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Abstract: Electroencephalogram (EEG) is a method of capturing the electrophy-
siological signal of the brain. An EEG headset is a wearable device that records
electrophysiological data from the brain. This paper presents the design and fab-
rication of a customized low-cost Electroencephalogram (EEG) headset based on
the open-source OpenBCI Ultracortex Mark IV system. The electrode placement
locations are modified under a 10–20 standard system. The fabricated headset is
then compared to commercially available headsets based on the following para-
meters: affordability, accessibility, noise, signal quality, and cost. First, the data
is recorded from 20 subjects who used the EEG Headset, and signals were
recorded. Secondly, the participants marked the accuracy, set up time, participant
comfort, and participant perceived ease of set-up on a scale of 1 to 7 (7 being
excellent). Thirdly, the self-designed EEG headband is used by 5 participants
for slide changing. The raw EEG signal is decomposed into a series of band sig-
nals using discrete wavelet transform (DWT). Lastly, these findings have been
compared to previously reported studies. We concluded that when used for
slide-changing control, our self-designed EEG headband had an accuracy of
82.0 percent. We also concluded from the results that our headset performed well
on the cost-effectiveness scale, had a reduced setup time of 2 ± 0.5 min (the short-
est among all being compared), and demonstrated greater ease of use.
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1 Introduction

The human brain consists of billions of neurons that communicate with one another through electrical
activity [1]. This brain activity can be recorded using electroencephalography (EEG), a technique that detects
the potential difference between different points on the human brain. EEG measurements necessitate the
placement of EEG electrodes in the 10–20 standard system, as illustrated in Fig. 1. Typically, this
placement is done manually by an expert or, more commonly, with flexible electrode caps that stretch
over the head of users.

Brain-computer interfaces (BCIs) based on electroencephalograms (EEGs) have been extensively
researched in recent decades to assist challenged individuals in communicating with the outside world
[2]. Various BCI applications, such as mental spellers [3], patient-assistant systems [4], neuro-
rehabilitation [5], and external device control [6] have been developed for these people, showing the
potential of EEG-based BCIs as practical assistance tools. The EEG headset converts data into packets
and transmits them to a Personal Computer (PC) over a wireless medium (Bluetooth). The Brain-
Computer Interface (BCI) system allows communication between the headset and the PC [7].

Recently, with the increasing public interest in BCI technology, BCIs have been developed for healthy
people. Especially, the rapid advancement in the system-on-a-chip (SoC) technology has facilitated the
release of wearable EEG devices that can be used for commercial BCI applications [8]. For instance,
InteraXon Inc. launched MuseTM, a headband-type wearable EEG device that helps in meditation. Other
examples include EmotiveEPOC+ (Emotive Inc.), Mindwave Mobile 2 (Neurosky Inc.), and BIOSEMI
(Brain Products Inc.). While these wearable devices have limitations in terms of signal quality [9], yet
represent advantages over the conventional EEG devices in that they are more economical, light in
weight, portable, and easy to use [10]. These wearable EEG devices have been employed for passive BCI
(pBCI) applications. This rapidly growing category of EEG devices aims at decoding the users’ mental
state, such as emotions, sleep patterns, reasoning, relaxation, and attention [11].

Figure 1: 10–20 electrode placement standard. Even numbers (2–10): right hemisphere, numbers increase
from midline z; Odd numbers (1–9): left hemisphere, numbers increase from midline z
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The two types of wearable EEG devices currently in the market are Headband-type and headset-type
devices. The EEG signals from the non-hair bearing region (i.e., forehead) are measured using headband-
type devices. These devices are visually attractive, efficient, and easy to set up [12]. They monitor EEG
signals from the forehead over the prefrontal cortex, which interprets different human mental states such
as attention, emotion, and cognition [13]. On the other hand, EEG signals recorded from the frontal
region of the brain are prone to contamination by artifacts, such as eye blinks, electrooculogram (EOG),
and electromyogram (EMG) artifacts [14]. In addition to this, these devices cannot be used for certain
applications because of a limited number of electrodes.

In contrast to headband type, the headset-type EEG devices can measure EEG signals from more brain
locations: not only from the frontal region but also from other brain areas, comprising the temporal, parietal,
and occipital cortices. EEG signals recorded from wider brain regions allow the BCI application to estimate
the mental state of the user with higher accuracy [15]. This makes headset-type EEG devices suitable for a
broader range of BCI applications than headband-type EEG devices. For example, global field
synchronization—a measurement based on EEG signals collected from the entire brain—effectively
predicts users’ emotional valence [16]. However, a substantial preparation procedure is generally needed
for proper wearing of the devices because the electrodes must remain in close contact with the scalp
surface in the hair-bearing areas [17].

Consumer-grade headsets have rapidly become the industry for research and academic use [18]. Many
studies have compared the performance of signals received from different EEG sensors, but neither has
evaluated the entire device, including expense, configuration time, ease of use, and quality [19]. BCIs
inspire the integration and innovation of more and more devices. Because consumer-grade EEG systems
are becoming more popular, stable, and accessible, they necessitate a more detailed comparison of the
available headsets [20].

These devices are for particular use, such as sleeping pattern detection analysis [21], or meditations [22].
The ability to 3-D print with desired changes is one of the key features of our self-prepared headset and
headband-type EEG devices. This feature not only lowers the total expense of the headset but also makes
room for innovative improvements and commercialization potential. In this paper, we want to present a
reliable evaluation of its functionality and price. Scientists have already conducted tests to evaluate the
data of dry vs. wet EEG sensors [23], consumer-grade vs. clinical headset [24], a different number of
electrodes [25], and signal quality [23,26]. The one thing that all of these experiments share in common
is that they all have concentrated on showing the efficacy of some component of an EEG system, while
our approach is comparing EEG systems as a whole.

2 Background

The neocortex is the largest region of a mammal’s brain, covering nearly the whole brain except the
cerebellum and accounting for roughly 76 percent of the total volume of the human brain [27]. Because
the surface area of the brain and neurons have increased, the neocortex is also heavily wrinkled, making
the brain considerably more efficient. Hemispheres are two symmetrical portions (e.g., right and left) of
the cerebral cortex that have slightly distinct roles [28].

Brain-computer interfaces (BCIs) are specialized systems that read, evaluate, categorize and interpret
brain waves, which are specific physiological signals [18]. The difference between a system that merely
reads a physiological signal and a BCI is that the latter allows the user to interact with a computer or any
other machine utilizing this signal by establishing a communication channel between the user’s brain and
the device to operate. Traditional BCI applications mainly focus on enhancing disabled people’s
interaction experiences [29]. People without disabilities, on the other hand, are prospective consumers of
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solutions that utilize brain signals for human-computer connection. Hence, brain waves are considered as the
foundation for every BCI system [30], as all control signals extrapolate from these brain waves.

The leading neurological stimulus used for BCI systems is motor imagery (MI), in which subjects are
encouraged to visualize executing a complex motor initiative, such as trying to move a foot or hand with no
muscle strength. BCIs that focus on user MI has received greater attention in recent years, and MI-based
electroencephalography (EEG) signal analysis has been the most widely used technology because of its
comparatively low cost, ease of use, and reasonably harmless nature [31].

A BCI system are categorized according to a variety of factors, such as the nature of the employed device
(invasive or noninvasive), the nature of the stimuli of the signal (exogenous or endogenous), the nature of the
data processing methods (synchronous or asynchronous data processing), and how the control signal is
applied (active, passive, or reactive) [32].

EEG is commonly utilized since it is a non-invasive technology that does not require a brain implant to
obtain data from the user. Non-invasive devices have a lesser spatial resolution than invasive equipment [33],
which is a drawback. The non-invasive EEG devices, however, poses no harm to the user because it simply
detects impulses from the scalp [32,34] (i.e., the skin layer bordering the face and the neck).

First, we convert the raw signal into a series of bands using discrete decomposition techniques like
wavelet decomposition (DWT) [35]. Different techniques used for noise removal available in the
literature are independent component analysis (ICA) and principal component analysis (PCA) [36,37].
Data decomposition (DD) based techniques have recently gained importance in the pattern recognition of
MI EEG signals [38]. Some notable DD based techniques available in the literature are empirical wavelet
decomposition (EWT) and discrete wavelet decomposition (DWT) [39].

3 Materials and Methods

In this study, first, we have designed an EEG headband that can be used for recording the physiological
activity of the prefrontal region of the brain. We have also developed an application of slide-changing control
and measured its accuracy. Subsequently, we designed a general-purpose EEG headset that will assist
paralyzed patients in employing the BCI application. Finally, general purpose electrode configurations
were developed which can be used to maximize the overall performance of BCI applications. The
following sections have to go through specific study procedures in depth.

3.1 Headset Configuration

The 16 electrodes on our prepared headset is placed in compliance with the 10–20 system’s electrode
positioning configuration, which is as follows: As shown in Fig. 1.

Fig. 1 shows the 10–20 system [40], the international EEG electrode placement standard. This method
was established to adopt standardized recording to ensure that any results of the study (research or clinical)
could be assembled, replicated, compared, and analyzed in a consistent manner across the scientific
community. Typically, this method labels the sensors based on their head position. The space between the
nearby sensors is 20%/10% of the head size. This method of electrode placement reduces signal to noise
ratio and increases the reliability of the signal [40].

3.2 Prototype Design

The design specifications for the said headset-type prototype are given as follows: The prototype will be
available in one size (i.e. large size for adults above 18), however, we can print it in different sizes as the 3D
model requires only minimal changes to fit another size. It should cover the same electrode locations as
covered by open source Ultracortix Mark IV (Fp1, Fpz, Fp2, Fc5, Fc3, Cz, Fc2, Fc4, T5, T6, P3, P4, T3,
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T4, O1, O2) having only 5 mm displacement from their original locations during movement, have an average
positioning error of maximum 25 mm and can easily be placed on the head by the inexpert. The design was
based on a previous work that presented a statistical shape model of the human scalp comprising 100 North-
American subjects [20].

The design specifications for the headband-type prototype are given as follows: The prototype is a 3D
print that is available in one size (i.e. for individuals above 18). It should cover the same electrode locations
as covered by MUSE 2 headband (Fp1, Fpz, Fp2) having fixed positions with only 2–4 mm displacement
from their original locations during movement and can easily be placed on the head by the inexpert.

The wide headset frame was 3-D printed as four different hemispheres, front-left, front-right, back-left,
and back-right, following the instructions in the OpenBCI assembly guide [41]. Polylactic Acid (PLA)
polymer is also used to print 25 insertion points for sensors as well as the microcontroller holder and
reference electrode holder. The following parts were purchased: ear clips, comfort units, flat units, spikey
units, screws, and ribbon cables. (refer to Fig. 5).

For this study, a 16-channel EEGHeadset was designed (refer to Fig. 2), 3-D printed (refer to Fig. 3), and
assembled (refer to Fig. 4).

Figure 2: The designed headset in Solidworks (a) Front-left (b) Front-right (c) Back_left (d) Back-right
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Figure 3: The designed headset after 3-D printing (a) Front-left (b) Front-right (c) Back_left (d) Back-right

Figure 4: The printed headset (a) Without electrodes (b) With electrodes
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3.3 Brain Computer Interface (BCI)

Fig. 7 illustrates the overall framework of the study including the Brain-Computer Interface system. The
OpenBCI Biosensing Cyton Board [42] is used to collect EEG signals. The signals are then Bluetooth-
transferred to the device (refer Fig. 6). Following headset configuration, the Open-BCI software was
employed to check acquired EEG data quality. Using the OpenBCI master software, we analyzed the
signal for noise, eye blinks, and Fast Fourier Transform (FFT) data.

3.4 Headband Kit

The headband kit is one of the most basic headsets, capable of acquiring EEG signals from five
electrodes via the Cyton board. We collected data from Fp1, Fp2, and FpZ. The headset is created in
Solidworks [43] (see Fig. 8a) and then printed in a 3-D printer (refer Fig. 8b). Fig. 8c depicts the
headband with three electrodes at the previously mentioned locations.

Figure 5: The purchased electrodes (a) Spiky units (b) Comfort units (c) Flat units (d) Ear clips

Figure 6: (a) Biosensing Cyton Board (b) Bluetooth Module
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Figure 7: The complete frame work of the study from headset 3D design to the EEG based classification
algorithm to detect voluntary eye blinks

Figure 8: Headband kit development (a) Design in Solidworks (b) Printing in 3-D printer at Fab-Lab (c)
Headband kit with electrodes
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3.5 Experiment Design

A preliminary experiment to verify the design method was performed by 3 groups of undergraduate
students (Final year Undergraduate in Electrical Engineering Department, Sukkur IBA University). The
experiment aimed to see, if the suggested technique could meet the design criteria, and if the electrode
placement, stability, and repeatability of the prototype generated using the 3D shape model were
equivalent to those of a commercial headset. This was validated by comparing the three-dimensional
locations of the fourteen electrode positions mentioned in section 2.1 to those of an Emotive EPOC+, as
well as determining electrode position variation after movement and repeated set-up.

3.5.1 Sample Size
The sample consisted of 20 students (10 males and 10 females), all of whom were undergraduate and

aged 18 to 25. There were no head deformations or head injuries in any of the participants. A
consignment form has been signed by all the participants who took part in the experiment.

3.5.2 Equipment Used

✽ Desktop computer running windows 10 and Master Software

✽ Emotive EPOC+

✽ Self-designed headset prototype

✽ Self-designed headband prototype

3.5.3 Experiment
The experiment was split into two parts: one for headset-type EEG device and the other for headband-

type EEG device. The participants were instructed to sit in front of the Personal Computer (PC) (see Fig. 9)
where data were being recorded. The designed headset prototype was first placed on the user’s head as a
guide for the optimal electrode placements. The sixteen essential electrode positions were calculated and
compared with the 10–20 standard system. The reference electrodes were put on the earlobes, and the
headset was positioned such that the frontal electrodes were roughly three fingers from the subject’s
eyebrow, according to the directions in the electrode quick start handbook [44].

Figure 9: Subjects wearing headsets (a) Subject 1 wearing Emotive Epoc+ headset (b) Subject 1 wearing
self-designed headset (c) Subject 2 wearing self-designed headset
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3.5.4 Questionnaire
Participants have given a questionnaire at the end of each session. We asked the participants to estimate

how long it took to set up the headset in minutes (from the moment of head measurement until the decision of
the experiment leader that signals were good). They then used a 7-point Likert scale to assess the setup speed
(1 = extremely quick, 7 = very slow). On a 7-point Likert scale, the headset’s comfort (1 = very pleasant,
7 = very uncomfortable) and simplicity of setup (1 = very easy, 7 = very difficult) were assessed. Points
2–6 were left unlabeled in the middle (see Tab. 1). Finally, participants were given a mirror and had
asked to rate their looks on a scale of 1 to 7 (with 7 being the best) while wearing the headset.
Participants were also asked to rank each of the headsets, which they had all used by this point, in order
of preference after the last session.

On the other hand, the experiment for validating the design of a headband-type EEG device is carried out
by a group of 5 participants. The headband was put on the forehead of each participant sitting in front of a
computer with a presentation being run on the computer. The experiment was run for 3 min for each
participant. The participant was asked to blink their eyes voluntarily two times with approximately100 ms
delay. When the slide successfully changed he told us ‘Yes’ and we noted it, when it failed to change or
changed without eye blinking, he said ‘No’ and we noted it. However, the difficult part was to investigate
whether it changes with threshold time or not. So, it contains some degree of tolerance. The slide-change
with involuntary eye blinks had monitored by our team.

4 Results, Discussion and Future Work(s)

4.1 Results

The experiment is conducted by collecting data from various subjects using our self-designed headset
(refer to Fig. 9a) and Emotive Epoc+ headset (refer Figs. 9b and 9c). Tab. 1 summarizes the findings.

We analyzed the acquired data using third-party software MATLAB after analyzing the real-time data
with OpenBCI master software. Fig. 10 shows a series of signal bands from the decomposition of raw
EEG signals using discrete wavelet transformation (DWT).

Figure 10: Different signal bands derived from raw EEG signal

2830 IASC, 2023, vol.35, no.3



Peaks (high amplitude) with eye-blinks are visible in the raw EEG data. Because the Headsets were not
prepared for data acquisition, the first part of the data has negative values. The raw EEG signal is
decomposed into a series of band signals using discrete wavelet transform (DWT).

Tab. 1 shows that our designed headset-type EEG device has the shortest installation time (20.5 min)
among all of four headsets being tested. The participants have expected more installation time as
compared to actual installation time. The estimated values ranged from 2 to 20 min and 3 s, but the
actual values ranged from 3 min and 5 s to 14 min and 4 s. The average score for ease of setup was 2,
which is the highest of any headset compared. Self-designed customized open-source Mark IV headset
performed well in terms of setup speed, where it tied with commercially available Emotive headset.

We utilized the cost-effectiveness ratios (CER) estimated by [45] and computed the cost, in euros, of the
two headsets used in [46], then converted all prices from euros to USD for consistency. The prices is also
converted from [47] to USD.

CER ¼ Cost=Classification accuracy (1)

Researchers have used a method to regularize the unequal headset distinction, a separate metric for
evaluating devices, price ratios (CERs). A CER plot of the three headsets has shown in Fig. 11. The self-
designed EEG Headset-type device (marked as Mark IV) scored better on the effectiveness scale
(82.90 percent) and fell into the cheaper range ($299) by considering the cost of all three devices
(average = $7,907.29, maximum = $6,997). Based on these results, the self-designed EEG headset-type
device offers the best value for money, with the 3rd cheapest cost and the best effectiveness scores in
terms of ease of configuration, comfortability, and setup time. It costs around $12,701 less and has half
the number of sensors as the Biosemi.

As discussed in section 3.3.5 we have implemented a slide-changing application for paralyzed patients
using our self-designed Headband-type EEG device. We have tested the application on 5 participants. All
were healthy patients, as we haven’t found the paralyzed patients in our locality. Tab. 2 summarizes the
experimental results.

Table 1: Comparison table of the performance parameters for four headsets

Performance variable Self-designed headset
(8/16 channel)

Emotivea

(14 channel)
Mark IVb

(16 channel)
Biosemia

(32 channel)

Real set-up time 2 min
(± 0.5)

5.5 min
(± 1.0)

2.7 min
(± 0.5)

20.3 min
(± 6.5)

Participants’ set-up time estimation 3.5 min
(± 0.5)

8 min
(± 1.5)

4.7 min
(± 0.5)

14.4 min
(± 5.2)

Speed of setup (1–7; 7 = very fast) 2 2 2 4

Ease of setup
(1–7; 1 = very easy)

2 3 2 6

Comfort (1–7; 1 = very comfortable) 4 5 3 3

Appearance
(1–7; 1 = worst)

5 6 6 6

Note:
aResults for these headsets are taken from [46]
bResults for this headset are taken from [47,48]
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Tab. 2 above results show that the accuracy for different persons was different, however, the overall
accuracy was 82.0% which is satisfactory. We also noticed that once in all results for subject 3, the
transition in the slide was difficult to identify as it has changed with eye-blink or not, so we discarded it
from our investigation.

4.2 Discussion

In a classical BCI paradigm, this study aimed to examine how a diverse group of participants would rate
commercially available headsets in comparison with self-designed EEG devices in terms of their usefulness
(efficacy, efficiency, and satisfaction) and visual design. We also looked at which headset participants
preferred in the end, what factors seemed to influence it, and how these aspects interact. Finally, when the
commercially available EEG headsets and the self-designed EEG devices (headband and headset) have
been compared for several electrodes and electrode sites, we have also evaluated the classification
accuracy of detection of voluntary eye-blinks. In this study, we have collected a dataset of 20 subjects,
we can also increase the subjects up to 60 subjects [49].

5 Future Work

Our designed and printed headset can be used to collect data from adults. Furthermore, we are also
designing and developing the same type of headsets for children of various ages. In the future, this
headset can be improved by using flexible material and customizing the electrode locations following the
10–20 standard system.

Figure 11: Price map for all devices based on offline classified data

Table 2: Experimental results of slide-changing application using self-designed EEG headband-type EEG
device

Subject Successfully changed
the slide (out of 10 turns)

Failed to change the
slide (out of 10 turns)

Un-predictable Over-all accuracy

1 9 1 – 82.0%

2 8 2 –

3 8 1 1

4 7 3 –

5 9 1 –
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In the future, we will try to carry out a scientific investigation with blind subjects and compare their
different EEG features with normal people. For improved results, more participants with increased time
under different stimuli would be employed for the next analysis. Specifically, the post-COVID-19 era of
facilitating long-distance online learning is another inspiration for future studies. Since classroom
interaction between teachers and students is not possible with online teaching. The challenge of
evaluating student knowledge in online learning is higher than classroom teaching. Hence, we intend to
start looking deeply at the connection between EEG signals, focus, and learning.

The performance can be assessed by devising a specific experiment and comparing the accuracy with
these parameters. These studies will aid in a more thorough understanding of the benefits and limitations
of our prepared Mark-IV device. The price changes of the headset were not taken into account in this
study. Change in costs will have a significant impact on the accessibility and cost-effectiveness ratio of
EEGs, so they must be considered in future work.

6 Conclusion

According to the findings of current and previous studies, consumer-grade EEGs appear to be more
accessible and less expensive than medical-grade EEGs. Using multiple parameters for comparison
provides comprehensive information, but it can be misleading if electrodes are not placed in the similar
locations for each headset. Although, the self-designed and fabricated Mark IV headset has performed
well among the three headsets having these unbalanced circumstances. Moreover, the prepared headset
can be employed for the BCIs and neurofeedback applications. However, this headset is not
recommended for clinical applications.
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