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Abstract: Signal to noise ratio in ultrasound medical images captured through the
digital camera is poorer, resulting in an inaccurate diagnosis. As a result, it needs
an efficient despeckling method for ultrasound images in clinical practice and tel-
emedicine. This article proposes a novel adaptive fuzzy filter based on the direc-
tionality and translation invariant property of the Non-Sub sampled Contour-let
Transform (NSCT). Since speckle-noise causes fuzziness in ultrasound images,
fuzzy logic may be a straightforward technique to derive the output from the noisy
images. This filtering method comprises detection and filtering stages. First,
image regions classify at the detection stage by applying fuzzy inference to the
directional difference obtained from the NSCT noisy image. Then, the system
adaptively selects the better-suited filter for the specific image region, resulting
in significant speckle noise suppression and retention of detailed features. The
suggested approach uses a weighted average filter to distinguish between noise
and edges at the filtering stage. In addition, we apply a structural similarity mea-
sure as a tuning parameter depending on the kind of noise in the ultrasound pic-
tures. The proposed methodology shows that the proposed fuzzy adaptive filter
effectively suppresses speckle noise while preserving edges and image detailed
structures compared to existing approaches.

Keywords: Image processing; fuzzy logic; directional differences; classification;
ultrasound technology

1 Introduction

Medical images are increasingly being used for diagnostic purposes, posing preservation, image
enhancement, analysis, and transmission problems. Medical acoustic imaging, in particular, is widely
used due to its safety, non-invasiveness, utilizes non-ionizing radiation, and inexpensive cost. Even
though photo quality in ultrasound B-mode has markedly enhanced in recent times. The main
shortcoming in ultrasound imaging is poor image quality due to the minor variations in acoustic
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impedance and backscattered echo signals of distinct soft tissues called speckles [1]. Speckle noise reduces
image contrast and distorts image features, making registration and segmentation more difficult.

Moreover, poor image quality makes it difficult for the physician to diagnose and classify the different
regions in the image using computer-based systems [2,3]. Hence, speckle filtering is an essential step in the
pre-processing process of ultrasound images. However, the speckle noise may include crucial diagnostic
information in other cases, and removing it too much might obstruct medical analysis. Therefore,
researchers developed various approaches for speckle reduction [4–6]. These methods use the local
statistics of images for speckle reduction and perform well in uniform regions but fail to reduce noise in
lines, textures, and edges. Therefore, many partial differential equation-based methods were proposed
[7,8]. Even though these techniques are more effective at speckle removal and edge-preserving, over
smoothening and fine details in the image may still be lost. However, these diffusion-based iterative
approaches have difficulty distinguishing the signal from the image noise. Therefore, multi-scale analyses
have been proposed [9,10]. Some real-time application of ultrasound is used in healthcare for various
purposes, including obstetric sonography, diagnostic testing, blood supply assessment, and directed
surgeries. These photos were taken on a real-time basis and did not contain any ionizing radiation.
Ultrasound imaging is a cost-effective, accessible, and easy imaging technique. They are, nevertheless,
susceptible to disturbances during capture and processing. Visual clarity is harmed by noise because it
obscures image features and reduces sharpness. In ultrasound imaging, the most common noise is
exponential noise, often known as speckle. While these techniques effectively remove the noises and
enhance the edges, facing an artificial appearance of an image may appear in the reconstructed image.

2 Related Works

Krissian et al. [11] developed a speckle reduction filter using a matrix diffusion scheme. They use the
larger window to estimate coefficient and speckle scale function variation. This method is an iterative process
and achieves smooth images after despeckling, and during iterations, it removes the essential structural
details. Pizurica et al. [12] used a non-homomorphic filtering scheme, in which it filters the transformed
coefficients by the generalized likelihood (GenLike) method based on the likelihood ratio of local
neighbors. Coupe et al. [13] anticipated a despeckling filter by Bayesian formulation to adapt a non-local
mean filter (OBNLM). Automatic tuning of filter parameters needs for despeckling. Bhuiyan et al. [14]
offered a despeckling filter based on a distribution modeling of noise and signal from which the noise-
free signal estimate using Maximum a Posteriori Probability (MAP). Farzana et al. [15] presented a
speckle reduction filter for iteratively estimating filtering parameters. It uses homogeneity metrics by
modifying the bilateral filter with image denoising. Cunha et al. [16] evaluated the Nonsubsampled
Contourlet Transform (NSCT) on images affected by additive noise. In terms of image enhancement, this
approach outperforms the undecimated wavelet transform.

Fuzzy logic-based many despeckling filters have been proposed [17–20] for synthetic aperture radar and
ultrasound images. Fuzzy edges and weights of each pixel compute from the local squared window. The main
limitation is its iterative process; this estimation of filtering parameters is complex. A modified despeckling
filter developed by Guo et al. [21] comprised two stages: the first step determines the maximum likelihood
estimator noise-free pixel. Then, restore the details using a non-local means algorithm. The main drawback is
optimizing the filtering parameter in the maximum likelihood estimator. A noise filter based on discrete
topological derivatives proposes by Nedumaran et al. [22]. This technique is capable of reducing speckle
noise and improving image quality. Tsakalakis et al. [23] designed a despeckling filter by combining
spatial and frequency domain signals derived from the multi- transducer. The primary disadvantage is
reconstructing images collected from the multiple sensors, necessitating an image registration process. Jai
Jaganath Babu et al. [24] anticipated a despeckling method related to the adaptive binary morphological
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operations applied on NSCT coefficients with a good edge preservation index. Still, the contrast of the
denoised image is low. Singh et al. [25] developed a method by combining directional smoothing filter
and wavelet thresholding by the modified Bayesshrinkage rule. This method removes the speckle noise
very well. Leal et al. [26] proposed a new orthonormal wavelet relation for image denoising. Different
wavelets were analyzed and performed better in edge preservation and speckle reduction. Jain et al. [27]
employed a rule-based thresholding technique applied to noisy transformed images for speckle reduction.

This article proposes a novel denoising filter based on the Nonsubsampled Contourlet Transform
(NSCT) and directional derivative of the transformed noisy ultrasound images. Integrates adaptiveness
into two phases; in the first stage, fuzzy is applied on directional the difference features derived from
NSCT coefficients to classify the regions in the transform domain. Then, the appropriate filters are
applied to the classified areas using a weighted average filter to distinguish the edges and noise in the
second stage. The projected algorithm is widely studied and compared with previous denoising filters on
different images like standard images, simulated images, and clinical ultrasound images.

We organized this paper as follows: We cover the theoretical basis in Section 2. In Section 3, the noise
model, multi-scale transform, fuzzy logic model, direction difference features fuzzy inference, and present
the design of the weighted average filter. Then, Section 4 describes quantifying the outcomes of the
experiments selected for the study. Finally, we conclude this study in Section 5.

3 Theoretical Backgrounds

It makes many attempts to reduce speckle noise in ultrasound pictures, which only reduces or eliminates
noise and dilutes the essential features. Moreover, the techniques cannot discriminate the edge information
and noises, causing sharp and weak edges to be suppressed and assuming them as noise. As a result, a method
needs to reduce speckles ultimately and effectively preserve the edges and retain fine superior points in the
image. The Viola-Jones technique is a method described in [28–30] for detection purposes, as the detection
framework checks for features such as the total of image pixels within rectangular sections. It is highly
sophisticated because it involves well over one rectangle characteristic within the approach, although it is
simple to apply with a limited dataset. It can also help to minimize or remove distortion in real-world
images. However, our technique is designed specifically for medical images, such as ultrasound images.
Therefore, we’re taking steps to improve medical image quality by reducing distortion in ultrasound
images. In this article, based on the parameters extracted from NSCT transformed noisy image, fuzzy
logic is applied to directional features to define each class. The proposed technique’s filtering stage adapts
suitable filtering methods that classify the regions to preserve details, sharp and weak edges.

3.1 Modeling of Speckle Noise

In an ultrasound picture, speckle noise displays a granular texture, and it is due to constructive and
destructive ultrasound waves with objects from sub-resolution scatters [31]. The presence of speckle
noise can explain using statistical and probabilistic approaches. Assume the ultrasound picture is distorted
in size by multiplicative and additive noise. The noisy image before logarithmic compression described as,

Rða; bÞ ¼ Iða; bÞ � nða; bÞ þ hða; bÞ (1)

I(a, b) is the true image. It acknowledges that additive noise (sensor noise) has less influence than
multiplicative noise due to coherent interference. Eq. (1) simplifies to

Rða; bÞ ¼ Iða; bÞ � nða; bÞ (2)
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Arsenault et al. [30] demonstrated that the speckle noise is approximately correlated with Gaussian noise
when the image transforms logarithmically. By applying the logarithmic transformation, we can rewrite Eq.
(2) as,

R0ða; bÞ ¼ log ½Iða; bÞ� þ log ½nða; bÞ� (3)

NSCT uses despeckling in ultrasound images. When compared with contourlet transform, it observes
that the NSCT is entirely shifting invariant, multi-scale, and multi-direction.

We develop NSCT by combining the Non-subsampled Directional Filter Banks (NSDFB) and Non-
subsampled Pyramid (NSP) to provide multi-scale properties and variable angles. For example, let Rj be
the input image at j level. Then, NSP uses two non-sampling filters, H0 and H1, to separate the input
image Rj into lowpass subband R0

j and highpass subband R1
j .

Ri
j ¼ Hi�Rj (4)

* is the convolution operator. The highpass subband is R1
j decomposed into multiple directional

subbands by NSDFB. Uequ
k and Yj,k is the equivalent filter for the process mentioned above. The output of

NSDFB Yjk is,

Yjk ¼ Uequ
k �R1

j ; where k ¼ 1; 2; 3 . . . 2lj (5)

The above process works on the low-pass sub-band R0
j by setting

Rjþ1 ¼ Rj (6)

Then, the ‘max-flat’ and ‘dmaxflat7’ filters implement NSP and NSDFB [31]. Assume G0, G1 and V
equ
k

be the reconstruction filters of H0, H1and Uequ
k respectively, for reconstruction.

R̂j ¼ G0�R̂0
j þ G1�R̂1

j (7)

R̂0
j ¼ R̂jþ1 (8)

R̂1
j ¼

X2lj
k¼1

Vequ
k �Yjk; where j ¼ 1; 2; 3 . . . :J (9)

The input image may then restore using the above process, which is carried out iteratively from the jth to
the 1st level. The primary objective of this study is to use adaptive fuzzy logic filtering with a directional
difference to denoise each directional subband.

3.2 Fuzzy Logic Model

The speckle noise influences the image pixels in ultrasound imaging and classifies regions as
homogeneous, detail, or edge. So defined class has its distinct characteristics and varied membership
function. As a result, we need to categorize each transformed coefficient in each directional subband as a
suitable reasoning approach. As a result, we use fuzzy logic to classify each directional subband’s noisy
coefficient into three classes based on the degree of membership function. There are two stages in the
method proposed, i.e., detection and filtering. First, the image parameter directional difference was used
in the detection stage to classify each level of transformed coefficient in each directional subband for
detection [32]. Then, three different filters are used on the defined classes to improve the visual quality
and eliminate speckle noise.
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3.2.1 Directional Difference Features
This stage’s primary goal is to separate the noisy coefficients into homogeneous picture structures or

edges. The neighbor reflects the features of every coefficient in the converted noisy picture. Directional
Differences (DD) between altered coefficients and it identifies the neighbors to find the attributes of each
coefficient in the transformed noisy image. The lesser the differential value, the more regular or
homogeneous the noise coefficient is. The bigger the differential value, the more likely the noisy factor is
to be considered an edge. Finally, the direction flow depicted in Fig. 1 provides the most data about the
image’s morphological characteristics.

We represent the coefficient and coordinates in each direction. The absolute deviation with all
coefficients in every direction presents in the chosen size frame. Then average values of all differences
[32] in each direction have been seen in Eq. (10).

Dl ¼ 1

4

X
x2Dl

jx� xi;jj (10)

where, l ¼ 1; 2; 3; 4

Above Eq. (10), these average difference values map into the fuzzy domain in each direction. As noise spreads
over the transformed image, it cannot eliminate noise in the image filtering process. As a result, the Gaussian
membership function integrates directional difference features into the fuzzy domain and defines Eq. (11).

mi
mðDlÞ ¼ e

�ðDl�ciÞ2
2s2

i

� �
(11)

Eq. (11) is the membership function of different classes with mean and variance and denotes other regions
defined in the method. The graphical representation of the membership function for the various courses
depicts in Fig. 2.

Figure 1: Sliding window with four directions
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We obtain a, b, and c values using Eq. (12) to classify different regions.

mi
mðDlÞ ¼

homogenous; u, b
detail; u � a and u � c
edges; u. b

8<
: (12)

The coefficients with lower directional difference values belong to the uniform region. We choose the
minimum value of the directional difference from XL

h ðx; yÞ to set point ‘a’. Coefficients with maximum
directional difference value are considered edges. We determine the threshold ‘c’ by defining edge
defined class. Edges are distinguished efficiently by gradient operation and computed from XL

h ðx; yÞ. To
set the point ‘c,’ the maximum value of the directional difference is chosen. Finally, the average weight
of ‘a’, ‘c,’ and ‘b’ values is selected.

Eqs. (13)–(17) gives the threshold calculation equations for each direction.

al ¼ min½Rl�; where l ¼ 1; 2; 3; 4 (13)

Rl ¼ DD½XL
u ða; bÞ�W�W (14)

cl ¼ peak½R0
l� (15)

R
0
l ¼ DD½gradðXL

u ða; bÞ�W�W (16)

bl ¼ average½al; cl� (17)

As a result, thresholds a, b, and c values noisy coefficients combine into different classes stated and
adaptively varied in each direction based on the quantity of noise present in the ultrasound picture. Tab. 1
comprises thresholds for natural and accurate ultrasound images in different directions, and we depict
them graphically in Fig. 3.

Figure 2: Gaussian membership functions with different class
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3.2.2 Fuzzy Inference for Defining Class
We frame fuzzy rules to define noisy coefficients as detail, edge, and homogenous. ‘Large’ and ‘Small’

represent the connection level in each class. For the classification of each coefficient in three different classes,
six rules are framed based on directional differences, as given below.

Rule 1: If l1mðD1Þ is large and If l1mðD2Þ is large and
If l1mðD3Þ is large and If l1mðD4Þ is large then noisy coefficient in homogenous class

Rule 2: If l2mðD1Þ is large and If l2mðD2Þ is large and
If l2mðD3Þ is large and If l2mðD4Þ is large then noisy coefficient in detail class

Table 1: a, b, c values, arrived in four directions

Image type Threshold Noise level (σn)

D1 D2 D3 D4

Grayscale 8-bit 256 × 256 Lena picture 0.40

a 0.0549 0.0353 0.0510 0.0314

b 0.2922 0.2824 0.2902 0.2804

c 0.5294 0.5294 0.5294 0.5294

0.70

a 0.0902 0.0588 0.0902 0.0510

b 0.3098 0.2902 0.3078 0.2922

c 0.5294 0.5216 0.5255 0.5333

1.00

a 0.1373 0.0863 0.1059 0.0784

b 0.3314 0.3059 0.3176 0.3020

c 0.5255 0.5255 0.5294 0.5255

Figure 3: Membership function for Lena image and ultrasound image1
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Rule 3: If l3mðD1Þ is large and If l3mðD2Þ is large and
If l3mðD3Þ is large and If l3mðD4Þ is large then noisy coefficient in edge class

Rule 4: If ðl1mðD1Þ is large and If l1mðD3Þ is largeÞ or
If ðl2mðD1Þ is large and If l2mðD3ÞÞ islarge or
If ðl3mðD1Þ is large and If l3mðD3Þ is largeÞ then noisy coefficient in detail class

Rule 5: If ðl1mðD2Þ is large and If l1mðD4Þ is largeÞ or
If ðl2mðD2Þ is large and If l2mðD4Þ is largeÞ
If ðl3mðD2Þ is large and If l3mðD4Þ is largeÞ then noisy coefficient in detail class

Rule 6:ðIf l1mðD1Þ is large and l2mðD1Þ is large and l3mðD1ÞÞ is largeÞ
or ðIf l1mðD2Þ is large and l2mðD2Þ is large and l3mðD2ÞÞ is largeÞ
or ðIf l1mðD3Þ is large and l2mðD3Þ is large and l3mðD3ÞÞ is largeÞ
or ðIf l1mðD4Þ is large and l2mðD4Þ is large and l3mðD4ÞÞ is largeÞ
then noisy coefficient in edge class

These rules may use to easily differentiate all distinct classes of coefficients and perform effective fuzzy
inference.

3.3 Speckle Denoising Filters

Let R′(a, b) be the log-transformed picture. Then, employing NSCT on R′(a, b) for ‘’L’’ scales and ‘’θ’’
directions per scale, the transformed picture obtains when it comes to scale and direction is X(s, L, θ).

Where, h ¼ 2L; L ¼ 2; 3; 4; . . . :

In defining three different classes, each coefficient is X(s, L, θ) is mapped based on directional features.
In the reasoning step, each coefficient is examined and classified as homogeneous, detailed, and edge
regions. A suitable filter is necessary for denoising, removing the noise without altering the image’s
structural information. As a result, appropriate filters apply to the defined classes.

3.3.1 Homogeneous Class
For the homogenous class region, for every scale ‘L’ and every direction ‘θ,’ a simple mean filter of size

(2K + 1) × (2K + 1) is enough because nearby pixels are more correlated, and it is suitable to average them
together by preserving details and suppressing noise away, and we define it by Eq. (18),

FLu ða; bÞ ¼
1

ð2K þ 1Þ2
XK
r¼�K

XK
p¼�K

XL
u ðaþ r; bþ pÞ (18)

where, K ¼ 1; 2 . . . :is an integer

3.3.2 Detail Class
Fine details carry some helpful information, and if preserved, it cannot apply a mean filter on the

coefficients classified as detail region X(s, L, θ). One of the non-linear and order static filters, the median
filter, can preserve edges and retains desirable information for analysis given below in Eq. (19)

FLu ða; bÞ ¼ medianðXL
u ðaþ r; bþ pÞÞ; where� K � ðr; pÞ � K (19)
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3.3.3 Edge Class
In this class, we define the transformed coefficients with maximum directional difference value as edges,

and there is a chance of having noise or sharp edges. Therefore, an adaptive weighted average filter must
preserve essential details in a transformed image by suppressing noise, given in Eq. (20). Based on the
observation, we assign higher and lower weights for edges and noise, respectively—the weight wL

hðx; yÞ
function is given in Eq. (21).

FLu ða; bÞ ¼
PK

r¼�K

PK
s¼�K wL

u ðr; pÞ � XL
u ðaþ r; bþ pÞPK

r¼�K

PK
p¼�K wL

u ðr; pÞ
(20)

wL
u ða; bÞ ¼ mL

u ða; bÞ � zða; bÞ (21)

where z(a, b) and mL
u ða; bÞ are the similarities defined in [33] based on amplitude and spatial.

mL
u ða; bÞ ¼ exp � XL

u ða; bÞ � XL
u ðaþ r; bþ pÞ
d

� �2
 !

(22)

zða; bÞ ¼ exp � r2 þ p2

ð2K þ 1Þ2
 ! !

(23)

where XL
u ða; bÞ and XL

u ðaþ r; bþ pÞ is coefficient to be altered based on its neighboring coefficient
defined (2K + 1) × (2K + 1) of square window size, r; p 2 ½�K to K �. d ¼ C� ŝn, tuning parameter
ð0C0Þ and noise variance ðŝnÞ. It must select the tuning value ‘C’ specifically to filter and preserve
essential details effectively. ‘C’ is estimated using the Structural Similarity Index Measure (SSIM), and it
defines as:

r ¼ SSIMðnþ 1Þ � SSIMðnÞ
SSIMðnÞ (24)

Fig. 4 shows the plot between 0C0 and 0r0 for different noise levels, 0.4 and 0.7. We choose the Copt value
when difference value approaches below zero.

Figure 4: Tuning parameter plot for standard image
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Tab. 2 shows the optimal 0C0 value for standard and real images with varied noise standard deviations.
As a result, the weights applied by the proposed weighted averaging filter differ depending on the picture
type and the quantity of noise distorting the image.

Algorithm

Detection stage

Step 1: Apply log transform on observed image R(a, b) of size M × N to get R
0 ða; bÞ.

Step 2: Apply NSCT on R′(a, b) to obtain X(s, L, θ)

Step 3: Compute DD½XL
u ða; bÞ�W�W; where W 2 ½M; N�

Step 4: Using Eqs. (13)–(17), calculate threshold values of a, b and c.

Step 5: Apply Fuzzy logic DD½XL
u ða; bÞ�W�W for the defined class using Eq. (11).

Step 6: Apply fuzzy rules to classify each transformed coefficient into three other defined regions.

Filtering stage

Initiate the tuning parameter

For each scale ‘L’ and each direction ‘θ’

Step 1: for a = 1:M

Step 2: for b = 1:N

Step 3: if XL
u ða; bÞin homogenous region

Step 4: FLu ða; bÞ ¼ 1
ð2Kþ1Þ2

PK
r¼�K

PK
p¼�K

XL
u ðaþ r; bþ pÞ

Step 5: elseif XL
u ða; bÞin detail region

Step 6: FLu ða; bÞ ¼ medianðXL
u ðaþ r; bþ pÞÞ

Step 7: elseif XL
u ða; bÞin edge or noisy region

Step 8: FLu ða; bÞ ¼
PK

r¼�K

PK
p¼�K wL

u ðr; pÞ � XL
u ðaþ r; bþ pÞPK

r¼�K

PK
p¼�K wL

u ðr; pÞ

Apply inverse NSCT on FLu ða; bÞ to get F̂ðL; uÞ and apply exponential transform on F̂ðL; uÞ to get
filtered image F̂

0 ða; bÞ: Perform relative difference in SSIM, ρ using Eq. (24). Check for the stopping
condition; if ρ(n + 1) − ρ(n) < 0 , then C = Copt else choose another C value and repeat steps from 6 to 8.

Table 2: Copt for different type’s images

Image type Noise levels (σn)

0.40 0.70 1.00

Lena 0.18 0.3 0.44

House 0.12 0.16 0.24

Ultra sound image1 0.1 0.12 0.14
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4 Results and Discussions

All despeckling filters apply to all types of ultrasound images and analyze with other speckle reduction
techniques. In this study, a speckled image obtains as defined in [34]. The quality of the denoised images
evaluates using the standard metrics signal-to-noise ratio (SNR) and edge preservation (EPI) performance.
To study structural similarity (SSIM) and use the quantity of filtering in the simulated pictures (USDAI).
The investigational results of existing methods are obtained based on the filter parameters defined in the
article. The filtered outputs of various processes for a standard noisy Lena picture with a standard
deviation of 0.75 depicts in Fig. 5. With the use of existing despeckling filters, it is clear that the
projected adaptive fuzzy filter with a directional difference as features efficiently eliminates speckle noise
while maintaining finer details and edges in an image [35–37].

The difference between speckled and despeckled images is obtained from the existing methods to
validate the proposed method qualitatively to preserve fine details and edges. We depict the results in
Fig. 6. It clearly shows that the GenLike procedure smoothens more points and edges while SNIG
despeckling is very poor. In the ATMAV method, achieve smoothening in the denoised image. The
morphological operator on the NSCT method filters more noise but has low contrast [38–42]. While
comparing visually with other methods, the proposed denoising filter with a directional difference as a
feature achieves better retention of fine details in the denoised picture.

Figure 5: Denoised images of various despeckling filters. (a) Standard image (b) Noisy lena picture with
standard deviation 0.75. Despeckled picture using (c) GenLike [11] (d) SNIG [12] (e) ABF [13] (f)
ATMAV [17] (g) Morphological operator on NSCT [19] (h) Proposed adaptive Fuzzy on NSCT
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The performance of the proposed technique analyzes quantitatively by a standard edge preservation
index (β) metric. We use this metric to investigate the ability of the method to preserve sharp and weak
edges. We list the values of β for various despeckling methods in Tab. 3. The table list that the β value of
the suggested speckle reduction scheme is more significant than other existing speckle reduction filters. It
shows proposed method has good edge preservation. The edge preservation index defines as,

b ¼
PðDZ � DZÞ � ðDẐ � DẐÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðDZ � DZÞ2P ðDẐ � DẐÞ2

q (25)

Accordingly, using the 3 × 3 typical Laplacian function, ΔZ and D Ẑ are the highpass filtration outputs of

DZ and DẐ, accordingly. ΔZ and DẐ are the average intensities of Z and Ẑ, accordingly. The range of β value
is [0–1].

We use Signal to Noise Ratio (SNR) to analyze quantitatively for various despeckling methods, and it is
defined by,

SNR ¼ 10 log10
rI
rD

� �
(26)

where A denotes noise-free image variance I(x, y) and σD, the difference in noise-free and denoised image
variance, i.e., D ¼ Iðx; yÞ � F̂ 0ðx; yÞ, where F̂ 0ðx; yÞ, represents filtered images. Finally, we list SNR
values of the various despeckling method used in this study for comparison in Tab. 4. It is observed from
the table that the developed despeckling algorithm on the directional difference on NSCT outperforms
well in all other methods.

Figure 6: Level of noise eliminated from standard picture (a) GenLike, (b) SNIG, (c) ABF (d) ATMAV (e)
Morphological operator on NSCT (f) Proposed adaptive Fuzzy on NSCT
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Table 3: β values for various filtering methods

Image GenLike SNIG Adaptive bilateral ATMAV Morphological
operator on NSCT

Proposed method

Lena 0.644 0.756 0.656 0.483 0.820 0.824

House 0.730 0.700 0.747 0.644 0.808 0.828

Table 4: SNR metric for different techniques (db)

Picture type Technique for analysis Noise standard deviation (σn)

0.60 0.70 0.80 0.90 1.00

Grayscale 8-bit 256 × 256
Lena picture

GenLike 14.39 13.29 12.38 11.47 10.61

SNIG 14.60 13.66 12.77 12.01 11.44

ABF 14.77 13.99 12.93 12.48 11.82

ATMAV 15.36 14.93 14.39 13.83 13.34

Morphological operator on NSCT 18.45 17.37 16.42 15.60 15.03

Proposed fuzzy filter on NSCT 18.35 17.62 16.60 15.84 15.20

Figure 7: Denoised image of various speckle reduction filters (a) noise free ultrasound picture (b) noisy
picture (c) GenLike (d) SNIG (e) ATMAV (f) morphological operator on NSCT (g) NSCT method
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We evaluated the performance of the suggested despeckling scheme with authentic ultrasound images.
First, we removed the natural speckle noise from online ultrasound pictures, http://www.telin.rug.ac.be/sanja/
[12]. A comparison of the proposed technique on authentic ultrasound images depict in Fig. 8. The figure
shows that an adaptive fuzzy filter with a directional difference as a feature outperforms others in
eliminating speckle noise and retains essential elements of an ultrasound picture. On the other side, the
ATMAV [17] method smoothens the image more and fails to preserve crucial structures. In the case of
[19], based on the parameters chosen, filters with less noise depicts clearly in Fig. 7.

The difference between noisy and denoised images obtained to evaluate the various despeckling
techniques to preserve fine details is shown in Fig. 8. The developed despeckling algorithm on the
directional difference from the difference image has retained all the essential features in the actual
ultrasound image. SNIG [12] method filters noise and crucial details in the image, clearly shown in the
figure. The morphological operator on NSCT [17] filters more information in the image than noise.

The case of authentic ultrasound images with the denoised image of different despeckling filtering and
Noise level removed ultrasound picture depicted in Figs. 7 and 8. As a consequence, hiding the essential
elements of the ultrasound image. On the other side, the suggested methodology benefits from denoising
the speckle surrounding the lesions in an ultrasound picture while filtering less in the lesion structure,
retaining the information features of the lesions in the ultrasound medical image.

Figure 8: Level of noise eliminated ultrasound picture (a) GenLike, (b) SNIG, (c) ATMAV (d)
Morphological operator on NSCT (e) NSCT suggested method
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5 Conclusions

We take an adaptive fuzzy logic filter with a directional difference as a feature for defining membership
function on NSCT as proposed in this article. In the formulated technique, adaptiveness integrates into two
stages. We classify image regions at the first stage by applying the membership function [35,36] to the
directional difference obtained from the NSCT noisy images. Then, the system adaptively selects the
better-suited filter for the specific image region, resulting in significant speckle reduction and enhanced
image structural features. We use the structural similarity measure as a tuning parameter, dependent on
the kind of picture and the amount of noise contained in the images. The advanced despeckling method
has better edge preservation with two degrees of adaptiveness compared to the existing techniques. A
study of different despeckling ways on standard, simulated and actual ultrasound pictures. Investigatory
results demonstrated that the suggested scheme outperforms previous approaches in noise isolation on
homogeneous regions and can preserve boundaries and tiny features in denoised images. Furthermore,
our approach has better retention in textures and sharp edges for the actual ultrasound picture than the
existing methods. Experiments were conducted on Field II simulated image and the outcomes achieved
are improved than the other approaches. The proposed technique outperforms well than other current
techniques quantitatively as well as qualitatively.
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