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Abstract: Typically, smart grid systems enhance the ability of conventional power
system networks as it is vulnerable to several kinds of attacks. These vulnerabil-
ities might cause the attackers or intruders to collapse the entire network system
thus breaching the confidentiality and integrity of smart grid systems. Thus, for
this purpose, Intrusion detection system (IDS) plays a pivotal part in offering a
reliable and secured range of services in the smart grid framework. Several exist-
ing approaches are there to detect the intrusions in smart grid framework, however
they are utilizing an old dataset to detect anomaly thus resulting in reduced rate of
detection accuracy in real-time and huge data sources. So as to overcome these
limitations, the proposed technique is presented which employs both real-time
raw data from the smart grid network and KDD99 dataset thus detecting anoma-
lies in the smart grid network. In the grid side data acquisition, the power trans-
mitted to the grid is checked and enhanced in terms of power quality by
eradicating distortion in transmission lines. In this approach, power quality in
the smart grid network is enhanced by rectifying the fault using a FACT device
termed UPQC (Unified Power Quality Controller) and thereby storing the data
in cloud storage. The data from smart grid cloud storage and KDD99 are pre-pro-
cessed and are optimized using Improved Aquila Swarm Optimization (IASO) to
extract optimal features. The probabilistic Recurrent Neural Network (PRNN)
classifier is then employed for the prediction and classification of intrusions. At
last, the performance is estimated and the outcomes are projected in terms of grid
voltage, grid current, Total Harmonic Distortion (THD), voltage sag/swell, accu-
racy, precision, recall, F-score, false acceptance rate (FAR), and detection rate of
the classifier. The analysis is compared with existing techniques to validate the
proposed model efficiency.
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1 Introduction

Smart grid is an upcoming and developing technology which carries intelligently to the final users by
two-way interaction. But this technology is subjected to numerous cyber-attacks because of the
characteristic’s weakness of the network. In order to secure and protect the networks of smart grid
Intrusion Detection System is used. IDS enhances the security of smart grid by identifying the malicious
tasks in the network. Usually, the cyberattacks in contradiction of Smart grid focus the Integrity,
Availability and Confidentiality of the included systems and interactions. False Data Injection (FDI)
attacks and Man in the Middle attacks (MiTM) disrupt the integrity and confidentiality respectively. The
availability rule is violated by the different Denial of Service DoS attacks. An Advanced Persistent Threat
(APT) is the hazardous cyberthreat for Smart Grid. Intrusion detection system (IDS) performs a vital role
on smart grid and safeguards from the cyber-attacks [1]. The main role of Smart Grid is to offer the
companies with perceptibility and services of prevalent control and new interaction abilities so as to
communicate with one another and understand the transaction of electricity through the grid. An
important advantage of IDS is its capability to identify zero-day cyber-attacks and irregularities that are
not known, using the Deep Learning (DL) and Machine Learning Methods (ML). At last, the operational
layer finds the potential irregularities like voltage of generator motor, exciter motor voltage and speed of
the generator motor [2]. Various techniques have been suggested to develop the security of smart grid.
For example, intrusion detection systems (IDS) can identify threats that are not known, cyber-attacks and
vulnerabilities in any system. IDS domain is the part of security and plays an important role for the
maintenance and protection of a secure network [3]. In addition, Price manipulation attacks threaten
the integrity data of smart grid that lead to large modifications in the power consumption that disarrange
the stability of the smart grid [4]. The communication network of the smart grid can be classified into
Wide Area Network (WAN), Home Area Network (HAN) and Neighborhood Area Network (NAN) [5].
A huge quantity of energy needs suitable analysis of data and methods of anomaly detection [6].

Although the resolutions suggested are able to immunize the power systems and are functional, they are
arithmetically very high cost and not measurable for complex networks. Hence a chance for methods of data
analysis like Machine Learning arises to manage the complex dataset structure along with Artificial
Intelligence (Al) to identify and avoid cyber-attacks. Machine Learning Algorithms can be employed to
discover huge integration of sensor states, inputs and control [7]. The major intention of the proposed
technique is to employ both real-time raw data from the smart grid network and KDD99 dataset thus
detecting anomalies in the smart grid network.

The organization of the remaining article is given below. Section 2 analyses the prevailing studies.
Section 3 narrates the suggested mechanism and methods adopted. The experiments are performed and
outputs are offered in Section 4. The conclusion of this paper is in Section 5.

2 Related Works

The author in the paper [8] designed a strategy for big data with the help of different machine learning
methods and intrusion detection is done on the basis of classifications pertaining to the datasets of synchro
phasor. In this work different machine learning methods such as support vector machines, deep neural
networks, random forest, naive bayes and decision trees are performed for the datasets of synchro phasor.
Smart grid is the enhanced version of the ancient grid that makes it more effective. Reference [9]
considered the detection and avoidance of intrusions in the recent network systems. The use of
mathematical instruments is suggested to process the outputs of telecommunication systems and analyze
the arithmetic features of traffic in the network. Reference [10] evolved the next version power grid
pattern that allows the transmission of real time messages among the users and the company through
smart meters and Advanced metering infrastructure (AMI). Reference [11] served as a guide to many
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learning methods and review on applications in Intrusion Detection System that represents possible chances
in Smart Grid security. Specification based can be considered as the most appropriate detection engines for
Cyber Physical Systems (CPS) containing Smart Grid. Reference [12] focused on the necessity for defining
anomaly detection techniques that are able to face the drift, for example, structure of the family altars, a house
may turn into second residence etc. This adopted a network of short- or long-term memory with the purpose
to forecast the user’s activity on the basis of recent previous utilizations. Reference [13] reported a project
that supports the company through huge anomaly detection analysis on the information of Czech Republic. It
has been seen that transfer of distribution of energy powered by Information and Communication
Technologies (ICT) is known as Smart Grid. Reference [14] developed an IDS Intrusion detection System
for Smart Grids using IEC 61850’s GOOSE messages Generic Object-Oriented Substation Event.
Reference [15] framed the planned communication among hypervisor observing its vSDN and the origin
of new flow possibly starting a Distributed Denial of Service (DDoS) attack through switches, as an
active Bayesian game of intrusion detection. The smart grids in future need enhanced abilities on the
basis of processing, automation, communication and monitoring. Reference [16] formulated two IDS
Intrusion Detection System model issues for Smart grids. An experimental method is enhanced on the
basis of column creation method to minimize the time of computation. Reference [17] monitored a smart
grid with the use of ICT Information and communication technology devices that need methods for
finding the irregularities such as cyberattacks, faults etc. The detection and differentiation of anomalies
triggered by the cyberattack in contrast to the power system is obtained. Reference [18] proposed a system
of statistical-based anomaly detection method based on supervised learning, and implemented a Lambda
system with the in-memory distributed computing framework, Spark and its extension Spark Streaming.
Reference [19] Suggested the framework of encoder-decoder in recurrent neural network (RNN) to identify
an anomaly. Enhancing the reliability of power systems through anomaly detection in smart grid is critical.
Reference [20] Evolved with a technique of generative model for anomaly detection that adopts the
hierarchical structure of the network and the data collected from smart meters (SMs). The model is aimed to
find the existence of anomalous events and unusual conditions at both customer and lateral levels. Three
challenges existing in SG analytics are addressed as large-scale multivariate count measurements, missing
points; and variable selection in this paper.

3 Proposed Work

A comprehensive depiction of the proposed work strategy is provided here. The overall workflow and
simulation setp is shown below in Figs. 1 and 2.

3.1 Data Acquisition from Smart Grids

Initially, data acquisition is made from the smart grid stored values that are stored in the cloud and the
KDD dataset. The renewable sources of energy like PV and wind turbines are considered as an input source.

(i) Initialization of input renewable source of energy

For the acquisition of smart grid data, at first solar panel (PV) is given to a direct current to direct current
converter which is optimized to tune the input source parameters using Enriched Grey wolf optimization
(EGWO) based Maximum Power Point Tracking (MPPT) approach. A PV system comprises PV arrays
connected in series and the cells of PV are coupled in a parallel manner.

The solar cell current with relation to radiance and temperature is denoted as shown:

ki
Ipv; = (Ipv; — rds + KicATi) e (1)
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Figure 2: Simulation setup of proposed design (grid side)

Here, Ipv; signifies current in PV, rds is the radiance, T is the temperature, Ki is the ideality constant.
Then the maximum range of power is shown as:
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MaXim-pWV = Puaxt = Viaxtdmaxt (2)

The system of wind energy which converts the energy of wind in an electrical form. This comprises a
wind turbine DFIG generator, with the rectifier and are uncontrolled which converts analog current source to
the direct current source.

The wind system mechanism comprises mechanical input, wind speed, and mechanical torque similarly.
The expression of kinetic energy is signified as shown:

1
Kin energy = Emv2

3
The power of wind produced by means of wind turbine depending on the aecrodynamics characteristics
are expressed as shown:

pi =3 (PG, pinV ) @

The wind system is mechanically expressed as shown:
Pmechp = Cpc(ox, 7)pA/2 3)

Here, p is equivalent to 1.225 kg/m’ which denotes the air density, C,. indicates the power coefficient
constant, rotor area is signified by A.

(ii) EGWO Based MPPT Approach and PWM generation

The technique of optimization is utilized for the purpose of monitoring the PV device’s MPPT that
consists of local maximum power points (MPPs) number in the characteristics of P-V. Each module of
PV should be regulated by means of voltage. The service cycles are then estimated on attaining best
optimal values. The values of the PV source are thus tuned by means of tuning MPPT values. The
technique of EGWO integrated is thus probable for MPPT tuning. The optimized source of PV is then
improved/boosted with a DC-to-DC boost converter. Therefore, a source of DC is sent over the bus
system of DC. By this EGWO approach, a communication is thus carried over the process of exploration
and exploitation that is achieved over the two groups of the grey wolves that are self-determining in
nature at which grouping of hunts this accommodates the hunt and utilizes four categories of grey wolves
for the deeper utilization. Henceforth, a best and optimal value of fitness function is attained for MPPs of
the system.

Algorithm 1: EGWO based MPPT approach:

Initiate the grey wolves (GW) population
Initiate the parameters alphao, betafl, and delta ¥
Compute the objective function value for GW
Identify the solution for non-dominant ones
From the (y,) archive, select the optimum leader
Repeat similar second (yg) to select optimum leader
The selection of same leader for temporary sessions should be avoided from the archive ()
Repeat the similar process for third (yg) optimum leader from the archives
Sum up o & f

(Continued)
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Algorithm 1: (continued)

j—1
while(j < Mmaxlimit) do
for each GW do
Keep updating the GW positions
End for
Keep update of alpha, beta, and delta
Compute Grey value's objective values
The solutions of the non — dominated are identified
For the non-dominated values obtained keep updating the archive
if archive == full
then
Any one Exiting value gets lost by the mechanism of
grid present in the archive
In the archive increase the new wolf
end if
once the new solutions get incremented to the
archive then
keep updating the entire grid to establish a
new solution over the grid
end if
From the (y,) archive, select the optimum leader
Repeat similar second (yp) to select optimum leader
The selection of same leader for temporary sessions should be avoided from the archive ()
Repeat the similar process for third (yg) optimum leader from the archives
Sum up o & f
J=j+1;
end while

return archive

The source of Direct Current from solar is then converted by means of the analog current source. With
the use of a pulse width modulation generator, pulse width modulation converting pulses are produced.
Through this pulse width modulation signal, the secondary switches are thus driven at the modes of
operation connected by the grid by assessing the frequency of gridline. So as to produce the pulses, one
such reference signal is required and the amplitude, phase, and frequency of that reference signal is thus
controlled over the output voltage in the analog current terminals inverter that are correlated with the
pulse width modulation block.
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(iii) Fault rectification and grid transmission/storage

The power compensation is measured on injecting some faults in the line of transmission. This injection
is made so as to check the power stability efficiency in the proposed design with the utilization of UPQC
controller. By using this UPQC, the errors and distortions in the transmission line are rectified and the
harmonics are eliminated which enhances the power stability. Finally, the stabilized range of power is
thus stored in a grid side for further use. The values acquired from this grid are then kept in the cloud
server so that the anomaly occurrence can be detected.

3.2 Preprocessing

In the pre-processing stage, the data from smart grid and KDD dataset are taken and are pre-processed so
as to replace the missing values through means by removing outliers in the data if anything is presented. The
KDD99 dataset is regarded as the most eminent datasets employed in the network security field for the
purpose of IDS. This is developed in the MIT research lab and is employed by designers of IDS as a
benchmarking dataset for the evaluation of several techniques and methods. This dataset comprises
4,900,000 rows and the attributes of about 41 with binary labels and 22 network attacks. The class label
comprises four kinds of attacks like DoS, Probe, U2R, normal class, and R2L. The normal packets
present are 77,054. The anomaly packets of about 71,215 are present having a total size of about 148,
269. The training and testing samples of machine learning models are 103,789 and 44.481
correspondingly. Then, the normalization of data is carried for scaling the data. Once the data
normalization is completed then data encoding is performed for converting the non-numeric values to
numeric format. After pre-processing the optimal range if features are selected with the use of an
optimization approach termed Improved Aquila Swarm Optimization (IASO).

3.3 Improved Aquila Swarm Optimization

For the purpose of optimization, Improved Aquila Swarm optimization is employed. In this, the
individuals in the IASO might catch the prey using four predation schemes. The initial strategy is to:
flying high above in the sky to search for the prey. In this approach, Aquila might fly over the area of the
hunt at the highest altitude and search initially by finding the target afterwards. Once, the prey has been
found this will vertically dive towards the prey and the behavior of this is formulated as shown:

X(+1) = Xpeult) x (1 %) + (Xas(£) = Xoour (1) % rand) ©)

Here, X(¢+ 1) denotes the individual position at iteration t+ 1, Xj..(?) signifies the present global
optimum position at t-th iteration number and T signifies t-th current and maximum number of iterations
allowed. The rand signifies the random number in the Gaussian distribution that falls in an interval
between 0 and 1. The next step is the contour flight with the short glide attack. By this approach, Aquila
might search from the ones that are flying in higher altitude for hovering the prey’s head thus preparing
them for instinctive predation of Aquila’s behavior. The position that is updated is expressed as,

X(t4 1) = Xpest(t) X LF (D) + Xg(¢) + (v — x) X rand (7)

Here, Xg(¢) signifies the Aquila position at random, D denotes the dimension size. LF refers to Levy
flight function. And x and y signify the search space and is denotes as shown:

3
{x = (r1 +0.00565 x Dy) x Sil’l(—w x Dy + >2< n)
)]

3
y = (r1 +0.00565 x Dy) x cos(—w X Dy + = n)
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o (1 + p) x sinsin (%ﬁ>
LF(x) =001 x 222 5=

if r(l%ﬂ) < fx 20

Here, r1 denotes the search cycle number from 1 to 20, D, signifies the random integer from values 1 to
the D dimension, and w represents the constant and is 0.005.

©)

The third step is the one which works on low altitude flight prey approaching and the slow attack. In this
approach, Aquila discovers and thus determines the location of prey approximately after which Aquila might
descend for the predation preliminarily in a vertical position. This behavior of initial predation is denoted as:

X(t+1) = (Xpest(t) X Xus(¢)) x o — rand + ((UB — LB) X rand + LB) x 0 (10)
Here, a and ¢ signifies the parameters of adjustment at the process of development that is fixed at 0.1, UB
and LB denote the upper and lower bound of search spaces correspondingly.

The fourth step is watching the land and catching the prey. In this, Aquila will go to the land so as to
follow the trajectory of prey’s escape and after which it attacks the prey. The behavior of predation is
denoted as:

X(t+1) = QOF X Xpee(t) — (Gy X X(t) X rand) — G, x LF(D) + rand x G, (11)
2xrand—1
OF(t) =t 0-1" (12)
t
{G1:2><rand—1G2:2x<l—?) (13)

Here, QF is the average of quality function search strategy, G; is the process of random motion
parameter of Aquila tracking prey which is the random number among [—1, 1] and G; is the process of
flight slope of Aquila that tracks prey and is represented as 2 which linearly decreases to 0.

3.4 Probabilistic RNN Classifier

A probabilistic RNN is a multi-layer perceptron layer principally composed of time loop feedback in
each layer and those layers are competent to overlay the other. Once the neural network is updated, a new
kind of information will be transferred through the hierarchical structure and the layer of each neural
network may obtain time information. For each number of iterations, the neural network might pass
through the updates that are unlimited and which in turn enables them to obtain the depth of memory in
an unlimited way. A PRNN standard structure which are trained by time steps thus offers the input
sequences of m-dimension such as z;, zy,, ..., z,, the state of n-dimensional hidden layer sequence is
thus denoted as gy, g, ..., g, and yi, y>..., yx which is the sequence of k-dimensional output and for
iteration the formula is signified as:

lj = WegeZj + Wee8j-1 + Cg (14)
g = e(y) (15)
Sj = Wyg8j + ¢y (16)
x; = h(s;) a7

In this, Wy, W, and w,, are indicated as the matrices of weight, bias is signified by c,, c,. t; denotes to
input hidden layer, s; mentions the input for the output part, altogether these are variables of k-dimensional
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one. Non-linear predefined functions are indicated by e and h. The presented network update doesn’t provide
information processing hierarchically; though, they were accomplished frequently over recursion just
previous to the time node. The hidden layer structure for this RNN kind that are loaded with depth d-th
of hidden layer is uttered as:

gl =hy(gl™", g ) = ea(Vigl | +wig! ") (18)

In this, g refers to the hidden layer state with time t at d-th layer, e, mentions to the functions that are
non-linear and were predefined in d-th layer, w* indicates the weight matrix at d-th layer, / signifies
connected recurrent weight matrix at d-th layer. The proposed probabilistic RNN classifier is responsible
for identifying the anomalies present in the data , thus classify them accordingly.

4 Performance Analysis

The performance assessment is made for power quality compensation made in the smart grid design and the
performance of anomaly detection approach in the smart grids. The analysis made for this both are projected here.

4.1 Performance Analysis of Smart Grid

The representation of performance of the shunt current waveform is projected in the Fig. 3 provided
below. The shunt current at the transmission line is having fluctuation which affects the power quality of
the system. Thus, the fluctuation is eradicated and the current flow is maintained.
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Figure 3: Performance representation of shunt current

The representation of performance of the series current waveform is projected in the Fig. 4 provided. The
series current at the transmission line is fluctuating which affects the power quality of the system. Thus, the
fluctuation is eradicated to maintain the flow of current.

Fig. 5 represents the grid current THD analysis performance of the suggested approach along with the
use of UPQC FACT device. The analysis shows that the THD attained is about 0.04% at 0.5 s start time with
50 Hz of fundamental frequency.

Fig. 6 signifies the shunt voltage THD performance analysis of the proposed approach using UPQC
FACT device. The analysis reveals that the attained THD is about 1.08% at 0.5 s start time with 50 Hz of
fundamental frequency. The grid voltage analysis with UPQC is signified in a Fig. 7. The analysis reveals
that power fluctuation is thus eradicated and a grid voltage is thus maintained.
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The grid current analysis is indicated in Fig. 8. From the analysis, it was illustrated that the fluctuation of
current occurs which is rectified by maintaining the flow of current in the grid.

Fig. 9 depicts the performance assessment representation of the shunt voltage with its swell/sag. In this,
there occurs some oscillation at some point of the transmission process.

The Vabc_B575 (voltage bus 575) performance analysis with UPQC is specified in Fig. 10. The analysis
reveals that there will be the occurrence of some fluctuations at the bus voltage at the transmission process
and after some time interval the bus voltage is thus stabilized.

The Vabc (voltage series of bus) performance analysis with UPQC is denoted in Fig. 11. It is seen that
there will be an occurrence of some oscillations in the voltage of the bus at transmission and after some time
period the voltage of the bus is thus stabilized.

4.2 Performance Analysis of Anomaly Detection in Smart Grid

For the detection of performance of anomaly systems employed, various performance metrics are
employed for estimating the presented solution that includes precision, recall, accuracy, detection rate,
FAR, and F-measure. These performance metrics are based on the True positive (TP), True Negative
(TN), False positive (FP), and False Negative (FN). The analysis is compared with existing techniques to
validate proposed system efficiency [21].
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Figure 5: THD analysis of grid current at start time 0.5

Tab. 1 is the depiction of performance comparison of precision, recall, and F-score for both proposed and
existing schemes for class types (normal and attack). The simulated analysis shows that the proposed
technique offers enhanced outcomes than others.

Fig. 12 is the illustration of performance comparison of precision, recall, and F-score in graphical form
for both proposed and existing schemes for class types (normal and attack). The simulated analysis shows
that the proposed technique offers enhanced outcomes than others.

Tab. 2 shows the tabulated form of comparative assessment of accuracy and DR for both raw data
obtained from cloud storage and KDD99 dataset. The simulated analysis shows that the proposed
technique offers enhanced outcomes than existing methods.
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Figure 6: THD analysis of shunt voltage at start time 0.5

Fig. 13 offers the graphical representation of comparative assessment of accuracy and DR for both raw
data obtained from cloud storage and KDD99 dataset. The simulated analysis shows that the proposed
technique offers enhanced outcomes than existing methods.

Tab. 3 signifies the tabulated form of comparative assessment of accuracy, FAR and DR for
KDD99 dataset. The simulated analysis shows that the proposed technique offers enhanced outcome than
existing techniques on providing better accuracy and DR with a low rate of FAR.

Fig. 14 denotes the graphic scene of comparative assessment of accuracy, FAR and DR for
KDD99 dataset. The simulated analysis shows that the proposed technique offers enhanced outcome than
existing techniques on providing better accuracy and DR with a low rate of FAR.

Thus, the detection of anomaly in smart grid performance shows that the proposed system is better in
offering enhanced performance of detection rate on comparing other existing methods.
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Figure 7: Grid voltage waveform representation
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Table 1: Performance comparison of precision, recall, and F-score for both proposed and existing schemes

Technique

Class type Precision Recall F-score

PSO + KNN (Particle swarm optimization + K-Nearest
Neighbor)

PSO + NN (Particle swarm optimization + Neural Network)
PSO + Decision tree

PSO + Random forest

IASO + PRNN (Proposed)

Normal
Attack
Normal
Attack
Normal
Attack
Normal
Attack
Normal
Attack

98.8
99.4
954
99.9
98.5
99.8
98.5
99.8
99.5
99.9

97.6
99.7
99.6
98.8
99.2
99.6
99.3
99.6
99.8
99.79

98.2
99.6
97.5
99.4
98.8
99.7
98.9
99.7
99.6
99.8
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Figure 12: Comparative estimation of precision, recall, and F-score

Table 2: Comparative assessment of accuracy and DR for both raw data and KDD99 dataset

Technique Data from smart grid KDD 99
Accuracy (%) DR (%) Accuracy (%) DR (%)
PSO + KNN 99.65 99.17 99.3 99.7
PSO + NN 97.72 97.45 99.2 99.2
PSO + DT 99.81 99.64 99.5 99.6
PSO + RF 99.39 99.75 99.6 99.6
IASO + PRNN (Proposed) 99.91 99.83 99.8 99.89
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Figure 13: Comparative assessment of accuracy and DR for both raw data and KDD99 dataset

Table 3: Comparative analysis of existing methods with proposed for KDD99 dataset

Technique Accuracy DR FAR
SVM-ELM 95.75 95.17 1.87
DNN 75.5 76 0.85
ANN (FNN-LSO) 94.02 89.93 2.23
PSO + NN 99.20 99.70 0.5

IASO + PRNN (Proposed) 99.8 99.89 0.2
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Figure 14: Comparative analysis of existing methods with proposed for KDD99 dataset for accuracy and DR

5 Conclusion

In this work, a novel approach is presented to detect anomaly or intrusion in the smart grid framework
which employs both real-time raw data from the smart grid network and KDD99 dataset. In the grid side
acquisition of data, the power quality of the system was improved by eradicating distortion. The power
quality was enhanced through rectifying the fault by employing UPQC and thus storing the raw data in
cloud storage. The raw data stored in cloud and KDD99 are pre-processed and using IASO the optimal
features were extracted. Then, probabilistic RNN classifiers were utilized so as to predict and classify
intrusions in smart grid networks. Finally, the performance was evaluated and projected in terms of grid
voltage, grid current, THD, voltage sag/swell, accuracy, precision, recall, F-score, false acceptance rate
(FAR), and detection rate of the classifier. The attained outcome illustrates that the proposed mechanism
is effective in detecting intrusions or outliers on comparing the traditional methodologies.
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