
Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme for
Cloud Environment

R. Rengaraj alias Muralidharan1,* and K. Latha2

1Department of Information Technology, Saranathan College of Engineering, Tiruchirapalli, 620012, Tamilnadu, India
2Department of Computer Science and Engineering, Anna University (BIT Campus), Trichy, 620024, Tamilnadu, India

*Corresponding Author: R. Rengaraj. Email: rengaraj-it@saranathan.ac.in
Received: 04 March 2022; Accepted: 12 April 2022

Abstract: In cloud computing (CC), resources are allocated and offered to the cli-
ents transparently in an on-demand way. Failures can happen in CC environment
and the cloud resources are adaptable to fluctuations in the performance delivery.
Task execution failure becomes common in the CC environment. Therefore,
fault-tolerant scheduling techniques in CC environment are essential for handling
performance differences, resource fluxes, and failures. Recently, several intelli-
gent scheduling approaches have been developed for scheduling tasks in CC with
no consideration of fault tolerant characteristics. With this motivation, this study
focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware
Scheduling Scheme (GTO-FTASS) in CC environment. The proposed GTO-
FTASS model aims to schedule the tasks and allocate resources by considering
fault tolerance into account. The GTO-FTASS algorithm is based on the social
intelligence nature of gorilla troops. Besides, the GTO-FTASS model derives a
fitness function involving two parameters such as expected time of completion
(ETC) and failure probability of executing a task. In addition, the presented fault
detector can trace the failed tasks or VMs and then schedule heal submodule
in sequence with a remedial or retrieval scheduling model. The experimental vali-
dation of the GTO-FTASS model has been performed and the results are inspected
under several aspects. Extensive comparative analysis reported the better outcomes
of the GTO-FTASS model over the recent approaches.

Keywords: Cloud computing; gorilla troops optimizer; task scheduling; fault
tolerant; task completion time; failure probability

1 Introduction

Over the past decade, Cloud computing (CC) is emerging as a prominent paradigm and its usage had
witnessed considerable development [1]. Small scale users and largescale commercial businesses and
scientific applications get benefitted from using cloud. By the use of minimum involvement, clients can
benefit service from CC since it allows universal and on demand access to a common pool of CC
resources which can be hardware, software, and applications are communal resources. Fault might take
place on each of these layers; nonetheless, software enabled algorithm is recognized and employed to

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.029495

Article

echT PressScience

mailto:it@saranathan.ac.in
http://dx.doi.org/10.32604/iasc.2023.029495
http://dx.doi.org/10.32604/iasc.2023.029495

recuperate from faults. Fault tolerance is defined as a capability of a system to keep on running its planned
operation against faults or errors [2,3]. Even a well-developed system with the highest services and
components could not be named reliable with non-fault tolerant abilities [4]. For the reason that a great
amount of delay aware applications have to be performed, reliability is a crucial feature of CC. Moreover,
service reliability is crucial to cloud wide recognition. Consequently, fault tolerant approaches have
gained considerable attention from the researcher. There are different fault tolerance models—
checkpointing, Reconfiguration, replication, Safety-Bag Checks, Task Migration, Retry, Task
Resubmission, Self-Healing, Masking, and so on. [5–8]—to address the fault at different levels whether
reactively or proactively. CC includes the dynamic resource allocation and the usage of data center that is
often distributed geographically. The splitting of the server accessible resource into virtual machine (VM)
take place by VM monitor (VMM). Multiple or individual VM are allocated for running the provided
applications based on client requests. The advantage of using a VM is that it enables us to perform
applications on different IDEs, software environments, and operating systems. Fault tolerance based on
hardware or time redundancy to cover component or task failure. Time redundancy includes the re-
execution of failed task afterward the malfunction was recognized. It is enhanced by the application of
checkpoint technique however, still it imposes a significant latency. These two technique presents
negative and downside aspects, replication needs additional resources and re-execution need additional
time, especially energy. This makes a tradeoff between hardware and time redundancy, in IaaS-CC
system replication is preferred mainly since the response time is usually very vital [9,10]. This study
focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme
(GTO-FTASS) in CC environment in order to schedule the tasks and allocate resources by considering
fault tolerance into account. The GTO-FTASS algorithm is based on the social intelligence nature of
gorilla troops. Besides, the GTO-FTASS model derives a fitness function involving two parameters such
as expected time of completion (ETC) and failure probability of executing a task. In addition, the
presented fault detector can trace the failed tasks or VMs and later schedule healing submodules in
sequence with a remedial or retrieval scheduling model. The experimental validation of the GTO-FTASS
model has been performed and the results are inspected under several aspects.

2 Related Works

This section reviews the recently developed models for task scheduling with fault tolerance in CC. Kasu
et al. [11] presented a bloom filter enabled data-aware probability based fault tolerant (DAFT) method that
might deal with these faults. Also, presented a data and layout aware method for fault tolerance (DLFT) to
efficiently deal with the false positives match. Kanwal et al. [12] presented genetic algorithm (GA) based
multi-phase fault tolerance (MFTGA) method for scheduling the task through the VM for multiple users.
The presented method effectively maps optimum VM with users based on the service level agreement
(SLA). The proposed technique encompasses four stages such as local phase, individual phase, fault
tolerance phase, and global phase. Sathiyamoorthi et al. [13] present an adaptive and effective fault
tolerant scheduling method to help error-free scheduling. The presented technique considered the highly
effective variables namely present workload and failure rate of the resource for optimum Quality of
Service (QoS). The presented technique can be validated by utilizing the CloudSim toolkit. Jing et al.
[14] proposed a QoS scheduling algorithm by integrating the cloud features, later, we developed a task
scheduling object to guarantee fault can be tolerated at the time of the task execution. At last, we
presented a QoS-aware scheduling approach, QoS-DPSO, for satisfying the QoS requirement in CC
system. Alaei et al. [15] presented an adaptive fault detector approach based Improved Differential
Evolution (IDE) method in CC that could reduce the energy utilization, the make-span, overall costs, and,
simultaneously, tolerate up fault while scheduling scientific tasks. This presented method employs an
ANFIS predictive method for proactively controlling resource load fluctuation which improves the fault

1924 IASC, 2023, vol.35, no.2

predictive performance beforehand of failure or fault existence. Karthikeyan et al. [16] established a
SALDEFT model for improving the communication overhead (that is, overall energy utilization and the
network resource). Now, choosing an optimum Physical Machine (PM) is taken into account as an
optimization issue and an enhanced DE approach is applied to resolve the issue. In [17], proposed an
approach to resolve allocating tasks through Ant Colony Optimization (ACO) by adopting fault tolerance
and Reinforcement learning (RL) for making fault-tolerant scheduling process, and to accomplish the
goal of minimal makespan. Arora et al. [18] presented the method to handle various requests from multi-
user to the cloud. It contains two parts: initially, each VM is monitored and the optimum VM with
adequate resources to manage the request is carefully chosen and next, the task is assigned to the
essential resource. Also, check the load on every VM by continuously observing, and once the load is
improved, relocation can be performed to the following VM. In the next section 3, discusses proposed
model, followed in section 4 experimental evaluation section, the final section discusses conclusion with
future findings.

3 The Proposed Model

This study has designed a new GTO-FTASS technique for scheduling tasks and allocating resources in
the CC environment. The GTO-FTASS model has computed a fitness function comprising two parameters
such as ETC and failure probability of executing a task. In addition, the presented fault detector can trace
the failed tasks or VMs and later schedule healing sub-modules in sequence with a remedial or retrieval
scheduling model.

3.1 Overview of GTO

Abdollahzadeh et al. proposed GTO algorithm which depends upon the social intelligence of GTO
naturally. Here, the behavior of gorillas is arithmetically modelled by utilizing novel mechanisms for
exploitation and exploration stages. Furthermore, it lives under the leader of silverback gorilla who take
each troop's decision and hunts for food in a group. This approach considers that the weaker solutions in
the population are weaker gorilla in the set. Furthermore, another gorilla seeks to move away to attain
optimal solutions for enhancing each gorilla position. Moreover, the exploitation and exploration stages
of the GTO is briefly discussed and summarized in the following [19]:

Fig. 1 shows the flowchart of GTO algorithm. In the exploration stage, three distinct models (moves to
another gorilla, migration towards unknown position, and migration to a known position) that is represented
by Eq (1):

GX t þ 1ð Þ ¼ U � Lð Þr1 þ L if r and, p r2 � Dð ÞXr tð Þ þ S � V if r and � 0:5
X tð Þ � S S X tð Þ � GXr tð Þð Þ þ r3 X tð Þ � GXr tð Þð Þð Þ if r and, 0:5

�
(1)

whereas GX t þ 1ð Þ represents the location vector in the following t iteration, L an U d denotes the lower and
upper bounds of the variable, correspondingly. X tð Þ represents the present vector of gorilla location, Xr

indicates gorilla in a group that is arbitrarily selected from the population and GXr tð Þ denotes the location
of random gorilla. Furthermore, rand, r1; r2 and r3 represent arbitrary parameters from 0 to 1. The
parameter p denotes the possibility of choosing the migration to unknown position. Furthermore, the S
and V variables denote the silverback motion. The variable D is computed by the following equation:

D ¼ N � 1� t

MaxIt

� �
(2)

Now N represent the population size and MaxIt indicates the maximal amount of iterations.

IASC, 2023, vol.35, no.2 1925

At the exploitation stage, two distinct models are employed. They are depending on a comparison
among the D value estimated by a parameter W. The gorilla obeys each silverback command to go to
different positions for searching food supplies and it can be used only if D � W and it is formulated in
Eq. (3):

GX t þ 1ð Þ ¼ S � J X tð Þ � Xsilverbackð Þ þ X tð Þ (3)

In which Xsilverback indicates the location vector of silverback. Furthermore, once young gorillas grow up,
they compete with male gorillas on the adult female. It can be used only if D < W and also it is expressed in
the following equation:

GX ið Þ ¼ Xsilverback � Xsilverback � R� X tð Þ � Rð Þ � T (4)

whereas T and R represent coefficient and the impact force of violence level, correspondingly. At last, the
fitness function (FF) solution is upgraded by the optimal solution at the end of the exploitation stage.

Algorithm 1: Pseudocode of GTO algorithm

Initializes population size N and the maximal amount of iterations Maxiter

Initializes the gorilla population randomly Xi i ¼ 1; 2; � � � ; Nð Þ
Evaluate fitness value of each gorilla individual

While t < Maxiter do

Upgrade the variable C

Upgrade the variable L

For every gorilla Xi do//Exploration phase

Upgrade the position of the present gorilla

End For

Calculate the fitness value of each gorilla

Figure 1: Flowchart of GTO algorithm

(Continued)

1926 IASC, 2023, vol.35, no.2

Store optimum solutions as silverback Xsilverback

For every gorilla Xi do

If C � W then

Upgrade location of present gorilla

Else

Upgrade location of present gorilla

End If

End For

Upgrade the fitness value of each gorilla

Upgrade the global optimal solution Xsilverback

Incerment t

End While

Display global optimal solution Xsilverback and fitness values

In the following, steps of GTO approach are given:

a) Initializing the population using arbitrary position.

b) Set the variables MaxIt; U ; L; D; and W.

c) Find the gorilla location.

d) Estimate the FF.

e) Set the optimal solution as the position of the silverback.

f) Upgrade the gorilla location according to D and W values.

g) Show the optimal gorilla location and upgrade the FF until the maximal amount of iterations is
obtained.

3.2 Design of GTO-FTASS Model

For deriving the fitness function, the primary objective of the provider is to minimize the execution time,
whereas the goal of client is to minimize the cost of retrieving cloud resource by decreasing the make-span
time. Thus, the fitness values of GTO-FTASS model are calculated by the fitness function as follows

f Cð Þ ¼ max [m
i¼1

Ci

� �
(5)

whereas C
0
i denotes the completion of task i. The lower the make-span the higher the efficacy of the model,

which means lesser time is taken to implement the process. The expected time of completion (ETC) is
described as the implementation time for all the tasks to calculate on a VM attained by the ETC matrix as
follows [20]. An ETC matrix associated with n tasks T ¼ fT1; T2; . . . ; Tng and m VM signified as
V ¼ V1;V2; . . . ;Vmf g resource

Algorithm 1: (continued)

IASC, 2023, vol.35, no.2 1927

ETC ¼ T � V ¼

T1V1 T1V2 . . . T1Vm

T2V1
..
. ..

. ..
.

..

. ..
. ..

. ..
.

TnV1 TnVm

8>>><
>>>:

9>>>=
>>>;

(6)

As well, ii; rk) is described as the failure probability of performing the task with a trust level (TL) and
security demand (SD). The SD represents the security demand for the applications during task submission.
The trust mechanism evaluates the VM site dependability, to be accurate, the TL. A task failure method can
be defined as a function of the variance between the machine security and task demand. Eq. (7) describes the
failure probability about scheduling of task T with a certain SDj value, to the VMi with trust value TLi. TL
represents the security assurance for the resource VM, the superior is the TL value the more advanced the
VM dependability.

Pf Ti; Vkð Þ ¼ 0 if SDi � TLk
1� e�a SDj�TLkð Þ; if SDi > TLk

�
(7)

In which a indicates the failure coefficient i.e., fraction number.

3.3 Fault Detector

A fault detector is essential to design a fault-tolerance model. Several detection methods have different
fields of emphasis on certain parameters, for example, fault coverage, performance, complexity, etc [21–23].
The proposed fault tolerant process is given in Fig. 2. Additionally, VM presented a new facility for detecting
failure. The task implementation run-on a VM is examined from remote site and the task failure is
distinguished by the abnormal internal operation data, such as the abnormal cycle of system performance
call. VM detection is accomplished by implementing a detection mechanism positioned in virtual
machine manager (VMM) that judge intermittently the fault condition of VM. The function of the fault
detector we presented here tracks the failed tasks or VM and later schedule healing sub-modules
consecutively with a healing or recovery LCA scheduling method. The healing model is to direct the
resulting healing sub-models to recover the fault based on fault category and intensity. The fault healing
can be achieved successively until the task is completely recovered. Fig. 2 shows the process involved in
fault tolerant stage.

4 Performance Evaluation

In this section, the experimental validation of the GTO-FTASS model is performed using two scenarios.
In the first scenario, a set of 5 cloud users with 5 brokers and 2 data centers are involved. Next, in the second
scenario, a set of 10 cloud users with 10 brokers and 5 data centers are involved. The results are investigated
under varying numbers of tasks. Tab. 1 provides a comprehensive comparative examination of the GTO-
FTASS model with existing models [20] on scenario 1 in terms of makespan (MSN), failure ratio (FRR),
and failure slowdown (FSD). The experimental values indicated that the GTO-FTASS model has resulted
in an effectual outcome on scenario 1.

Fig. 3 illustrates a brief MSN examination of the GTO-FTASS model with recent models under varying
tasks in scenario 1. The figure indicated that GTO-FTASS model has resulted in effectual outcomes
with minimal values of MSN over the other methods. For instance, with 10 tasks, the GTO-FTASS
model has offered lower MSN of 409 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCA
models have obtained higher MSN of 636, 622, 594, 580, and 537 respectively. Besides, with 50 tasks,
the GTO-FTASS model has offered lower MSN of 466 whereas the MTCT, MAXMIN, ACO, NSGA-II,

1928 IASC, 2023, vol.35, no.2

and DCLCA models have obtained higher MSN of 1359, 1118, 948, 806, and 622 respectively. Along with
that, with 100 tasks, the GTO-FTASS model has provided reduced MSN of 721 whereas the MTCT,
MAXMIN, ACO, NSGA-II, and DCLCA models have resulted in increased MSN of 3075, 2508, 1955,
1530, and 991 respectively.

Fig. 4 exemplifies a detailed FRR inspection of the GTO-FTASS model with recent models under
variable tasks in scenario 1. The figure designated that GTO-FTASS model has accomplished better
results with least values of FRR over the other methods. For instance, with 10 tasks, the GTO-FTASS
model has provided minimal FRR of 43.42 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCA
models have gained maximum FRR of 63.34, 53.38, 55.51, 50.53, and 50.53 respectively. Meanwhile,
with 100 tasks, the GTO-FTASS model has accomplished decreased FRR of 11.41 whereas the MTCT,
MAXMIN, ACO, NSGA-II, and DCLCA models have depicted increased FRR of 24.92, 22.08, 23.50,
18.17, and 17.46 respectively. Additionally, with 50 tasks, the GTO-FTASS model has provided lesser
FRR of 22.43 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCA models have attained
increased FRR of 38.44, 34.53, 34.88, 33.46, and 30.26 respectively.

Figure 2: Steps in fault tolerance process

IASC, 2023, vol.35, no.2 1929

Table 1: Comparative analysis of GTO-FTASS model under varying tasks in scenario 1

Makespan

No. of Tasks MTCT MAXMIN ACO NSGA-II DCLCA GTO-FTASS

10 636 622 594 580 537 409

20 665 679 622 665 622 494

30 948 863 835 792 650 551

40 1047 906 877 778 636 480

50 1359 1118 948 806 622 466

60 1487 1274 1317 806 636 409

70 1657 1317 1047 1161 679 494

80 2182 1771 1303 1430 835 594

90 2777 2224 1771 1473 877 622

100 3075 2508 1955 1530 991 721

Failure Ratio

No. of Tasks MTCT MAXMIN ACO NSGA-II DCLCA GTO-FTASS

10 63.34 53.38 55.51 50.53 50.53 43.42

20 57.29 50.53 44.49 41.29 36.66 32.04

30 50.18 46.98 41.64 36.66 33.82 27.77

40 44.13 41.29 40.93 31.68 29.90 26.70

50 38.44 34.53 34.88 33.46 30.26 22.43

60 33.46 31.33 29.90 29.19 28.48 20.66

70 29.90 29.90 28.84 27.41 28.48 19.95

80 28.84 28.48 28.48 25.64 23.86 16.03

90 27.06 27.77 25.64 20.66 19.59 13.54

100 24.92 22.08 23.50 18.17 17.46 11.41

Failure Slowdown

No. of Tasks MTCT MAXMIN ACO NSGA-II DCLCA GTO-FTASS

10 1.91 1.47 1.50 1.50 1.08 0.54

20 2.45 2.28 2.03 1.64 1.30 0.86

30 2.84 2.60 2.30 1.81 1.54 1.10

40 3.06 2.82 2.72 2.43 2.13 1.50

50 3.04 2.96 2.87 2.62 2.57 1.76

60 3.82 3.40 3.06 2.94 2.69 1.96

70 4.19 3.97 3.55 2.94 2.65 2.13

80 4.58 4.21 3.82 3.23 2.91 2.33

90 5.31 4.58 3.99 3.55 3.16 2.45

100 6.19 4.55 4.14 3.84 3.53 2.74

1930 IASC, 2023, vol.35, no.2

Fig. 5 demonstrates a comprehensive FSD investigation of the GTO-FTASS model with recent models
under changeable tasks in scenario 1. The figure reported that GTO-FTASS model has led to superior
performance with lower values of FSD over the other methods. For instance, with 10 tasks, the GTO-
FTASS model has accomplished reduced FSD of 0.54 whereas the MTCT, MAXMIN, ACO, NSGA-II,
and DCLCA models have demonstrated increased FSD of 1.91, 1.47, 1.50, 1.50, and 1.08 respectively.
Besides, with 50 tasks, the GTO-FTASS model has reached minimal FSD of 1.76 whereas the MTCT,
MAXMIN, ACO, NSGA-II, and DCLCA models have obtained higher FSD of 3.04, 2.96, 2.87, 2.62,
and 2.57 respectively. Along with that, with 100 tasks, the GTO-FTASS model has provided reduced

Figure 3: MSN examination of GTO-FTASS model under varying tasks in scenario 1

Figure 4: FRR examination of GTO-FTASS model under varying tasks in scenario 1

IASC, 2023, vol.35, no.2 1931

FSD of 2.74 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCAmodels have resulted in increased
FSD of 6.19, 4.55, 4.14, 3.84, and 3.53 respectively.

Tab. 2 offers a detailed comparative study of the GTO-FTASSmodel with existing models on scenario 2.
Fig. 6 illustrates a brief MSN examination of the GTO-FTASS model with recent models under varying tasks
in scenario 2. The figure indicated that GTO-FTASS model has resulted in effectual outcomes with minimal
values of MSN over the other methods. For instance, with 10 tasks, the GTO-FTASSmodel has offered lower
MSN of 1772 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCA models have obtained higher
MSN of 2842, 3043, 2742, 2909, and 2341 respectively. In line with this, with 100 tasks, the GTO-FTASS
model has provided reduced MSN of 721 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCA
models have resulted in increased MSN of 8828, 6353, 5852, 6253, and 4347 respectively.

Figure 5: FSD examination of GTO-FTASS model under varying tasks in scenario 1

Table 2: Comparative analysis of GTO-FTASS model under varying tasks in scenario 2

Makespan

No. of Tasks MTCT MAXMIN ACO NSGA-II DCLCA GTO-FTASS

10 2842 3043 2742 2909 2341 1772

20 2876 3311 3879 3210 2107 1806

30 4916 4916 4247 4581 2976 2207

40 5818 5049 4949 4648 3110 2776

50 6353 5250 4949 4882 3712 3244

60 6721 5350 5116 4916 3846 3411

70 6955 5551 5350 5150 3979 3545

80 7724 6019 5283 5484 4247 3812

1932 IASC, 2023, vol.35, no.2

Fig. 7 depicts a clear FRR analysis of the GTO-FTASS model with existing approaches under dissimilar
tasks in scenario 2. The results portrayed that GTO-FTASS model has reached improved performance with
reduced values of FRR over the other methods. For instance, with 10 tasks, the GTO-FTASS model has
reached inferior FRR of 43.82 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCA models
have displayed enhanced FRR of 69.69, 65.89, 63.82, 51.75, and 53.82 respectively. Eventually, with

Table 2 (continued)

Makespan

No. of Tasks MTCT MAXMIN ACO NSGA-II DCLCA GTO-FTASS

90 8259 6119 5651 5919 4213 3846

100 8828 6353 5852 6253 4347 4046

Failure Ratio

No. of Tasks MTCT MAXMIN ACO NSGA-II DCLCA GTO-FTASS

10 69.69 65.89 63.82 51.75 53.82 43.82

20 66.58 62.79 61.75 52.10 49.34 39.68

30 60.72 58.31 57.96 49.34 44.85 39.68

40 55.89 53.13 52.79 45.20 41.41 34.85

50 54.86 51.41 50.72 44.51 38.99 31.75

60 51.06 46.92 46.58 38.99 33.47 24.51

70 50.37 45.20 42.44 32.44 31.06 18.64

80 47.96 40.72 37.27 35.20 23.82 12.09

90 41.41 37.27 35.54 29.68 18.99 9.33

100 35.54 30.02 26.23 22.44 11.75 5.19

Failure Slowdown

No. of Tasks MTCT MAXMIN ACO NSGA-II DCLCA GTO-FTASS

10 3.58 2.51 2.30 1.77 1.48 0.65

20 4.81 4.77 4.73 2.18 1.81 1.52

30 6.13 5.59 5.55 3.41 3.16 2.34

40 6.05 6.09 5.96 5.10 4.73 3.41

50 6.95 6.83 6.75 5.68 5.39 4.24

60 7.61 7.28 7.16 6.29 5.84 4.85

70 8.48 8.06 7.94 7.53 6.66 5.06

80 8.76 8.39 8.27 7.94 7.08 5.22

90 9.38 8.97 8.64 8.06 7.41 5.47

100 9.59 9.22 9.01 8.11 7.78 6.05

IASC, 2023, vol.35, no.2 1933

100 tasks, the GTO-FTASS model has provided reduced FRR of 5.19 whereas the MTCT, MAXMIN, ACO,
NSGA-II, and DCLCA models have resulted in increased FRR of 35.54, 30.02, 26.23, 22.44, and
11.75 respectively.

Fig. 8 explains a brief FSD assessment of the GTO-FTASS model with existing approaches under
varying tasks in scenario 2. The experimental outcome revealed that GTO-FTASS model has
accomplished better results than the other methods with minimal values of FSD over the other methods.
For instance, with 10 tasks, the GTO-FTASS model has provided least FSD of 0.65 whereas the MTCT,

Figure 6: MSN examination of GTO-FTASS model under varying tasks in scenario 2

Figure 7: FRR examination of GTO-FTASS model under varying tasks in scenario 1

1934 IASC, 2023, vol.35, no.2

MAXMIN, ACO, NSGA-II, and DCLCA models have gained increased FSD of 3.58, 2.51, 2.30, 1.77, and
1.48 respectively. Similarly, with 100 tasks, the GTO-FTASS model has provided reduced FSD of
6.05 whereas the MTCT, MAXMIN, ACO, NSGA-II, and DCLCA models have resulted in increased
FSD of 9.59, 9.22, 9.01, 8.11, and 7.78 respectively.

After examining the above mentioned tables and figures, it is apparent that the GTO-FTASS model has
resulted in effectual scheduling performance in the CC environment.

5 Conclusion

This study has designed a new GTO-FTASS technique for scheduling tasks and allocating resources in
the CC environment. The GTO-FTASS model has computed a fitness function comprising two parameters
such as ETC and failure probability of executing a task. In addition, the presented fault detector can trace
the failed tasks or VMs and later schedule the healing sub-module in sequence with a remedial or
retrieval scheduling model. The experimental validation of the GTO-FTASS model has been performed
and the results are inspected under several aspects. The extensive comparative analysis reported the better
outcomes of the GTO-FTASS model over the recent approaches. As a part of future scope, the GTO-
FTASS technique can be applied as an effective tool for accomplishing effective scheduling and fault
tolerance in CC environment.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] C. Kathpal and R. Garg, “Survey on fault-tolerance-aware scheduling in cloud computing,” in in proc. Int. Conf. on

Information and Communication Technology for Competitive Strategies, Singapore, Springer, pp. 275–283, 2019.

Figure 8: FSD examination of GTO-FTASS model under varying tasks in scenario 1

IASC, 2023, vol.35, no.2 1935

[2] A. Alarifi, F. Abdelsamie and M. Amoon, “A fault-tolerant aware scheduling method for fog-cloud
environments,” PloS one, vol. 14, no. 10, pp. 1–24, 2019.

[3] V. Mohammadian, N. J. Navimipour, M. Hosseinzadeh and A. Darwesh, “Comprehensive and systematic study
on the fault tolerance architectures in cloud computing,” Journal of Circuits, Systems and Computers, vol. 29, no.
15, pp. 2050240–2050252, 2020.

[4] Z. Ahmad, B. Nazir and A. Umer, “A fault-tolerant workflow management system with Quality-of-Service-aware
scheduling for scientific workflows in cloud computing,” International Journal of Communication Systems, vol.
34, no. 1, pp. 1–18, 2021.

[5] M. Khaldi, M. Rebbah, B. Meftah and O. Smail, “Fault tolerance for a scientific workflow system in a cloud
computing environment,” International Journal of Computers and Applications, vol. 42, no. 7, pp. 705–714, 2020.

[6] H. Sun, H. Yu, G. Fan and L. Chen, “QoS-aware task placement with fault-tolerance in the edge-cloud,” IEEE
Access, vol. 8, pp. 77987–78003, 2020.

[7] V. Mohammadian, N. J. Navimipour, M. Hosseinzadeh and A. Darwesh, “Comprehensive and systematic study
on the fault tolerance architectures in cloud computing,” Journal of Circuits, Systems and Computers, vol. 29, no.
15, pp. 2050240, 2020.

[8] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan et al., “Dynamic resource provisioning with fault tolerance for data-
intensive meteorological workflows in cloud,” IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp.
6172–6181, 2019.

[9] M. R. Thanka, P. Uma Maheswari and E. B. Edwin, “An improved efficient: Artificial bee colony algorithm for
security and qos aware scheduling in cloud computing environment,” Cluster Computing, vol. 22, no. 5, pp.
10905–10913, 2019.

[10] D. Alsadie, “Ametaheuristic framework for dynamic virtual machine allocation with optimized task scheduling in
cloud data centers,” IEEE Access, vol. 9, pp. 74218–74233, 2021.

[11] P. Kasu, P. Hamandawana and T. S. Chung, “DLFT: Data and layout aware fault tolerance framework for big data
transfer systems,” IEEE Access, vol. 9, pp. 22939–22954, 2021.

[12] S. Kanwal, Z. Iqbal, F. Al-Turjman, A. Irtaza and M. A. Khan, “Multiphase fault tolerance genetic algorithm for
vm and task scheduling in datacenter,” Information Processing & Management, vol. 58, no. 5, pp. 102676–
102688, 2021.

[13] V. Sathiyamoorthi, P. Keerthika, P. Suresh, Z. J. Zhang, A. P. Rao et al., “Adaptive fault tolerant resource
allocation scheme for cloud computing environments,” Journal of Organizational and End User Computing
(JOEUC), vol. 33, no. 5, pp. 135–152, 2021.

[14] W. Jing, C. Zhao, Q. Miao, H. Song and G. Chen, “QoS-DPSO: QoS-aware task scheduling for cloud computing
system,” Journal of Network and Systems Management, vol. 29, no. 1, pp. 1–29, 2021.

[15] M. Alaei, R. Khorsand and M. Ramezanpour, “An adaptive fault detector strategy for scientific workflow
scheduling based on improved differential evolution algorithm in cloud,” Applied Soft Computing, vol. 99, no.
6, pp. 106895–106907, 2021.

[16] L. Karthikeyan, C. Vijayakumaran, S. Chitra and S. Arumugam, “Saldeft: Self-adaptive learning differential
evolution based optimal physical machine selection for fault tolerance problem in cloud,” Wireless Personal
Communications, vol. 118, no. 2, pp. 1453–1480, 2021.

[17] J. Nalini and P. M. Khilar, “Reinforced ant colony optimization for fault tolerant task allocation in cloud
environments,” Wireless Personal Communications, vol. 121, no. 4, pp. 2441–2459, 2021.

[18] A. Arora, B. Talwar and S. Bharany, “Reliability aware mechanism to ensure increased fault tolerance using
throttle load balancer,” in Proc. 9th Int. Conf. on Reliability, Infocom Technologies and Optimization (Trends
and Future Directions) (ICRITO), Noida, India, pp. 1–5, 2021.

[19] B. Abdollahzadeh, F. S. Gharehchopogh and S. Mirjalili, “Artificial gorilla troops optimizer: A new nature-
inspired metaheuristic algorithm for global optimization problems,” International Journal of Intelligent
Systems, vol. 36, no. 10, pp. 5887–5958, 2021.

1936 IASC, 2023, vol.35, no.2

[20] S. I. M. Abdulhamid, M. S. Abd Latiff, S. H. H. Madni and M. Abdullahi, “Fault tolerance aware scheduling
technique for cloud computing environment using dynamic clustering algorithm,” Neural Computing and
Applications, vol. 29, no. 1, pp. 279–293, 2018.

[21] T. S. Kumar, H. S. Madhusudhan, S. M. F. D. Mustapha, P. Gupta and R. P. Tripathi, “Intelligent fault-tolerant
mechanism for data centers of cloud infrastructure,” Mathematical Problems in Engineering, vol. 2022, no. 2,
pp. 1–12, 2022.

[22] R. Saravanakumar, N. Krishnaraj, S. Venkatraman, B. Sivakumar, S. Prasanna et al., “Hierarchical symbolic
analysis and particle swarm optimization based fault diagnosis model for rotating machineries with deep
neural networks,” Measurement, vol. 171, no. 108771, pp. 1–13, 2021.

[23] B. Varghese and R. Buyya, “Next generation cloud computing: New trends and research directions,” Future
Generation Computer Systems, vol. 79, no. 6, pp. 849–861, 2018.

IASC, 2023, vol.35, no.2 1937

	Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme for Cloud Environment
	Introduction
	Related Works
	The Proposed Model
	Performance Evaluation
	Conclusion
	References

