
Investigation of Android Malware Using Deep Learning Approach

V. Joseph Raymond1,2,* and R. Jeberson Retna Raj1

1Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
2School of Computing, SRM Institute of Science and Technology, Chennai, 603203, Tamilnadu, India

*Corresponding Author: V. Joseph Raymond. Email: josephrv@srmist.edu.in
Received: 28 March 2022; Accepted: 05 May 2022

Abstract: In recent days the usage of android smartphones has increased exten-
sively by end-users. There are several applications in different categories bank-
ing/finance, social engineering, education, sports and fitness, and many more
applications. The android stack is more vulnerable compared to other mobile plat-
forms like IOS, Windows, or Blackberry because of the open-source platform. In
the Existing system, malware is written using vulnerable system calls to bypass
signature detection important drawback is might not work with zero-day exploits
and stealth malware. The attackers target the victim with various attacks like
adware, backdoor, spyware, ransomware, and zero-day exploits and create threat
hunts on the day-to-day basics. In the existing approach, there are various tradi-
tional machine learning classifiers for building a decision support system with
limitations such as low detection rate and less feature selection. The important
contents taken for building model from android applications like Intent Filter, Per-
mission Signature, API Calls, and System commands are taken from the manifest
file. The function parameters of various machine and deep learning classifiers like
Nave Bayes, k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Ada
Boost, and Multi-Layer Perceptron (MLP) are done for effective results. In our pro-
posed work, we have used an unsupervised learning multilayer perceptron with
multiple target labels and built a model with a better accuracy rate compared to
logistic regression, and rank the best features for detection of applications and clas-
sify as malicious or benign can be used as threat model by online antivirus scanners.

Keywords: Android application; permissions;multilayer perception; relief scoring

1 Introduction

Android application-based vulnerabilities are exploited mostly through the static and dynamic approach.
The recent finding suggests that a vulnerability will survive three updates, the second point third-party
libraries are the major contributors to malicious payloads and the third point using encryption techniques
for increasing the stealth techniques, and the fourth point detection tools can overshadow the payload [1].
In that paper, they have worked on the genesis of mobile application vulnerabilities, tools to address
vulnerabilities, library screening strategies, and threats for validity. We have analyzed recent payloads
taken from repositories and created a threat model for making a decision support system by ranking

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.030527

Article

echT PressScience

mailto:josephrv@srmist.edu.in
http://dx.doi.org/10.32604/iasc.2023.030527
http://dx.doi.org/10.32604/iasc.2023.030527


malware using unsupervised learning. The demerit point with the machine learning approach is finding
which best features to choose for the detection of malware. The balanced dataset always gives a better
accuracy rate [2]. In my previous paperwork, we have detected malicious applications by executing
payload in the emulator by emulating sensor events, acute binary translations, and hardware-assisted
virtualizations using system call sequences [3,4]. In the existing approach, feature importance is ignored
and the calculation of feature weights is irrelevant to the classification model. The state-of-the-art for
weighting methods in features makes the decision support system more competitive [5]. The novel
approach of recognizing malware by capturing the memory dump of the suspicious process can be
represented as an image with Red-Green-Blue (RGB) combination using obfuscation and encryption
techniques [6]. The research is carried out in three different phases gathering memory data, RGB Image
representation, and visual feature extraction. In this paper, they have proposed a method for extracting
features from metamorphic malware based on structural analysis obtained from theoretical and practical
knowledge. They have also used dimensional reduction of features for finding a better accuracy rate [7].
The unique datasets are created by executing payloads in sandboxing environment taking into concern the
important parameters taken from benchmarking datasets. In our proposed work, we have taken recent
malicious android applications based on various families like adware, backdoor, Trojan, zero-day
exploits, file indicators, etc. with a minimum of 1000 samples from each category taken from benchmark
repositories and created a dataset. The dataset is implemented with supervised learning logistic regression
and unsupervised learning multilayer perceptron with multiple regression and builds the model. This
model utilizing machine learning calculations is proposed for recognizing the malware applications in cell
phones dependent on the static malware examination procedure. The substance of an android application
highlights is dissected, like authorizations, expectations, framework orders, and (Application
Programming Interface) API calls that were removed from the application show document and source
code [8]. The finding of event-leading normal noxious framework call codes in the framework call
succession of a few malware families. At last, a malware recognition component is proposed dependent
on the event of noxious framework call codes in the framework call grouping of an application [9]. We
have ranked features using relief score and found a better accuracy rate for (Multi-Layer Perceptron)
MLP over (Linear Regression) LR. Although the ranking of sensitive permission is always a major issue
we have addressed taking a multiple-output layer which helps in analyzing documents or reports gathered
during the initial assessment of android malware [10]. In the upcoming sections, we have related work in
chapter 2, terminologies in chapter 3, and proposed methodology in chapter 4.

2 Related Works

Using binary classification approaches to examine Android malware is nearing a saturation point in
machine learning research. In recent days, the use of clustering algorithms to analyse massive datasets, as
well as feature selection to rate malware, may be the best option. When reviewing harmful android apps
with Crowdoid, Sasidharan et al. [11] address how sensitive data is maintained. A Hidden Markov Model
(HMM) has been employed by the researchers to observe state transitions and their related data An API
sequence, suspicious API filtering, classification, and test and training data were obtained from the
disassembly of APK files using IDA pro (Integrated Disassembly). In addition to Cuckoo sandboxing,
Ubuntu is employed as the operating system for the execution of payload. Using elements like API,
specific API calls, and categories based on signatures, Garcia et al. [12] were able to extract macro viral
traits. To detect Android malware, Zhang et al. [13] employed opcode sequences to distribute learning
datasets for training and testing on GPUs in the form of a convolutional neural network (CNN) and long
short-term memory (LSTM) (LSTM). Receiver Operating Characteristic (ROC) curves were used to
discover these rates. According to Yilin et al., portfolio optimization with return prediction employing
multilayer perceptron (DMLP), LSTM and CNN, as well as SVR, RF and ARIMA [14] is explained.

2414 IASC, 2023, vol.35, no.2



According to Razgallah et al. [15], malware detections were studied, and they made recommendations for future
research. There have also been other limits mentioned that may lead to a more accurate anti-malware system.
There are sixteen recommendations based on both static and dynamic analysis. The feature extraction and
classifier module of Repass Droid is used to monitor user-space activity. Google play, Drebin, Genome,
AndroZoo, Contagio, VirusShare, Appchina, and PRAGuard datasets can be used to collect adware,
backdoor Trojans, SMS attacks as well as signs of file enumeration. Android application and malware
detection can be improved by using approaches such as reverse engineering, according to a survey by Sihag
et al. [16]. Huang et al. [17] illustrate how Android applications may be made covert for the payload using
reverse auditing and malicious injection. Code obfuscation and prevention are also on the list of easy-to-
implement APK security features. Android hardening analysis, emulation, game theory and device binding
have all been used to achieve this goal. Detecting malicious code in the system has also been a focus. Data-
driven hybrid data assimilation is presented by Nellaivadivelu et al. [18] as a multilayer perceptron-based
approach for capturing state variables in Decision Analysis (DA) situations. For the purposes of observation,
context, and analysis, this research drew on the solver package and forecast model sources based on satellites
optimised for software. It was used in the work of Millar et al. [19] to examine Android malware detectors.
They concentrated on the most critical aspects for malware detection, these methods such as simple
transformation, DSA transformation, and composite DSA transformation are compared to antivirus.
Impossible features are extracted using bloom filters and a known malware family’s signature database. As
well as apktool and Java, they also used information from manifest files to test a range of obfuscators using
various parameters, such as rebuild, indirections, renaming, and rearranging. Zhang et al. [20] used multi-
view deep learning for the identification of Android malware that exploits zero-day vulnerabilities and
categorises certain elements as risky to detect Drebin malware with 91% accuracy using a CNN
(Convolutional Neural Network) technique. When Imtiaz et al. [21] investigated the features of Android
malware, they found that Text-based CNN classification was successful and adaptable in detecting Android
malware. k-Nearest Neighbors and protocol Droid approaches had an accuracy rate of 96.4 percent when
applied to three independent data sets with larger samples in pre-static, static, and dynamic analysis. For
Android malware detection and identification, Syed et al. developed a high-efficiency artificial neural
network that exploited 78 percent of the system's vulnerabilities to achieve a 93 percent accuracy rate.

3 Terminologies

3.1 Static Analysis

The probabilistic way to deal with identifying an Android malware from its decompiled source code. In
this methodology, a prepared probabilistic classifier, for example, credulous Bayes or calculated relapse is
utilized to anticipate whether the code level components, for example, API calls and consents are

Table 1: Dataset information

Reference Method API
calls

Intents Permission Limitation

[21] K-mean clustering
algorithm

Yes Yes Yes Limited to static permissions used in the
dataset

[22] Multilayer
perceptron

Yes No Yes Used limited features in the dataset.

[23] Artificial neural
network

Yes No Yes No intent and a low detection rate in the
proposed model.

[24] Deep belief network Yes No No Less accuracy rate in the proposed model,

IASC, 2023, vol.35, no.2 2415



pernicious or not. The proposed astatic examination-based Android malware identification instrument is
called Drebin. Drebin extricates static elements from an application like equipment parts, consents,
purposes, and API calls and utilizes Artificial Intelligence (AI) arrangement ways to deal with
distinguishing if it is pernicious [23]. This instrument identifies Android malevolent applications from its
API call reliance chart to find if the application is vindictive. The feature selection and extraction in this
phase by decompiling the APK file, understanding Manifest and various resource assets.

3.2 Dynamic Analysis

In this methodology, an android application gathers all the framework call occasions from a gadget and
sends them to a distant server through the cloud. Then, at that point, the server pre-processes this framework
called information and utilizations k-implies grouping calculation to decide if the application is vindictive or
not. The component for recognizing Android malware applications by dissecting the frequencies of
framework calls that impact the conduct of an application [24]. In this methodology, a binary machine
learning classifier is prepared with the frequencies of social framework calls delivered by known malware
and good ware applications. The classifier can anticipate whether the frequencies of conduct framework
calls by an obscure application relate to malware or not.

3.3 Dataset and Preliminaries

The android malware dataset collected CCCS-CIC-AndMal-2020, DREBIN, and MALGENOME
which consists of the benign and malicious applications of different categories [25]. We have used AF
Logical mobile forensics tool to extract features from the APK file and match them with the benchmark
dataset for verifying the application. Tab. 1 shows the number of samples for each category along with
the year of availability5 we also consider unique data sets collected from dynamic analysis through
sandboxing approach.

The summary of existing malware detection studies helps in understanding the type of classifiers with
limitations as shown in Tab. 2.

Table 2: Existing malware detection

Malware family Number of samples
taken for dataset

Total number of
permissions in
the dataset

Total number of sensitive
feature permissions taken
from Tab. 3

Adware 2081 51 17

Backdoor 1784 51 23

Dropper/Trojan 3044 51 22

File Infector 1670 51 10

Ransomware 1273 51 20

Scare ware 3066 51 21

SMS Attack 2300 51 19

Spyware 3054 51 26

Zero-Day 2300 51 27

Benign 3544 51 05

2416 IASC, 2023, vol.35, no.2



In our proposed approach we have overcome the weakness of the existing approach by using more
permission vulnerable feature permissions and by fixing more target labels in MLP as shown in Tab. 3.

The following system configurations are used for implementing decision support systems and building
the model using MLP with multiple regression as shown in Tab. 4.

3.4 Malware Families

Zero-day exploits are the most expensive attacks where the attack is done inside software before the fix
is released, is program protection in such kind of attack always challenging. Mostly this kind of attack is

Table 3: Android application sensitive permissions

ID Permissions ID Permissions

1 _WRITE_SMS 18 _PROCESS_OUTGOING_CALLS

2 _WRITE_SETTINGS 19 _MODIFY_PHONE_STATE

3 _WRITE_HISTORY_BM 20 _INTERNET

4 _WRITE_EXTERNAL_STORAGE 21 _INSTALL_PACKAGE

5 _WRITE_CONTACTS 22 _HARDWARE_TEST

6 _WRITE_APN_SETTINGS 23 _HARDWARE_TEST

7 _VIBRATE 24 _GET_ACCOUNTS

8 _USE_CREDENTIALS 25 _FACTORY_TEST

9 _SEND_SMS 26 _EXPAND_STATUS_BAR

10 _RESTART_ PACKAGE 27 _DIABLE_KEYGUARD

11 _RECEIVE_SMS 28 _DEVICE_POWER

12 _RECEIVE_BOOT_CMD 29 _CHANGE_WIFI_STATE

13 _READ_SMS 30 _CHANGE_NETWORK_STATE

14 _READ_PHONE_STATE 31 _CALL_PHONE

15 _READ_LOGS 32 _ACCESS_NETWORK_STATE

16 _READ_EXTERNAL_STORAGE 33 _ACCESS_LOCATION

17 _READ_CONTACTS 34 _ACCESS_GPS

Table 4: Configuration details

Parameter Value

Operating system Windows 10 Professional 64 bit

CPU Intel Core i7-9700, 8 Core, 12 MB Cache, 3.0 Ghz, 4.7 GHz

GPU Turbo w/UHD Graphics 630

Hardware details 16 GB DDR4 2666 MHz UDIMM Non-ECC memory, 3.5 inch 1TB 7200 rpm SATA
hard disk drive, M.2 256 GB PCIe NVMe Class 40 Solid state drive, Nvidia RTX
2080 Ti 11 GB graphic card

Platform/SDK Google colab/Python/Orange visual tool

IASC, 2023, vol.35, no.2 2417



protected using the Virtual Local Area Network (VLAN) and websites are protected with Security Socket
Layer (SSL) in the android platform. The attack comes through advertisement-supported information that
allows earning financial credits. Adware’s are mostly available through third-party software that infects
computers, servers, and mobile devices type of online attacks most of these safe and legitimate. The
backdoor type of malware comes through the backdoor getting through unauthorized access or weak
entry points are exploited and mitigated by the attacker and henceforth attack is done. In the last two
years, many backdoor attacks are done by disgruntled employees inside the organization. As a
countermeasure, the security check is done at the gateway, and the channel is secured. The Trojan as the
name specifies, dropper drops payload in respective target place and launches event based on logical
bomb used as a secret weapon to target victim. These are classified into various families and identified
with the help of port numbers. This is an unusual type of attack where unexpected combinations of
threats are exploited with kits to deliver file infectors into vulnerable systems. The users are driven to a
malicious site that contains such kinds of kits. The stolen information is saved. (Dynamic Link Library)
DLL file and uploaded to command and control servers. The ransomware makes victims have to pay
some ransom for them to work again these types of malicious software when installed will stop some or a
few events. This kind of payload will lock the computer screen and encrypt essential files. Scareware is
also the type of ransomware claiming system caught by illegal activities. The SMS attack targets the
victim’s mobile phone with such kind creation and sends through unauthorized calls. They charge for
SMS and generate revenue streams. We have to give more focus on these kinds of attacks ensuring
protection from these kinds of attacks. Spyware is a type of attack mainly focused on surveillance attacks
where data are monitored for commercial purposes which can breach security and confidential data can
be mishandled. Data are comprised of spyware and gain active credentials [26].

4 Existing Classifiers

4.1 Logistic Regression

In the traditional approach, under classification, the primary classifier is linear or logistic regression
based on the need of the user for training the model. The dataset is made by collecting datasets from
repositories along with the own result obtained from the hybrid analysis. In the first part, logistic
regression is supervised classification where our target variable is a discrete value stating whether the
application is malicious or not called binary classification [27]. This model uses the sigmoid function
given below in the equation.

g zð Þ ¼ 1

1þ e^ � z
(1)

The logistic regression is categorized based on either low/high or high/low precision-recall where in the
first case we reduce the false negative for sensitive data and in the latter reduce the false positives. The
presence of android malware comes under binomial logistic regression where the presence is treated as
‘1’ and not present as ‘0'.

y ¼ 0; if fail and 1; if passf g (2)

The data has ‘m’ feature variables and ‘n’ observations and thematrix is represented as shown in Fig below.

X ¼
1 x11 � � � x1m

..

. . .
. ..

.

1 xn1 � � � xnp

0
@

1
A (3)

2418 IASC, 2023, vol.35, no.2



We can define conditional probabilities for two labels (0 and 1) for the ith.

P yi¼ 1jxi;bð Þ¼ h xið Þ (4)

P yi¼ 0jxi;bð Þ¼ 1� h xið Þ
Here, y and h(x) present the vector and predicted response. Xj represents the observed values of the jth

feature.

bj ¼ bj� a
Xn

i¼1
h xið Þ � yið Þxij . . . (5)

The learning is defined a and the value is set explicitly. The merits of using this approach are we need
not take a learning rate, are always quick in execution, and get an appropriate numerical response. The
demerits are a bit complex and look more like black-box testing. The important points to be noticed are
independent variables and non-linear transformation. The dependent variables need not be normally
distributed based on the binomial distribution. The homogeneity and errors need not be focused on in this
type of approach based on large sample approximations. Tab. 3 shows the selection of permission for the
detection of android malware. In this paper, we have created a dataset ensuring system calls, API calls,
and permissions with recent exploits and zero-day vulnerabilities. The next step is the creation of a model
using supervised learning.

4.2 Naïve Bayes Classifiers

This approach collection of algorithms where every pair classification is done independently, we divide
it into the first feature matrix second response vector. The first part contains dependent features and later
contains prediction in simple terms output. The equations given below explain the working principle of
the classifier.

P ðXjYÞP Y jXð ÞP Xð Þ
P Yð Þ (6)

where X and Y are events and checking whether P(Y)? 0 considering the probability of occurrence of X
assuming Y is true termed as evidence. The prior and posterior probability have to be monitored. In our
paper, we have used a Gaussian classifier. The demerit with this approach model will assume ‘0’ as
output in case the dataset has errors or missing values.

4.3 Support Vector Machine Classifiers

This approach is non-linear where we map high dimensional features with input data set. The outcome is
non-probabilistic binary classification. The optimization of linear discriminant represents perpendicular
distance. This classifier works on black-box testing where the input training data is compared with the
output label and achieves the result.

4.4 K-Nearest Neighbours Classifiers

We have implemented a dataset using the K-Nearest Neighbours supervised machine algorithm one of
the most essential classification algorithm mainly used for intrusion detection part of cyber security. This
algorithm can be used for real-time data and henceforth is mostly suitable for hybrid analysis. Here we
classify the data sets identified with the help of attributes.

IASC, 2023, vol.35, no.2 2419



4.5 Ada Boost Classifiers

An ensemble meta-algorithm that combines weak learners and adapts to the ‘hardness’ of each training
sample. The AdaBoost (short for “Adaptive boosting”) is a machine-learning algorithm, formulated by Yoav
Freund and Robert Schapire. It can be used with other learning algorithms to boost their performance. It does
so by tweaking the weak learners. AdaBoost works for both classification and regression.

5 Proposed Classifier

5.1 Multilayer Perceptron

The concept of perceptron comes with modern features in neural networks that explain binary
classification ‘0’ or ‘1’ which can learn and solve complex problems [28]. This is purely taken on
training data and power-based computation ability as shown in Fig. 1.

Multilayer perceptron comes along with additional perceptrons in layers for handling complex
problems. This sends signals with different weights for different outputs. Fig. 2 given below shows three-
layer MPL where the decision function will be a step function and the final output is binary.

Fig. 3 below explains the perceptron learning process in step by step procedure. We take inputs to
multiply with weights then compute the sum, add bias factor taking number 1 and multiply with weight
feed sum through activation function and the final output will be perceptron. The backpropagation
algorithm can be used by the term called “backward pass” which helps in tuning errors, calculating with
square error and resulting in optimal weights is kind of hyper-parameter added through external entities
which can create a huge impact on accuracy rate.

Figure 1: Black-box visualization of the proposed model

Figure 2: Multilayer Perceptron with different inputs and random weight

2420 IASC, 2023, vol.35, no.2



6 Proposed Methodologies

Authors are required to adhere to this Microsoft Word template in preparing their manuscripts for
submission. It will speed up the review and typesetting process. In this paper, we have assigned random
values to weights for increasing the accuracy rate and do random initialization with
p

2� size l� 1½ �ð Þ (7)

W½i� ¼ np:random:randn size l; size l� 1ð Þ�np:sqrt 2� size 1� 1ð Þð Þ
The approach above is an older technique followed for optimal results. We have improved by changing

the equation as given below serves as a good initialization point and weights neither too big nor too less
helping slow convergence shown in Eqs. (7) and (8). This reduces to minimum variance.
p

2� size l� 1½ � þ size l½ �ð Þ (8)

W½i� ¼ np:random:randn size l; size l� 1ð Þ�np:sqrt 2� size 1� 1ð Þþsize lð Þ
The multiple output regression can have multiple output/target hidden layers which will be compared

with features selected from the dataset. In our approach, we took a synthetic dataset taken from the
repository Canadian university of cyber security and chose a data set to our requirement. The pseudo-
code given below explains the implementation of a model for decision-making with a better accuracy rate.

MLP Multi-Output Algorithm

Step 1: Train the neural network.

Step 2: Implement Feedforward by feeding input layer, weight sum of input to the jth node in the hidden
layer

Step 3: Calculate with the formula Netj = ∑ Wj:j Xj + θj and find aggregate input to the neuron. θj is the
weighted value from the bias node always output value if 1.

Step 4: The bias node is considered as input to each hidden and output layer. This is for overcoming
situations when input patterns are zero.

Figure 3: MLP with backpropagation

(Continued)

IASC, 2023, vol.35, no.2 2421



Step 5: Add an appropriate activation function.

Step 6: The result from the activation function determines neuron output.

Step 7: We use the backpropagation algorithm when the activation function is differentiable and implement
the sigmoid function Oj = Xi = 1/(1 + e−Netj)

Step 8: Error calculation and weight adjustment from Eqs. (7) and (8)

Step 9: Load dataset into Google Colab platform.

Step 10: Call make regression and pass number of samples, number of features, target and fix the random
state.

Step 11: Call Sequential Function.

Step 12: Add Input and Output Layer.

Step 13: Assign a random weight to the activator function.

Step 14: Enumerate Fold and split train and test data from the dataset.

Step 15: Fit and evaluate the model.

Step 16: Print accuracy score, confusion matrix, and classification report

6.1 Evaluation Measures and Experimental Setup

The training and testing of the dataset are done by splitting data into 80% training and 20% testing data.
We can have used label encoders for the target value we compute accuracy, precision, recall, and f-score for
evaluating the proposed method, True Positive (TP) predicted the case to be in YES and present in it. False
Positives (FP) predicted the case to be YES but NOT. True Negative (TN) predicted not to be in YES but
NOT in it. In the last case, False Negative (FN) predicted the case not to be in YES but actually in YES.
From the above results of MLP neural network implementation with backpropagation, we test the
learning algorithms by comparing results with logistic regression in binary classification. We have
100 epochs for validating and testing the model. The first process is cross-validation by splitting data
taken 5 folds based on features from the dataset. We select random samples and test on split test and train
data. The results show the accuracy, precision, and recall for the model and achieve the optimal result of
96.5% for the neural network classifier compared to logistic regression as shown in Tab. 5 below
achieved from Method MLP Multi-Output Algorithm. F-1 waited for the mean of precision and recall, the
proportion of true positives among data classified as positive. Based on the comparison of existing

MLP Multi-Output Algorithm (continued)

Table 5: Accuracy and classification report

Model Accuracy F-score Recall Precision

Multilayer perceptron[This work] 96.5% 0.805 0.808 0.804

k-NN 92.1% 0.744 0.749 0.746

Naïve Bayes 89.5% 0.554 0.549 0.587

SVM 90.5% 0.580 0.585 0.589

Ada Boost 96.3% 0.789 0.793 0.804

Logistic regression 83.3% 0.429 0.486 0.448

2422 IASC, 2023, vol.35, no.2



The input for confusion matrix results obtained from classification algorithms and output is selected data
where we take into the number of instances, proportions of predicted and proportions of actual represents the
target variable. Figs. 4–9 below shows the confusion matrix for various classifiers. It shows how many
instances of normal applications and getting confused with the instance of malicious applications. The
major strength of the proposed work is achieving 96.5% accuracy with larger data sets compared to the
existing work considering zero-day exploits.

Figure 4: Confusion matrix for MLP

Figure 5: Confusion matrix for logistic regression

IASC, 2023, vol.35, no.2 2423



The ROC curve below shows the tested model and its respective convex helps in determining the
threshold and optimal classifier results shown in Fig. 10. The cost matrix is constructed based on the
points at the border of concave regions. The multiple iteration’s of testing and training using k-fold cross-
validation. The default threshold will be considered as 0.5 and then target class probability.

This is 2-dimensional visualization used for continuous and discrete attributes of various categories of
malware families represented in the scatter plot shown in Fig. 11. The X-axis attributes contain a horizontal
axis and the Y-axis attribute determines the position on the vertical axis like the color, size, and shapes of
various attacks possible in android applications.

Figure 6: Confusion matrix for Naïve Bayes

Figure 7: Confusion matrix for SVM

2424 IASC, 2023, vol.35, no.2



Figure 8: Confusion matrix for k-NN

Figure 9: Confusion matrix for AdaBoost

IASC, 2023, vol.35, no.2 2425



Figure 10: ROC curve

Figure 11: Scatter plot

6.2 Android Malware Feature Selection with Relief Scoring

The ranking of malware helps in reducing data and selecting attributes for making a better decision
support system. The class-labeled datasets and scores attribute taking into consideration correlation with
the class as shown in Fig. 12 below.

2426 IASC, 2023, vol.35, no.2



The filter-method technique used for feature selection for extracting the feature selection is mainly used
for binary classification based on nearest neighbor instance pairs. The selection is done by nearest hit and
nearest miss instance neighbors to scoring as shown in the formula given below.

Wi ¼Wi� xi�nearHitið Þ2þ xi�nearMissið Þ2 (9)

Fig. 13 below shows the top feature permission gathered from the dataset and its respective scores using
this technique. The novelty of the proposed work is to ensure that the best sensitive permission features can
be extracted from larger data sets with a better accuracy rate compared to the existing work.

Figure 12: Ranking process

Figure 13: Best permission features from the model based on ranking

IASC, 2023, vol.35, no.2 2427



7 Conclusion and Future Work

In this approach, we have selected the best features that can be used for ranking android malware using
multilayer perceptron with multiple regression and achieved better accuracy compared with logistic
regression. The dataset collected from repositories is taken into dataset according to different malware
categories that are seen to be more vulnerable in recent days. The unobserved android malware is
identified and provides the solution for threats like zero-day exploits which cannot be tracked by anti-
virus scanners using a signature-based approach. The technical part covers analyzing the android malware
using sandboxing environment preparing reports from dynamic analysis and giving that as input for the
deep learning model. The ranking method will enhance the system’s ability to identify the threat and can
be used in online antivirus scanners. We have tested with recent payloads collected from benchmarking
dataset. As the functions of each application are increasingly powerful it has become mandatory for us to
protect the user from vulnerable threats as we know that most of the Applications on the Android
platform are not encrypted. As the next generation moving towards smart cities where most users will be
using the android application for various purposes like banking, finance, fitness and health, social
applications the possibility of threats might increase in the case of unencrypted applications as well as
weaker applications. This might be one of the major challenges while establishing IoT platforms where
most devices are connected to the internet resulting in the breaking of integrity and confidentiality. Our
proposed work leading to the threat model can suggest or help in decision-making for users while
installing an application from not trusted resources. In future work, we take binary samples to convert
into an image with RGB combinations and classify them using the CNN approach. In the industry, as
many employees might be using android phones there might be a possibility a disgruntled person can
float vulnerable applications and cause social engineering attack out automation approach will help
organizations to track sensitive permissions and report to the forensics team for further studies. In
addition that can implement Gradient Boosting (XG-Boost) model compared with traditional classifiers
and justify with better accuracy for larger samples under unsupervised learning.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Gao, L. Li, P. Kong, T. F. Bissyandé and J. Klein, “Understanding the evolution of android app vulnerabilities,”

IEEE Transactions on Reliability, vol. 70, no. 1, pp. 238–250, 2021.

[2] R. Surendran., T. Thomas and S. Emmanuel, “On existence of common malicious system call codes in android
malware families,” IEEE Transactions on Reliability, vol. 70, no. 1, pp. 218–230, 2021.

[3] V. J. Raymond and R. J. R. Raj, “Reversing and auditing of android malicious applications using sandboxing
environment,” International Journal of Electronic Security and Digital Forensics, vol. l, no. 12, pp. 386–396,
2020.

[4] K. Shibija and R. V. Joseph, “A machine learning approach to the detection and analysis of android malicious
apps,” in Proc. IEEE Int. Conf. on Computer Communication and Informatics (ICCCI), Tamilnadu, India, pp.
1–4, 2018.

[5] L. Cai, Y. Li and Z. Xiong, “JOWMDroid: Android malware detection based on feature weighting with joint
optimization of weight-mapping and classifier parameters,” Computers & Security, vol. 100, no. 7, pp.
102086–102098, 2021.

[6] A. S. Bozkir., E. Tahillioglu, M. Aydos and I. Kara, “Catch them alive: A malware detection approach through
memory forensics, manifold learning and computer vision,” Computers & Security, vol. 103, no. 1, pp.
102166–102185, 2021.

2428 IASC, 2023, vol.35, no.2



[7] Y. T. Ling, N. Sani, M. T. Abdullah and N. A. Hamid, “Structural features with nonnegative matrix factorization
for metamorphic malware detection,” Computers and Security, vol. 103, no. 2, pp. 102216, 2021.

[8] R. Surendran, T. Thomas and S. Emmanuel, “On existence of common malicious system call codes in Android
malware families,” IEEE Transactions on Reliability, vol. 70, no. 1, pp. 248–260, 2020.

[9] P. R. Varshini, S. Baskar, M. Varatharajan and S. Sadhana, “Tuning rules for fractional order pid controller using
data analytics,” Intelligent Automation and Soft Computing, vol. 33, no. 3, pp. 1787–1799, 2022.

[10] M. Cai, Y. Jiang, C. Gao, H. Li and W. Yuan, “Learning features from enhanced function call graphs for Android
malware detection,” Neurocomputing, vol. 423, no. 7, pp. 301–307, 2021.

[11] S. K. Sasidharan and C. Thomas, “ProDroid-An Android malware detection framework based on profile hidden
Markov model,” Pervasive and Mobile Computing, vol. 23, no. 4, pp. 101336–101389, 2021.

[12] D. E. García and N. D. C. García, “Optimal feature configuration for dynamic malware detection,” Computers &
Security, vol. 103, pp. 102250, 2021.

[13] N. Zhang, Y. A. Tan, C. Yang and Y. Li, “Deep learning feature exploration for Android malware detection,”
Applied Soft Computing, vol. 102, no. 1, pp. 107069–107077, 2021.

[14] Y. Ma, R. Han and W. Wang, “Portfolio optimization with return prediction using deep learning and machine
learning,” Expert Systems with Applications, vol. 165, no. 3, pp. 113973–113992, 2020.

[15] A. Razgallah, R. Khoury, S. Hallé and K. Khanmohammadi, “A survey of malware detection in Android
apps: Recommendations and perspectives for future research,” Computer Science Review, vol. 39, no. 3, pp.
100358, 2021.

[16] V. Sihag, M. Vardhan and P. Singh, “A survey of android application and malware hardening,” Computer Science
Review, vol. 39, no. 1, pp. 100365, 2021.

[17] L. Huang, H. Leng, X. Li, K. Ren and J. Song, “A data-driven method for hybrid data assimilation with multilayer
perceptron,” Big Data Research, vol. 23, no. 10, pp. 100179–100188, 2021.

[18] G. Nellaivadivelu, F. Troia and M. Stamp, “Black box analysis of android malware detectors,” Array, vol. 6, no. 2,
pp. 100022–100034, 2020.

[19] S. Millar, N. McLaughlin, J. D. Rincon and P. Miller, “Multi-view deep learning for zero-day Android malware
detection,” Journal of Information Security and Applications, vol. 58, no. 3, pp. 102718–102736, 2021.

[20] N. Zhang, Y. A. Tan, C. Yang and Y. Li, “Deep learning feature exploration for Android malware detection,”
Applied Soft Computing, vol. l, no. 102, pp. 107069–107076, 2020.

[21] S. Imtiaz, S. Rehman, A. R. Javed, Z. Jalil and W. S. Alnumay, “DeepAMD: Detection and identification of
Android malware using high-efficient deep artificial neural network,” Future Generation Computer Systems,
vol. 115, no. 5, pp. 844–856, 2020.

[22] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari and F. Gagnon, “EntropLyzer: Android malware classification and
characterization using entropy analysis of dynamic characteristics,” in Reconciling Data Analytics,
Automation, Privacy, and Security: A Big Data Challenge (RDAAPS), Canada, pp. 1–18, 2021.

[23] D. J. Wu, C. Mao, T. Wei, H. Lee and K. P. Wu, “Droidmat: Android malware detection through manifest and api
calls tracing,” in Proc. IEEE Seventh Asia Joint Conf. on Information Security, Tokyo, Japan, pp. 62–69, 2012.

[24] P. Chan and W. Song, “Static detection of Android malware by using permissions and API calls,” in Proc. IEEE
Int. Conf. on Machine Learning and Cybernetics, Koyoma, Japan, pp. 82–87, 2014.

[25] Z. Yuan, Y. Lu and Y. Xue, “Droiddetector: Android malware characterization and detection using deep learning,”
Tsinghua Science and Technology, vol. 21, no. 1, pp. 114–123, 2018.

[26] Z. Yuan, Y. Lu, Z. Wang and Y. Xue, “Droid-sec: Deep learning in android malware detection,” in Proc. of the
ACM Special Interest Group on Data Communication, United States, pp. 371–372, 2014.

[27] J. Kinyua and L. Awuah, “AI/ML in security orchestration, automation and response: Future research directions,”
Intelligent Automation and Soft Computing, vol. 28, no. 2, pp. 527–545, 2021.

[28] K. Xu, Y. Li, R. H. Deng and K. Chen, “Deeprefiner: Multi-layer android malware detection system applying deep
neural networks,” in Proc. 2018 IEEE European Symp. on Security and Privacy (EuroS&P), London, United
Kingdom, pp. 473–487, 2018.

IASC, 2023, vol.35, no.2 2429


	Investigation of Android Malware Using Deep Learning Approach
	Introduction
	Related Works
	Terminologies
	Existing Classifiers
	Proposed Classifier
	Proposed Methodologies
	Conclusion and Future Work
	References


