmony search algorithm.

Fig. 9 shows the scattering of the fitness values of the harmony search algorithm and the genetic
algorithms. From Fig. 9 and Tab. 4, the standard deviation of the fitness function of GAs lies in the range
of 0 to 4.2. In addition, the standard deviation of the harmony search algorithm lies in the range from
0 to 9.4. Therefore, the standard deviation of the fitness function of GAs is smaller than the standard
deviation of the HSA. Besides, the values of the fitness function of the HSA lie in the range from 61 to
96 and are more scattered than the values of the fitness function of the GAs, which lie in the range from
75 to 100.

Figure 8: Fitness value evolution for HSA and GAs
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The Adequacy of the Generated Test Data
The harmony search algorithm and the genetic algorithms are applied to all tested programs to maximize

the fitness function (to be more than 90%) to estimate the adequacy of the generated data.

Fig. 10 shows the ratio of the adequacy of the generated test data. From Fig. 10, it is clear that both the
harmony search algorithm and the genetic algorithms have the same ability to adequately create the test data
to satisfy a specific fitness value. According to Fig. 10, both the harmony search algorithm and the genetic
algorithms met the targeted fitness value (+90%) with the same efficiency of 89%.

3.2.5 Results Summary of the Empirical Comparison
In this study, the harmony search and the genetic algorithms were empirically compared according to

three criteria. These criteria are (1) the time performance, (2) the significance of the generated test data,
and (3) the adequacy of the generated test data to reach a given fitness value. The obtained results were
summarized in Tab. 5.

Figure 10: The adequacy ratio of the generated test data

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Fitness value HSA GA

Scattering of the fitness values

Figure 9: Scattering of the fitness values for HSA and GAs
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The results in Tab. 5 showed many similarities and differences between the harmony search algorithm
and genetic algorithms. The harmony search and genetic algorithms can generate the required test data.
Besides, both the harmony search and the genetic algorithms have the same efficiency in generating
adequate test data to satisfy a specific testing criterion. In contrast, the harmony search algorithm is faster
than the genetic algorithms in developing the test data for a specific testing criterion.

3.3 Statistical Comparison

To accurately estimate the time performance and the efficiency of the harmony search algorithm and the
genetic algorithms, the statistical t-Test has been applied to the means values of the time and fitness functions
given in Tabs. 3 and 4.

Table 3: Median, Mean, and STD of the run time of HSA and GAs

Tested program Median Mean STD

HSA GAs HSA GAs HSA GAs

Tri 93.0 109.4 93.0 109.4 10.9 14.2

Prim 28.5 44.0 28.5 46.7 2.3 6.7

Mid 57.0 94.5 56.8 93.0 10.5 9.2

Root 112.5 127.5 115.4 128.5 11.0 22.4

Ecld 220.5 207.5 213.4 206.3 40.3 27.4

Pow 120.0 122.5 122.0 125.8 34.7 15.9

Day 90.0 110.0 89.6 109.2 14.9 13.5

Max 47.5 80.0 53.1 84.6 11.3 13.2

Rem 285.5 355.0 280.8 367.2 78.3 77.6

Table 4: Median, Mean, and STD of the fitness values of HSA and GAs

Tested program Median Mean STD

HSA GAs HSA GAs HSA GAs

Tri 77.0 81.2 80.4 80.4 6.7 1.6

Prim 78.5 92.8 84.2 92.8 7.1 0.0

Mid 82.8 84.2 77.3 85.4 9.4 4.2

Root 85.5 88.5 85.3 88.2 2.9 1.9

Ecld 87.5 80.3 89.1 79.1 5.8 2.4

Pow 90.0 100.0 90.5 98.0 3.1 2.7

Day 91.0 91.0 91.0 91.0 0.0 0.0

Max 91.6 91.6 88.8 91.6 4.6 0.0

Rem 94.1 94.1 92.1 93.8 2.4 2.4
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Tab. 6 gives the results of applying the t-Test to the data of time values given in Tab. 3. From Tab. 6, the
p-value is 0.026, and the alpha level (a) is 0.05. Consequently, p-value < a, one can reject the null hypothesis
that there is no difference between means of time values of HSA and GAs. This result means that the
difference in run time between the harmony search algorithm and the genetic algorithms is significant
difference. Subsequently, the harmony search algorithm is significantly faster than the genetic algorithms.

Tab. 7 gives the results of applying the t-Test to the data of fitness values given in Tab. 4. From Tab. 7,
the p-value is 0.25, and the alpha level (a) is 0.05. Consequently, the p-value > a, one can accept the null
hypothesis that there is no difference between the means of fitness values of HSA and GAs. This result
means that the difference in the efficiency between the harmony search algorithm and the genetic
algorithms is insignificant difference. Subsequently, the harmony search algorithm is efficient similar to
the genetic algorithms.

Table 5: The summary of the obtained results

Criterion HSA GAs

Time performance 270 iterations/400 s 270 iterations/500 s

The most frequent time value 60 s 80 s

Scattering range of time values 2[40 s, 60 s] 2 [80 s, 105 s]

Speed Faster than GAs Slower than HSA

The ability to generate the test data Able to Able to

The significance of the generated test
data

Lower than GAs Higher than HAS

Median of the fitness values Lower than GAs Higher than HAS

Mean of the fitness values Lower than GAs Higher than HAS

STD of the fitness values 2 [0, 9.4] 2 [0, 4.2]

Fitness value evolution Lower than GAs Higher than HAS

Scattering range of fitness values 2 [61, 96] 2 [75, 100]

The adequacy of the generated test data Finds the required data by
89%

Finds the required data by 89%

Table 6: t-Test results for time values of HSA and GAs

GAs HSA

Mean 141.17 116.95

Variance 9026.98 6625.85

P(T <= t) two-tail 0.026

Table 7: t-Test results for fitness values of HSA and GAs

GAs HSA

Mean 88.91 86.53

Variance 39.43 26.05

P(T <= t) two-tail 0.250
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4 Conclusion and Future Work

The genetic and harmony search algorithms have been successfully applied in several software testing
aspects, such as test data generation. Although the test data generation process represents an essential task in
software validation, there is no work comparing the efficiency of genetic algorithms and harmony search
algorithms in the test data generation process. This paper studied the similarities and differences between
genetic algorithms and the harmony search algorithm based on the efficiency and speed in finding the
necessary test data. This study compared the HSA and GAs by two methods: (1) The empirical method
based on conducting an empirical comparison between HSA and GAs in the test data generation process;
(2) The statistical method based on the results of the empirical study to investigate the significance of the
similarities and the differences between HSA and GAs. The two methods investigated the efficiency of
the harmony search algorithm and the genetic algorithms based on the time performance, the significance
of the generated test data, and the adequacy of the generated test data to satisfy the mutation testing
criterion. The comparison results showed that the harmony search algorithm is significantly faster than
the genetic algorithms. The t-Test showed that the p-value of the time values is 0.026 < α = 0.05. In
contrast, there is no significant difference between the efficiency of the harmony search algorithm and the
genetic algorithms in generating adequate test data. The t-Test showed that the p-value of the fitness
values is 0.25 > α = 0.05.
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