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Abstract: The eminence of Economic Dispatch (ED) in power systems is signifi-
cantly high as it involves in scheduling the available power from various power
plants with less cost by compensating equality and inequality constrictions. The
emission of toxic gases from power plants leads to environmental imbalance
and so it is highly mandatory to rectify this issues for obtaining optimal perfor-
mance in the power systems. In this present study, the Economic and Emission
Dispatch (EED) problems are resolved as multi objective Economic Dispatch pro-
blems by using Harris Hawk’s Optimization (HHO), which is capable enough to
resolve the concerned issue in a wider range. In addition, the clustering approach
is employed to maintain the size of the Pareto Optimal (PO) set during each itera-
tion and fuzzy based approach is employed to extricate compromise solution from
the Pareto front. To meet the equality constraint effectively, a new demand-based
constraint handling mechanism is adopted. This paper also includes Wind energy
conversion system (WECS) in EED problem. The conventional thermal generator
cost is taken into account while considering the overall cost functions of wind
energy like overestimated, underestimated and proportional costs. The quality
of the non-dominated solution set is measured using quality metrics such as Set
Spacing (SP) and Hyper-Volume (HV) and the solutions are compared with other
conventional algorithms to prove its efficiency. The present study is validated
with the outcomes of various literature papers.

Keywords: Optimization; harris hawks; clustering technique; non-dominated
solution

Nomenclature
fV ðvÞ probability density function PWr- rated output power of wind generator,
PW ðvÞ output power of the wind,
M number of wind generators,
FðPW Þ operating cost of wind generators,
Fd;wj direct cost function of jth wind generator,
Fr;wj reserve cost function of jth wind generator,
Fp;wj penalty cost function of jth wind generator,
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PWj;av, PWj;sc available and scheduled wind power from jth wind generator,
kr;wj reserve cost coefficient of jth wind generator,
kp;wj penalty cost coefficient of jth wind generator,
FðPGÞ fuel cost of thermal units,
ai, bi and ci cost coefficient of ith thermal unit,
PGi actual power generation of the ith unit, NG-total number of thermal units,
Pmin
Gi ; P

max
Gi minimum and maximum generated capacity of ith thermal unit,

ai; bi; ci; gi,di emission coefficient of ith thermal unit,
EðPGÞ emission dispatch function of ith thermal unit,
N total number of hawks.

1 Introduction

The significance of Economics Dispatch (ED) is remarkably high in the power systems since it aims to
minimalize fuel expenditure while compensating system constraints by scheduling the output of all available
generating units in the power system and hence the recent developments in the power generating sectors have
prioritized the process of ED in a wider range [1,2]. The process of resolving the ED issue is used to optimize
the usage of fossil fuels in thermal making unit for satisfying the demand while providing the electric power
[3]. While trying to solve Emission Dispatch as a single objective function, the corresponding cost gets
increased [4]. The single objective ED problem is resolved by treating the emission of Nitrogen oxides
(NOx), Sulfur oxides (SOx) as constraints [5]. This emission constraint ED problem is remarkably solved
by various researches in [6,7]. Furthermore, the Combined EED (CEED) problem is resolved as a single
objective issue through the price penalty factor [8] and weighted sum method [9]. However, these
methods are not capable enough to attain the optimal outcome from the non-convex Pareto optimal front
since it necessitates multiple runs. To overcome this drawback, the Multi-Objective EED (MOEED) issue
is rectified simultaneously as a conflicting objective function.

Over the past few years, multi-objective evolutionary algorithm is used for resolving this problem.
Several solution approaches [10–14] are introduced to solve the MOEED problem by producing multiple
Pareto optimal solution from a single run.

While integrating thermal generating unit with renewable resources, wind energy is highly feasible since
it owns multiple beneficial impacts including low production cost. Initially, the investigators have predicted
the future wind speed by employing different approaches like fuzzy logic approach [15], neural network [16],
time series model [17]. Hetzer [18] and solved the ED problem in an optimal manner.

The motive of this work is to sort out the MOEED problem with the aid of the newly formulated
population-based HHO algorithm, which is capable enough to solve these issues with plenty of
advantageous impacts like less complexity, maximal accuracy, simple mechanism, optimal optimization
output and randomness. The usage of long-term memory approach aids the convergence characteristics of
HHO algorithm by narrowing down the search space. The non-dominated solution set is maintained using
the crowding distance method and the fuzzy based methodology is implemented to find the
compromising solution. The attained results are compared with various literature papers to prove the
efficiency of the work. In addition, a wind energy conversion system is also included with same problem
and the results are displayed.

The remaining part of this paper includes modelling of Wind Energy Conversion System (WECS) in
Section 2, Formulation of EED problem in Section 3, description of HHO in Section 4, updating process
of long term memory in Section 5, description of External Repository Updating Strategy in Section 6,
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Finding of compromise solution in Section 7, the selection of best Compromise Solution in Section 8, Result
analysis in Section 9 and conclusion in Section 10.

2 Modelling and Analysis of WECS

In nature, the wind speed v
m

s

� �
is a random variable. The wind speed’s output power is assumed as a

piece wise linear function and it can be modelled for a v based on the power characteristics zones of wind
energy conversion system as [19],

PW ðvÞ ¼
0 v, vin; v. vo

PWr
v� vin
vr � vin

vin � v � vr

PWr vr � v � vo

8><
>: (1)

The transformed wind power is stochastic in nature [20]. Since the wind power is a discrete variable in
the zones ([ v, vin; v. vo ;� ½ � v � vo� Þ it can be represented by cumulative distribution function. As the
wind power is linear and continuous in ðvin � v � vrÞ; probability density function is employed to represent
the output wind power.

Probability of wind power being zero:

PrW ðPW ¼ 0Þ ¼ PrW ðv, vinÞ þ PrW ðv. voÞ ¼ 1� exp � vin
c

� �k
� �

þ exp � vo
c

� �k
� �

(2)

Probability of rated wind power:

PrW ðPW ¼ PWrÞ ¼ PrW ðvr � v � voÞ exp � vr
c

� �k
� �

� exp � v0
c

� �k
� �

Probability of wind power in continuous zone ( 0 � PW � PWr)

fPW ðPW Þ ¼ khvin
cPWr

� � 1þ hPW

PWr

� �
vin

c

2
664

3
775� exp �

1þ hPW

PWr

� �
vin

c

2
664

3
775
k

8>>><
>>>:

9>>>=
>>>;

(3)

h ¼ ðvr � vinÞ
vin

2.1 Operational Cost of Available Wind Generator

The operating cost of wind power can be modelled as,

FðPW Þ ¼
XM
j¼1

FðPWjÞ

¼
XM
j¼1

Fd;wjðPWj;scÞ þ
XM
j¼1

Fr;wjðPWj;sc � PWj;avÞ þ
XM
j¼1

Fp;wjðPWj;av � PWj;scÞ (4)
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It consists of three parts. The first part gives the direct cost of wind generators. If the operator has owned
the wind farm then this part becomes zero. Else the operator should pay the direct amount to the owner. The
direct cost operation is proportional to the scheduled wind power, which is expressed as

Fd;wjðPWj;scÞ ¼ kd;wj:PWj;sc (5)

The second part of the equation denotes wind generator’s reserve or overestimation cost. When the
prevailing wind energy is insufficient to satisfy the demand, this term can be modelled as,

Fr;wjðPWj;sc � PWj;avÞ ¼ kr;wj

ZPWj;sc

0

ðPWj;sc � PWjÞ fPW ðPWjÞ dpw (6)

The third term of the equation is the penalty cost or underestimation cost. When the prevailing wind
power is excess than the demand this can be modelled as,

Fp;wjðPWj;av � PWj;scÞ ¼ kp;wj

ZPWj

PWj;av

ðPWj � PWj;avÞ fPW ðPWjÞ dpw (7)

3 EED Problem Formulation

The EED includes certain issues like limited Generator capacity, losses in network transition, ramp rate
limits and restricted operating zone, which are effectively rectified with the assistance of the introduced
optimization approach. By meeting system limitations, the traditional EED issue concurrently lessens the
fuel price and ED of thermal units. The constraints and the objective processes are specified in the
subsequent section.

3.1 Objective Function1: Minimization of Total Cost

FðPGÞ ¼
XNG

i¼1
ai þ biPGi þ ciP

2
Gi (8)

The overall cost of the ED issue is actually the sum of the wind generator’s operational cost and the
thermal unit’s fuel cost.

FT ¼ FðPGÞ þ FðPW Þ (9)

3.2 Objective Function2: Minimization of Emission Dispatch

EðPGÞ ¼
XNG

i¼1
10�2ðai þ biPGi þ ciP

2
GiÞ þ giexpdi (10)

3.3 Overall Objective Function of EED Problem

The multi-objective, constrained EED issue can be formulated with wind generator is given by,

Minimize fFT ; EðPGÞg
Subject to

Power balance constraints:

XNG

i¼1
PGi ¼ PDemand þ Ploss (11)

448 IASC, 2023, vol.36, no.1



where,

Ploss ¼
XNG

i¼1

XNG

j¼1
PGiBijPGj þ

XNG

i¼1
B0iPGi þ B00

Generation capacity constraint

For thermal unit Pmin
Gi � PGi � Pmax

Gi

For wind generator 0 � PWj � PWrj

4 Harris Hawks Optimization

The author developed a mathematical model using chasing and hunting process of harris hawks and
proposed a population based, nature inspired optimization problem [21]. The cooperative hunting style of
these hawks includes monitoring, approaching, encircling and attacking the prey. Harris hawks perform
the Leapfrog motion whereas they occasionally re-joining and splitting again for the hunting process. The
“surprise pounce”, which is otherwise recognized as the “seven kills” approach is the major tactic used
by these hawks to catch the prey. According to the developers, exploration and exploitation phases are
carried out with perching and besieging process. The pseudo code for HHO is given below:

Inputs: Hawks size N, total number of iterations T, size of memory location K

Output: best position of the rabbit and its fitness value

Set the position of each Hawks

While (the termination condition is fulfilled ðt,TÞ) do
Compute the fitness value of each Hawks

Set the position of rabbit X t
rabbit as the best position among Z number of Hawks

Update memory location with X t
rabbit

For each hawk (XiÞ do
Calculate the escaping energy ðEÞ of the rabbit using

E ¼ 2E0 1� t

T

� �

if jEj � 1/*exploration phase

update the position of hawks (XiÞ using

X ðt þ 1Þ ¼ XrðtÞ � r1jXrðtÞ � 2r2X ðtÞj q � 0:5
ðXtðtÞ � XmðtÞÞ � r3ðLBþ r4ðUB� LBÞÞ q, 0:5

�

end if

if jEj, 1/*exploitation phase

Set a random number r from 0 to 1

if (r � 0:5 andjEj � 0:5Þ /*soft besiege
update hawks location (XiÞ using
X ðt þ 1Þ ¼ DX ðtÞ � EjJ ðXtðtÞ � X ðtÞj
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DX ðtÞ ¼ ðXtðtÞ � X ðtÞ
else if (r � 0:5 and jEj, 0:5) /* hard besiege

update hawks location (XiÞ using
X ðt þ 1Þ ¼ XtðtÞ � EjDX ðtÞj
else if (r, 0:5 and jEj � 0:5) /* soft besiege with rapid dives

update the position of hawks (XiÞ using
Y ¼ XtðtÞ � EjJðXtðtÞ � X ðtÞj

X ðt þ 1Þ ¼ Y if FðY Þ,FðX ðtÞÞ
Z if FðZÞ,FðX ðtÞÞ

�

else if (r, 0:5 and jEj, 0:5) /* hard besiege with rapid dives

update the position of hawks (XiÞ using

X ðt þ 1Þ ¼ Y if FðY Þ,FðX ðtÞÞ
Z if FðZÞ,FðX ðtÞÞ

�

end if

end for

end while

Return Xrabbit

5 Long Term Memory Updating Process in HHO

In hunting strategies of HHO the position of each hawks can be updated based on the single best position
XtðtÞ of the targeted prey. In some cases, it may lead to premature convergence. To overcome this issue the
Memory Location (ML) concept is implemented to store the consecutive best position of targeted prey in
every iteration. The size of ML is made by several trials. The ML is updated based on first in-first out
concept. In each iteration of HHO, the latest optimal position of the prey replaces the old location. After
updating the position of the hawks in each iteration the best position of the targeted prey is chosen using
the probability Pi

Pi ¼ fitness of X i
tPML

k¼1 fitness of X k
t

(12)

After calculating the probability for each best position of the prey in ML, the selection process is carried
out using Roulette Wheel Selection method. During each iteration the size of ML should be maintained
constant.

The entire process of ML is depicted in the Fig. 1. Let l be the size of the ML. The best position till lth

iteration is occupied in ML. After l þ 1th iteration the oldest best position can be replaced by the new best
position in ML. This process is continued for the entire hunting process.
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6 External Repository Updating Strategy

The selection of promising individual for the next iteration is based on the dominance relation. The new
feasible solution (x1Þ allows to take a position in external repository controller (archive controller). The
position of x1 can be hold based on the dominance relation with the upcoming solutions
xn; fi ¼ 2; 3 : : :Ng. The updating process of archive is fall under the below cases,

Case 1: At initial stage the A= (archive) is empty. The new feasible solution (x1Þ is allowed to take a
position in the A=. It becomes xA=g

Case 2: If the incoming solution xn; fi ¼ 2; 3 : : :Ng � 9fg ¼ 1; 2; : : : GgxA=g : where G
represent the size of A=, then xA=g ! xn.

Case 3: If 9fg ¼ 1; 2; : : : GgxA=g �� xn; fi ¼ 2; 3 : : :Ng, then A= allocate a position to xn.

Case 4: 9fg ¼ 1; 2; : : : GgxA=g � xn; fi ¼ 2; 3 : : :Ng, then A= remains unchanged.

Finally, the dominant solutions take a position in the archive controller. The solutions in the controller
are non-dominating to each other. This strategy effectively increases the global search mechanism.

7 External Repository Maintaining Strategy

It is required to maintain the size of external repository in every iteration. If the size exceeds the fixed
value, the exceeded solutions can be removed by considering the crowding distance. This distance is
computed for each solution based on neighboring solutions. The solutions having minimum crowding
distance is removed from the repository to maintain the size of the repository.

7.1 Pseudo Code for Maintaining the Size of Repository

A=new ¼ function_name (A=updated; NA=Þ
Na ¼ sizeðA=updated; 1Þ

if Na .NA=

/* initialize crowding distance as zero*/

CDðA=updatedj¼1:NA=
Þ ¼ 0;

for i ¼ 1 to k do

/*sorting the members of A=updated based on the ith fitness function*/

SA=updated ¼ sortðA=updated; iÞ;
/* assign inf for first and last members in SA=updated*/

+ 1 + 1

. . . . .

. . . . .

. . . . .
2 2 2 3

1 1 1 1 1 2

1

iteration
2

iteration

ℎ

iteration + 1 ℎ iteration

Figure 1: Memory updating process
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SA=updated1 ¼ inf ;

SA=updatedNa
¼ inf ;

/* calculate CD between the 2nd and the previous last member */

for j ¼ 2 to Na � 1 do

CDðA=updatedj Þ ¼ CDðA=updatedj Þ þ ðSA=updatedj�1 � SA=updatedjþ1 Þ
ðmaxðA=updatedÞ �minðA=updatedÞÞ

end for

/* sort the CD from minimum to maximum and store the index value in I */

½�; I � ¼ sortðCDðA=updatedj Þ; ascendÞ
/* calculate the excess number of solutions in A=updated */

Ne ¼ Na � NA=

/* delete Ne number of solutions from the A=updated */

A=updatedI!1:Ne
¼ ½ �;

end if

returnA=new  A=updated

8 Compromise Solution Selection Using Fuzzy Based Theory

To get at the ideal solution, the best compromise option has to be picked from the solution set. Here the
selection process is done based on the fuzzy membership approach, which is significantly illustrated in Fig. 2.
The membership value of each individual j for objective function i is given by

lji ¼
1 fi , f mini

f maxi � fi
f maxi � f mini

f mini , fi , f maxi

0 fi . f maxi

8>><
>>:

(13)

where f mini andf maxi ; denote the minimum and maximum values of ith objective function whereas l gives
the amount of non-dominated solution.

Figure 2: Fuzzy membership function
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The normalized membership value for j is given by

lj ¼
Pk

i¼1 l
j
iPl

j¼1
Pk

i¼1 l
j
i

(14)

The solution which has the high membership value i.e., maxflj ; j ¼ 1; 2 ; : : : : : lg will be
chosen as the best non dominated solution.

9 Results and Discussion

The details of transmission losses, coefficients of fuel price and emission are referred from [18]. The
system demand is taken as 2:834 MW . The coding is developed in MATLAB. To analyze the result more
effectively three cases were considered here

Case1: To analogize the extreme and compromise solutions with the existing methods, HHO is applied
to IEEE 30 bus, 6 generator system. The system is assumed to be lossless.

Case 2: The solution quality of the HHO algorithm is analyzed using performance evaluation indices
like SP, HV and CM with the well-known Particle Swam Optimization (PSO) by handling the system
with losses.

Case 3: The performance indices of the HHO algorithm is analogized with PSO including wind power.

9.1 Case1: Comparative of Extreme and Compromising Solution

Initially, the HHO algorithm is applied to MOEED problem to obtain the maximum solutions. The
MOEED dispatch issue is considered as a single objective issue with emission dispatch or fuel cost to
find the optimized value of emission dispatch and minimum fuel cost.

Here, Number of Hawks N = 30, Size of Achieve N_A= = 30, Size of Memory Location l = 10, maximum
no of iterations T = 500. The best cost ($/h) and ED (ton/h) is depicted in Tab. 1. The convergence
characteristics are portrayed in Fig. 3. Tab. 2 validates that the optimal fuel cost is 600:11 ð$=hÞ and the
optimal ED is 0:1942ðton=hÞ. The extreme solution of fuel expenditure and ED is compared with the
results from various literatures [12] like Niched Pareto Genetic Algorithm (NPGA), Non-Dominated
Sorting Genetic Algorithm-II (NSGA-II), FMOEP, Strength Pareto Evolutionary Algorithm (SPEA),
Modified Bacterial Foraging Algorithm (MBFA), Multiobjective Adaptive Clonal Selection Algorithm
(MOACSA), NSGA, Multiobjective Grey Prediction Evolutionary Algorithm (MOGPEA), Summation
Based Multiobjective Differential Evolution Algorithm (SMODE) and MOPSO in Tabs. 3 & 4.

Table 1: Compromise solution of cost and emission for case1

Best cost Best Emission

PG1 0:1097 0:4060

PG2 0:2997 0:4589

PG3 0:5252 0:5365

PG4 1:0162 0:3832

PG5 0:5233 0:5388

PG6 0:3598 0:5105

Fuel cost 600:11 638:26

Emission 0:2221 0:1942
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Figure 3: Convergence curve of cost and emission for case1

Table 2: Best solution of cost using HHO algorithm for case1

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission

HHO 0.1097 0.2997 0.5252 1.0162 0.5233 0.3598 600.11 0.2221

MOGPEA 0.1110 0.3025 0.5233 1.0155 0.5194 0.3621 600.11 0.2219

NSGA 0.1038 0.3228 0.5123 1.0387 0.5324 0.3241 600.34 0.2241

NPGA 0.1116 0.3143 0.5419 1.0415 0.4726 0.3512 600.31 0.2238

SPEA 0.1009 0.3186 0.5400 0.9903 0.5336 0.3507 600.22 0.2206

MOPSO 0.1183 0.3019 0.5224 1.0116 0.5254 0.3544 600.12 0.2216

BBMOPSO 0.1090 0.3005 0.5234 1.0170 0.5238 0.3603 600.11 0.2222

FMOEP 0.0872 0.2868 0.5488 1.0114 0.5477 0.3521 600.24 0.2232

MBFA 0.1133 0.3005 0.5202 0.9882 0.5409 0.3709 600.17 0.2200

NSGA–II 0.1094 0.2994 0.5236 1.0157 0.5244 0.3605 600.11 0.2222

MOACSA 0.1090 0.2989 0.5252 1.0183 0.5227 0.3589 600.11 0.2223

SMODE 0.1077 0.2990 0.5259 1.0128 0.5259 0.0128 600.11 0.2221

Table 3: Best solution of Emission using HHO algorithm case1

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission

HHO 0.4060 0.4589 0.5365 0.3832 0.5388 0.5105 638.26 0.1942

MOGPEA 0.4069 0.4613 0.5353 0.3813 0.5381 0.5108 638.55 0.1942

NSGA 0.4072 0.4536 0.4888 0.4302 0.5836 0.4707 633.83 0.1946

NPGA 0.4146 0.4419 0.5411 0.4067 0.5318 0.4979 636.04 0.1943

SPEA 0.4240 0.4577 0.5301 0.3721 0.5311 0.5190 640.42 0.1942

MOPSO 0.4015 0.4590 0.5332 0.3891 0.5456 0.5057 637.42 0.1942

BB – MOPSO 0.4071 0.4591 0.5374 0.3838 0.5369 0.5098 638.262 0.1942
(Continued)
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In case of fuel cost HHO produces the optimum value of 600.11 $/h, which is same as the value obtained
from NSGA II, MOACSC, MOGPEA, BB- SMODE and MOPSO. HHO produces better results when
compared to FMOEP, NPGA, NSGA, MBFA and MOPSO. The corresponding emission value got
improvised than NPGA, FMOEP, NSGA-II and MOACSC. It produces the optimum emission value of
0.1942 ton/h which is same as the results in SPEA, FMOEP, BB-MOPSO, MBFA, NSGA-II, MOPSO,
MOGPEA whereas it performs better than NPGA and NSGA.

In addition, the HHO is instigated to regulate the fuel expenditure and ED, which is depicted in Fig. 4.
For analogizing the compromise solution with the literature results, Average Satisfactory Degree (ASD) is
calculated. Tab. 4 shows that the HHO produces the best ASD (=0.7683) value among the various

Table 3 (continued)

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission

FMOEP 0.3926 0.4570 0.5549 0.3799 0.5434 0.5061 638.97 0.1942

MBFA 0.3943 0.4627 0.5423 0.3946 0.5346 0.5056 636.73 0.1942

NSGA - II 0.4059 0.4586 0.5382 0.3832 0.5385 0.5097 638.22 0.1942

MOACSA 0.4062 0.4577 0.5373 0.3821 0.5404 0.5105 638.30 0.1942

SMODE 0.4002 0.4531 0.5430 0.4019 0.5361 0.4997 635.99 0.1942

Table 4: Compromise solution for case 1

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission ASD

MOHHO 0.2732 0.3823 0.5362 0.7080 0.5204 0.4139 609.60 0.2010 0.7683

BB – MOPSO 0.2595 0.3698 0.5351 0.6919 0.5500 0.4277 609.75 0.2008 0.7555

MOGPEA 0.2540 0.3646 0.5444 0.6948 0.5367 0.4362 609.54 0.2009 0.7677

NSGA 0.2571 0.3774 0.5381 0.6872 0.5404 0.4337 610.07 0.2006 0.7551

NPGA 0.2696 0.3673 0.5594 0.6496 0.5396 0.4486 612.13 0.1994 0.7491

SPEA 0.2785 0.3764 0.5300 0.6931 0.5406 0.4153 610.25 0.2005 0.7527

FCPSO 0.3193 0.3934 0.5359 0.5921 0.5457 0.4470 620.00 0.1971 0.7267

MOCDOA 0.2699 0.3721 0.5291 0.6997 0.5468 0.4162 609.66 0.2009 0.7594

Table 5: Statistical results of SP and HV for case 2

Set spacing (SP)

Best Worst Average Median Std:dev

HHO 0.0002 0.0813 0.0237 0.0168 0.0209

PSO 0.0121 0.3764 0.1033 0.08335 0.0834

Hyper volume (HV)

Best Worst Average Median Std:dev

HHO 1.1073 0.1054 0.67806 0.7761 0.2873

PSO 0.8001 0.3202 0.52630 0.5258 0.1155
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algorithm reported in literature. Even though it gives high emission dispatch, it proves its efficiency in
optimum fuel cost of 609.60 ($/h), which is the ideal compromising solution obtained so far.

Case 2: In this case the algorithm is made to run with the population size of NT = 50 and the maximum
iteration is T = 1000. The obtained results of best fuel cost and emissions are specified in Tabs. 6 & 7. These
outcomes are analogized with other algorithms like SMODE, FMOEP, SPEA, BB-MOPSO, NSGA II,
MOGPEA, MBFA, NSGA, MODE, NPGA, MOACSA and MOPSO. It is easily observed that the
obtained optimum fuel cost (= 605.94 $/h) is the best value. In case of emission dispatch, the obtained
value (=0.1942 ton/h) is same as MODE, FMOEP, BB-MOPSO, MOACSA, SMODE NSGA II and
better than the results of NSGA, NPGA, SPEA, MOPSO, MBFA. From the above results, HHO
algorithm proves the effectiveness in solving the MOEED problem.

Figure 4: NDS-Non dominated solution of HHO for case 1

Table 6: Case 2- Best solution of cost using HHO algorithm

PG1 PG2 PG3 PG4 PC5 PG6 Fuel cost Emission

HHO 0.1249 0.2781 0.5713 0.9337 0.5371 0.3641 605.94 0.2199

BB – MOPSO 0.1229 0.288 0.5792 0.9375 0.5255 0.3564 605.98 0.2202

MOGPEA 0.1165 0.2324 0.5S68 0.9911 0.5310 0.3487 605.99 0.2211

NSGA 0.1356 0.3142 0.8427 1.0442 0.0627 0.4659 620.92 0.2372

NPGA 0.1137 0.3756 0.S046 0.9020 0.1339 0.5324 620.38 0.2239

SPEA 0.1309 0.3643 0.7782 0.9273 0.1311 0.5285 619.57 0.2251

MOPSO 0.1513 0.3436 0.7S66 1.0171 1.0989 0.4671 618.47 0.2313

MODE 0.1372 0.3444 0.7564 0.6025 0.5975 0.4157 618.39 0.2046

FMOEP 0.1848 0.3512 0.7576 0.5973 0.5411 0.4208 619.51 0.2028

MBFA 0.1164 0.3626 0.7808 0.9582 0.1446 0.4921 618.12 0.2259

NSGA - II 0.1608 0.3638 0.6057 0.6048 0.7143 0.4061 618.41 0.2028

MOACSA 0.1628 0.3482 0.6036 0.6068 0.7135 0.4156 618.43 0.2029

SMODE 0.1721 0.3573 0.7413 0.5957 0.5923 0.4018 619.12 0.2027

456 IASC, 2023, vol.36, no.1



9.2 Evaluation of Solution Quality

Judging multi-objective performance is a tedious task than single objective method. For evaluating the
operation of MOEED approach, it is necessary for computing the eminence of attained non-dominated
solution in Pareto front. The solution qualities are compared with the well-known algorithm Multi-
Objective Mutated Particle Swarm Optimization (MOMPSO). The commonly used quality metrics are Set
Spacing (SP) and Hyper Volume (HV) [22]. Tab. 5 gives the comparison of performance measures of SP
and HV. The comparison is made by compiling algorithm for 30 runs.

MOMPSO: inertia coefficient xmax ¼ 0:9; xmin ¼ 0:4; acceleration coefficients = 2

9.2.1 Set Spacing (SP)
The set spacing aids in measuring the similarity of the attained PO set [23]. The formula for this measure is

fspacing ¼ SP2 ¼ 1

jA=j � 1

XjA=j
i¼1
ð�d � diÞ2

di ¼ min
A=j; A=k 2 A=; A=j 6¼ A=k

Xk
i¼1
jfiðA=jÞ � fiðA=kÞj (15)

where di denotes the Euclidian distance of ith non dominated solution with the consecutive solution in Pareto
set, �d is the mean of all obtained dijA=j. jAj is the pareto set size, A=j; A=k are the solutions in the set. The value
zero represent that the values in the set are equally spaced. The non-dominated solutions of HHO algorithm
results the minimum spacing (0.0002). It is noted fromTab. 5 that the HHO solutions are better than the solution
of PSO, which is significantly represented in Figs. 5 and 6.

Table 7: Case 2- Best solution of Emission using HHO algorithm

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission

HHO 0.4079 0.4608 0.5427 0.3944 0.5412 0.5216 645.63 0.1942

BB - MOPSO 0.4103 0.4661 0.5432 0.3883 0.5447 0.5168 646.48 0.1942

MOGPEA 0.4114 0.4660 0.5425 0.3955 0.5401 0.5137 645.89 0.1941

NSGA 0.4403 0.4940 0.7509 0.5060 0.1375 0.5364 649.24 0.2048

NPGA 0.4753 0.5162 0.6513 0.4363 0.1S96 0.5988 657.59 0.2017

SPEA 0.4419 0.4598 0.6944 0.4616 0.1952 0.6131 651.71 0.2019

MOPSO 0.4589 0.5121 0.6524 0.4331 0.1981 0.6129 656.87 0.2014

MODE 0.4184 0.4622 0.5441 0.3793 0.5520 0.5068 645.74 0.1942

FMOEP 0.3980 0.4778 0.5628 0.3795 0.5403 0.5049 645.24 0.1942

MBFA 0.4716 0.5127 0.6189 0.5032 0.1788 0.5822 651.93 0.2019

NSGA–II 0.4103 0.4637 0.5459 0.3881 0.5425 0.5146 645.39 0.1942

MOACSA 0.4090 0.4624 0.5412 0.3933 0.5455 0.5146 644.84 0.1942

SMODE 0.3983 0.4601 0.5423 0.4045 0.5448 0.5139 643.01 0.1942
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9.2.2 Hyper Volume (HV)
Hyper volume indicator defines the objective function space occupied by the set of non-dominated

solution and the reference point pos 	 <. In other words, the union of all hypercubes videfined by the
ithsolutions in the PO set and the reference point gives HV

HV ¼ UjA=ji¼1vi ¼ fUa2A=x : a � x � xmaxg
Here the reference point is considered as the worst value of the objective functions. Since it is the

minimization optimization problem, the maximum value of the objective function is considered as
reference point. The solutions which poses maximum hyper volume treat as superior. From Tab. 5 the
HHO takes the superior place by holding the higher value (1.1073) than PSO

Case 3: In this case the compromising solution and the performance metrics are compared and analyzed
for the system with losses and wind generator. Here the 6 thermal generators are accommodated with one
wind generator, cut-out wind speed vo is 25 m=s, the rated power of 1:5 MW , rated wind speed vr is
15 m=s and cut-in wind speed vin is 3 m=s. The direct cost coefficient kd;wj is 30 $=MW h, the reserve
cost coefficient kr;wj and penalty cost coefficients kp;wj are 4 and 2.2 $/MW h. The time series data are
download from the National Laboratory Research Centre in hourly resolution. The generated Weibull
parameters are calculated as c is 7.2 and k is 5.6, based on modified maximum likelihood method [24].

Figure 5: Compromise solution and Pareto front of HHO for case 2

Figure 6: Compromise solution and Pareto front of PSO for case 2
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The scheduling of demand among the thermal generator and the wind generator is shown in Tab. 8.
According to this the HHO algorithm gives the less fuel cost when compared to PSO. The higher ASD
value (0.75205) of HHO prove its efficiency in solving the MOEED problem. The statistical results for
case3 are depicted in Tab. 9.

10 Conclusion

The present study has employed a novel long term memory based HHO technique for significantly
optimizing the MOEED problem. With the assistance of Clustering technique, the size of PO set is
maintained along with the well distributed solutions whereas the compromising solution is extracted from
the non-dominated solutions through the implementation of Fuzzy based method. The entire work is
validated through IEEE 30 bus 6 generator system and the attained outcomes prove that the HHO
produces the optimum outputs than the other optimization approaches. The coding is developed in
MATLAB and run-in Intel core i5 processor 2.5 GHz/8GB-RAM system. Moreover, the quality of the
non-dominated solutions is examined and analogized with the PSO approach. Therefore, it is validated
that the introduced methodology produces optimum solution in solving the MOEED problems.
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