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Abstract: In geometry processing, symmetry research benefits from global geo-
metric features of complete shapes, but the shape of an object captured in real-
world applications is often incomplete due to the limited sensor resolution, single
viewpoint, and occlusion. Different from the existing works predicting symmetry
from the complete shape, we propose a learning approach for symmetry predic-
tion based on a single RGB-D image. Instead of directly predicting the symmetry
from incomplete shapes, our method consists of two modules, i.e., the multi-mod-
al feature fusion module and the detection-by-reconstruction module. Firstly, we
build a channel-transformer network (CTN) to extract cross-fusion features from
the RGB-D as the multi-modal feature fusion module, which helps us aggregate
features from the color and the depth separately. Then, our self-reconstruction net-
work based on a 3D variational auto-encoder (3D-VAE) takes the global geo-
metric features as input, followed by a prediction symmetry network to detect
the symmetry. Our experiments are conducted on three public datasets: ShapeNet,
YCB, and ScanNet, we demonstrate that our method can produce reliable and
accurate results.
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1 Introduction

Detecting the symmetry of 3D objects is a critical and fundamental problem for many computer vision
applications. In geometric processing, finding symmetries in geometric data, such as point clouds, polygon
meshes and voxels, could help numerous applications take advantage of symmetry information to solve their
tasks or improve the algorithms, e.g., shape matching [1], segmentation [2], completion [3], etc. Among all
the symmetry types, the most common and important one is planar reflective symmetry. Traditional planar
symmetry detection methods are usually based on the observation that all points on the shape will coincide
with the original shape after mirror transformation along the symmetry plane. e.g., a shape can be aligned to
the principal axes, then planes formed by pairs of principal axes can be checked to see if they are symmetry
planes. Recently, deep learning-based methods leverage a neural network to extract global features of the
shape, which is used to capture possible symmetry [4,5].
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However, these methods are all symmetry detection on complete 3D shapes. But the shape of an object
captured in real-world applications is often incomplete due to the limited sensor resolution, single viewpoint,
and occlusion, in this case, the above basic assumption for complete 3D shape will be broken.

For this reason, we propose to directly perform symmetry detection from partially observed objects/point
clouds. A common application scenario is estimating symmetries of 3D shapes based on a single-view RGB-D
image. Due to partial observations and object occlusion, it poses special challenges that are beyond the reach of
geometric detection. For example, missing global geometric information leads to crucial difficulty to find local
symmetry correspondences which are supported by mirror transformation. So, we try to dig out more potential
information through the deep neural network, just as humans can infer symmetrical information through a large
amount of learned knowledge when they see a new object.

In this work, we propose a learning approach for symmetry prediction based on a single RGB-D image.
Trying to transform an incomplete shape into a complete shape is our main motivation. Our method consists of
two modules, i.e., the multi-modal feature fusion module and the detection-by-reconstruction module. We build
a channel-transformer network (CTN) to extract cross-fusion features from the RGB-D as the multi-modal
feature fusion module. Then, our self-reconstruction network based on a 3D variational auto-encoder (3D-VAE)
takes the cross-modal features as input, followed by a prediction symmetry network to detect the symmetry.
Fig. 1 shows the pipeline of our method. Thanks to our reconstruction network, our detection network is
trained in an unsupervised manner without any symmetry annotations. Extensive experiments on several
benchmarks demonstrate the effectiveness of our method. To summarize, our main contribution is three-fold:

� We propose a channel-transformer network for single-view RGB-D images to extract multimodal
features.

� We use a 3D-VAE network to perform the self-reconstruction, replacing the MLPs with 3D CNN in
the latent layer.

� We propose an end-to-end multi-feature network for symmetry prediction.

2 Related Work

2.1 Multimodal Fusion

Multimodal fusion can take advantage of data obtained from different sources/structures for
classification or regression, so it becomes a central problem in machine learning [6]. A variety of works

Figure 1: The architecture of our pipeline. At first, taking a RGB image and a depth image as input, cross-
model features are extracted by the CTN and followed by the self-reconstruction network based on 3D-VAE.
Then, aggregating the cross-features and enhanced geometric features to predict symmetry through the
symmetry prediction network
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have been done towards deep multimodal fusion [7]. A simpler way is to use the aggregation-based method,
which employs a certain operation (e.g., averaging [8], concatenation [9,10], and self-attention [11]) to
combine multimodal sub-networks into a single network. Or use alignment-based fusion [12,13], which
adopts a regulation loss to align the embedding of all sub-networks while keeping full propagation for each
of them. But the aggregation-based fusion is prone to underestimating the intra-modal propagation once the
multimodal sub-networks have been aggregated. And the alignment-based fusion always delivers ineffective
inter-modal fusion owing to the weak message exchanging by solely training the alignment loss. To balance
the two methods, [14] proposed a channel exchanging method which is parameter-free and could
dynamically exchange channels between sub-networks of different modalities. But by judging the parameter
of BN layer approaches zero or not to exchange the channel directly would lead to no information attention
between the corresponding channels, which may result in information faulting. So, our method opts to
optimize the feature handling process, which includes attention mechanism between the corresponding channels.

2.2 Learning-based Symmetry Detection

In pattern recognition and computer vision literature, there exists a significant number of papers dedicated
to finding symmetries in images [15], two-dimensional [16–18], and three-dimensional shapes [19–21]. For
symmetry detection of 3D shapes, we usually use the Euclidean distance between points to measure the
symmetry of a shape, and the planar reflective symmetry is the most fundamental one. Early methods [22]
used some entropy features to help find the reflective symmetry or create different metrics to detect intrinsic
symmetry [23]. Most recently, deep learning has been adopted for the task of 3D symmetry detection. In
[24] utilize structured random forests to detect curved reflectional symmetries. In [25] develop an
unsupervised deep learning approach for effective real-time global planar reflective symmetry detection,
which demonstrates excellent results. However, just like PRS-Net proposed by Gao et al. [25], most of the
work is aimed at the symmetry detection of complete 3D shapes, and they are not applicable to incomplete
3D shapes. Up to now, the existing works for incomplete 3D shapes mainly focus on learning-based shape
descriptors [26], which makes it difficult to detect symmetry directly if the shape is seriously missing (e.g.,
rendered RGB-D). Our network aims to utilize the generate model to reconstruct the global geometric
features of incomplete 3D shapes as much as possible, which is helpful to detect symmetry.

3 Method

The symmetry of a 3D object is easily measurable when its shape is complete. Global geometric features
take enough information for conventional symmetry detection pipelines to find the positive symmetry plane.
However, shapes captured in real-world applications are often incomplete due to the limited sensor
resolution, single viewpoint, and occlusion. So, we take a single RGB-D image as input, to predict the
symmetry of the incomplete shape.

As shown in Fig. 1, our solution consists of three major components. 1) Given an RGB-D image, a
channel transformer network (CTN) extracts cross-modal features by fusing information from the RGB
image and the depth image. 2) A self-reconstruction network (3D-VAE) predicts the complete geometric
shape based on voxelized cross-modal features. 3) A symmetry prediction network, taking the cross-
modal features from the CTN and the enhanced geometric features from 3D-VAE as multi-features input.

3.1 Channel-Transformer Network for RGB-D Images

Traditional methods often treat an RGB-D image as a 4-channel feature, while literature [14] found that
RGB and depth are two modal features, the RGB takes texture information, and the depth contributes contour
information. So, aggregation-based methods [7,9,10] and alignment-based methods [12,13] process them
separately, but internal feature communication is ignored.

IASC, 2023, vol.35, no.3 3101



Therefore, we set up two sub-networks to deal with RGB and depth respectively and propose Channel-
Transformer Network (CTN) to achieve the internal feature communication. Instead of using aggregation,
alignment, or channel-exchanging methods as before, CTN dynamically transforms the channels between
sub-networks for fusion. Inspired by [14], we utilize the scaling factor (i.e., γ) of Batch-Normalization
(BN) [27] as the importance measurement of each corresponding channel and use a transformer between
the channels associated with close-to-zero factors of each modality. Such message transformer is self-
adaptive, as it is dynamically controlled by the scaling factors that are determined by the training itself.

We conduct multi-modal fusion on RGB-D images corresponding to the same image content. In this
scenario, all modalities are homogeneous in the sense that they are just different views of the same input.
Thus, the parameters except BN layers of the CTN are shared with each other. By using private BNs, we
can determine the channel importance for each individual modality, and by sharing convolutional filters,
the corresponding channels among different modalities are embedded with the same mapping, which
could yield promisingly expressive power.

Suppose we have the i-th input data of M (M = 2) modalities, xðiÞ ¼ fxðiÞm 2 RC�ðH�W ÞgMm¼1, where C
denotes the number of channels, H and W denote the height and width of the feature map. We first
process each modality with a 2D U-Net sub-network fm(x), which shares all parameters with each other
including convolutional filters, except BN layers. The output of the sub-network is y.

ym ¼ fmðxmÞ m ¼ r gb; when the input is RGB
m ¼ d; when the input is depth

�
(1)

Prior to introducing the channel transformer process, we first review the BN layer [27], which is used
widely in deep learning to eliminate covariate shift and improve generalization. We denote by xm,l the l-th
layer feature maps of the m-th sub-network, and by xm,l,c the c-th channel. The BN layer performs a
normalization of xm,l followed by an affine transformation, namely,

x0m;l;c ¼ cm;l;c
xm;l;c � lm;l;cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2m;l;c þ E
q þ bm;l;c (2)

μm,l,c and σm,l,c compute the mean and the standard deviation, respectively, of all activations over all
pixel locations (H and W) for the current mini-batch data; γm,l,c and βm,l,c are the trainable scaling factor
and offset, respectively; E is a small constant to avoid divisions by zero. The (l + 1)-th layer takes
fx0m;l;cgc as input after a non-linear function.

The factor γm,l,c in Eq. (2) evaluates the correlation between the input xm,l,c and the output x0m;l;c during
training. The gradient of the loss w.r.t. xm,l,c will approach 0 if γm,l,c→ 0, implying that xm,l,c will lose its
influence on the final prediction and become redundant thereby. In other words, once the current channel
xm,l,c becomes redundant due to γm,l,c→ 0 at a certain training step, it will almost do henceforth.

Thus, we pick out the channels of small scaling factors and the corresponding ones of other sub-
networks, which are fed into the CTN, and then we replace the channels with the features from the CTN.
The CTN is presented in Fig. 2. To be specific, it contains three cross-attention layers, each followed by
two AddNorm layers and one feed-forward layer [11,28]. Suppose X = xm,l,c and the corresponding
channel of another sub-network is Y ¼ xm0;l;c. The cross-attention layer of CTN is:

S ¼ crossAttentionðQ;K;V Þ ¼ SoftmaxðQKT ÞV (3)

where Q = XWQ, K = YWK, V = YWV are the query vector, the key vector, and the value vector respectively.
WQ, WK, WV are the learned weights. The AddNorm layer is:

Z ¼ AddNormðX Þ ¼ LayerNormðX þ SÞ (4)
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where LayerNorm(⋅) is the layer normalization operation. The output of CTN is the attention-aware denoised
feature Z ¼ x0m;l;c.

Thus,

x0m;l;c ¼
cm;l;c

xm;l;c � lm;l;cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m;l;c þ E

q þ bm;l;c; if cm;l;c. h

CTNðxm;l;c; xm0;l;cÞ; else

8><
>: (5)

In a nutshell, if one channel of one modality has little impact on the final prediction, then we replace it
with a new channel from the transformer network. We apply Eq. (5) for each modality before feeding them
into the nonlinear activation followed by the convolutions in the next layer.

It is known in [29,30] that leveraging private BN layers is able to characterize the traits of different
domains or modalities. In our method, specifically, different scaling factors (Eq. (2)) evaluate the
importance of the channels of different modalities, and they should be decoupled. Except for BN layers,
all sub-networks fm share all parameters with each other including convolutional filters.

Then we combine all the outputs via an aggregation operation followed by a global mapping. In formal,
it computes the output by

y ¼ f ðxÞ ¼ hðAggðfrgbðxrgbÞ; fdðxdÞÞÞ (6)

where h is the global network and Agg is the aggregation function. The aggregation can be implemented as
averaging [4], concatenation [5,10], and self-attention [11], and we use concatenation here simply. To the
end, we voxelized the point clouds together with their color features xrgb and depth features xd from CTN.

3.2 Voxel-Based 3D Variational Autoencoders

Due to partial observations, methods for symmetry prediction of complete shapes do not work anymore.
Because missing global geometric information leads to crucial difficulty to find local symmetry
correspondences which are supported by mirror transformation. In this situation, we use a generative
network 3D Variable Autoencoders (3D-VAE) to reconstruct the complete 3D shape from an incomplete
one, which provides enhanced geometric features for the following symmetry prediction network.

We take the cross-modal features from the CTN as input and reconstruct the corresponding complete
shape, including more enhanced geometric features than the initial geometric features only from depth.
As shown in Fig. 3, the 3D-VAE network consists of an encoder network, a latent layer, and a decoder

Figure 2: The framework of the CTN. If a channel in a BN layer has a small scaling factor (γm,l,c < θ), the
corresponding channels in the feature map before the BN layer would be picked out from all sub-networks
(as the red line shows in the figure). Then feed the features in these channels into the CTN to get new features
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network. We use an approximate 3D U-Net architecture to define the encoder and decoder network, except
for the latent layer. Different from many other works [31,32], we design the latent layer as a 3D network to
preserve global geometric features as much as possible. We encode the cross-modal features into an implicit
space, which obeys the normal distribution (here we regress two parameters μ(i) and σ(i) to define the normal
distribution), and then sample from the implicit space to reconstruct through the decoder network.

We use a 3D down-sampling network for the probabilistic encoder q[ðzjxÞ ((the approximation to the
posterior of the generative model phðx; zÞ) and where the parameters [ and θ are optimized jointly with
the VAE algorithm.

Let the prior over the latent variables be the centered isotropic multivariate Gaussian
phðzÞ ¼ Nðz; 0; IÞ. We let q[ðzjxiÞ be a multivariate Gaussian (in case of real-valued data) or Bernoulli
(in case of binary data) whose distribution parameters are computed from z with a 3D network (another
3D layer following the encoder network). In this case, we can let the variational approximate posterior be
a multivariate Gaussian with a diagonal covariance structure:

logq[ðzjxÞ ¼ logNðz; l; r2IÞ (7)

where the mean and standard deviation of the approximate posterior, μ and r, are outputs of the last 3D layer
following the encoder network, which consists of three 3D convolutional layers to the latent layer.

Then, we introduce the latent layer. All the outputs here are 3D matrices with one channel. We sample
from the posterior z0 � q[ðzjxÞ using z0 ¼ lþ r� E where E � Nð0; IÞ. With � we signify an element-
wise product, and the z′ is the input of decoder network.

In this case, the KL divergence can be computed and differentiated:

Ll;r2 ¼
1

2

Xd
i¼1

ðl2ðiÞ þ r2ðiÞ � logr2ðiÞ � 1Þ (8)

The decoder network is a 3D up-sampling network for reconstruction, which has an identical, but
inverted, architecture, and its weights are not tied to the encoders. The output of the decoder network is
the result of the reconstruction, for which we use a specialized form of Binary Cross-Entropy (BCE). The
standard BCE loss is:

Lrec ¼ �tlogðoÞ � ð1� tÞlogð1� oÞ (9)

where t is the target value in {0, 1} and o is the output of the network in {0, 1}at each output element. The
derivative of the BCE with respect to o severely diminishes as o approaches t, which can result in vanishing
gradients during training. Additionally, the standard BCE weights false positives and false negatives equally;

Figure 3: The 3D variational autoencoders
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because over 95% of the voxel grid in the training data is empty, the network can confidently plunge into a
local optimum of the standard BCE by outputting all negatives:

Lrec ¼ �ctlogðoÞ � ð1� cÞð1� tÞlogð1� oÞ (10)

During training, we set γ to 0.95, strongly penalizing false negatives while reducing the penalty for false
positives. Setting too high results in noisy reconstructions, while setting too low results in reconstructions
which neglect salient object details and structure. Thus, the loss of the 3D VAE network is defined as

L ¼ Lrec þ wLl;r2 (11)

where w is the weight for balancing the reconstruction loss and the KL divergence.

It should be noted that the output of each element of the final layer can be interpreted as the predicted
probability that a voxel is present at a given location. Down-sampling in the encoder network is
accomplished via stridden convolutions (as opposed to pooling) in every second layer. Up-sampling in
the decoder network is accomplished via fractionally stridden convolutions, in every second layer.

The network is initialized with Glorot Initialization [33], and all the output layers are Batch Normalized
[27]. The variance and mean parameters of the latent layer are individually Batch Normalized, such that the
output of the latent layer during training is still stochastic under the VAE parameterization trick.

3.3 Multi-feature for Symmetry Prediction Network

In this section, we propose the symmetry prediction network by combining the cross-modal features
from CTN and geometric features from 3D-VAE. The overall network is presented in Fig. 4.

Thanks to the 3D-VAE, we have a relatively complete shape and contain stronger geometric features
than the initial depth, which gives us an opportunity to learn from some symmetry detection methods
[34,35] that have been proved to be effective. Inspired by PRS-Net [25], we define a Convolutional
Neural Network(CNN) to predict a fixed number (three in practice) of symmetry planes, which may not
all be valid. Duplicated or invalid symmetry planes are removed in the validation stage.

From the above section, we get a variety of features, containing cross-modal features from the CTN, as well
as enhanced geometric features from the 3D VAE. How do we aggregate these features to predict symmetry? A

Figure 4: The architecture of the symmetry prediction network
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simple way is to directly use the self-reconstruction result from the 3D VAE, which is close to the complete shape.
This has proved to be a valuable method, which can transform the symmetry detection of incomplete shape into
the symmetry detection of complete shape, by providing global geometric features for the network. However,
there are two problems. One is that the result of the VAE is only relatively complete, not absolutely complete,
and it is inevitable to lose lots of detailed information through the multi-layer network and random sampling;
Second, we do not make full use of the additional information we already have, such as color features and
fine depth features from RGB-D, the former has rich texture information, while the latter contains a lot of
contour details. Although there is only one view, it has been effectively extracted through the CTN.

Thus, we put these existing features into the corresponding voxel according to their respective
characteristics as the final features of the voxel. Suppose that the cross-modal feature is Fc, coming from
the CTN and are high-dimensional. The geometric features from 3D VAE are 0–1 feature, which is used
to judge whether the voxel is or not the surface. Considering the dimensional consistency, we take the
features of the previous layer of the last layer of VAE as the geometric features, Fg.

FA ¼ concatðFc; FgÞ (12)

Then, we feed FA into the symmetry prediction network, which has six 3D convolution layers of
kernel size 3, padding 1, and stride 1. After each 3D convolution, a max-pooling of kernel size 2 and
leaky ReLU [36] activation is applied. These are followed by fully connected layers to predict the
parameters of symmetry planes.

4 Results and Applications

4.1 Experimental Datasets

Our experiments are conducted on three public datasets: ShapeNet [37], YCB [38], ScanNet [39].

ShapeNet: We use the train set that contains 100000 training RGB-D images and split the test set into
two subsets: holdout view and holdout instance.

YCB: We follow the original train/test split established in [38].

ScanNet: We use the train set that contain 13126 training RGB-D images and split the test set into two
subsets: holdout view and holdout scene, we only test on holdout view.

4.2 Evaluation Metric

In order to determine whether a predicted symmetry is a true positive or a false positive, we compute a
dense symmetry error from the difference between the predicted symmetry and the ground-truth symmetry.
For a reflectional symmetry, we compute the dense symmetry error as:

Eref ¼ 1

N

XN
i

kTref ðPiÞ � T̂ ref ðPiÞk2
q

(13)

where Tref and T̂ref are the symmetric transformation of the predicted symmetry and the ground-truth
symmetry of a complete shape with points P = {Pi}, iE[1, N] and ρ is the max distance from the points in
P to the symmetric plane of T̂ref .for rotational symmetry, we compute the dense symmetry error as:

Erot ¼ 1

j�j
1

N

X
ce�

XN
i

kTrot;cðPiÞ � T̂ rot;cðPiÞk2
q

(14)

where Trot,γ is the rotational transformation of the predicted symmetry with a rotation angle of γ. The set of
rotation angles is Γ = {κ ⋅ π/8}κ=1, …, 16, and ρ is the max distance from the points in P to the rotational axis of
T̂rot. We set the dense symmetry error threshold to be 0.25 for both reflectional and rotational symmetries.
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4.3 Ablation Studies for Symmetry Prediction

To study the importance of each component of our method, we compare our full method against two
variants. A specific part of the pipeline is taken out for each variant, as follows:

No 3D-VAE: Without the reconstruction part in our method, we predict symmetry only from the
incomplete shape, which lacks a lot of geometric information.

No feature fusion for symmetry prediction: Without the aggregation of color features, depth features and
geometric features, we use the result of 3D VAE to predict symmetry directly.

Fig. 5 shows the results of our ablation study, for reflectional symmetry detection. The full method
outperforms the simpler variants in all cases. It can be seen that the self-reconstruction part (3D VAE) is
crucial to our method, perhaps because it provides more geometric information for symmetry detection.
In addition, by observing the results of using only geometric features and fusion features (color, depth,
geometry), we can see that in most cases, more features are helpful to the final symmetry prediction, but
not much, which indicates that the global geometric features are more important for symmetry detection.

4.4 Ablation Studies for Self-Reconstruction

To study the importance of the CTN to the 3DVAE, we compare our self-reconstruction results without some
specific component: w/o independent network for color and depth, w/o channel transformer, w/o 3D latent layer.
Without dependent networks for color and depth, we simply use a 3D U-Net to extract the RGB-D feature.

Tab. 1 shows the self-reconstruction accuracy of these ablation studies. It is worth noting that
independent networks are very useful for feature extraction. Maybe it’s because color and depth are
essentially different modal features. The former provides more detailed information, and the latter
provides more contour information. If they are treated together, it may cause a waste of information. By
analyzing the data in Tab. 1, we can see that the 3D CNN in the latent layer also makes some
contribution to the final accuracy, which shows that the global information is also useful when fitting the
two parameters of mean and variance.

Figure 5: Ablation studies: comparison of symmetry prediction performance on two subsets of ShapeNet
between our full proposed method (red) and its several variants (blue: without 3D VAE; green: without
feature fusion)
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4.5 Comparison to Baselines

We refer to the RGB-D Retrieval [40] and Geometric Fitting [41], to compare with our method. The
comparisons are plotted in Fig. 6. It is obvious that our method achieves the best score over all the data subsets.

Table 1: Ablation studies: Comparison of self-reconstruction performance

Method Accuracy (%)

w/o independent network for color and depth 75%

w/o channel transformer 81%

w/o 3D latent layers 83%

Figure 6: Comparisons with baselines on the performance of predicting reflectional symmetry
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5 Conclusion

We have presented the robust symmetry prediction method, which benefits from global geometric
features reconstructed from single RGB-D images. A channel-transformer network is designed to
aggregate features from the color and the depth separately, which essentially helps feature fetching. The
3D-VAE network demonstrates a significant performance boost for global geometric features recovery. A
limitation to our method is that we have not considered the rotational symmetry, which is also universal.
An interesting future direction is to further utilize the detection-by-reconstruction module to help single
view reconstruction target, which would help to preserve more geometry information through symmetry
reflection, rather than deep learning networks.
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