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Abstract: Abnormal behavior detection is challenging and one of the growing
research areas in computer vision. The main aim of this research work is to focus
on panic and escape behavior detections that occur during unexpected/uncertain
events. In this work, Pyramidal Lucas Kanade algorithm is optimized using EME-
HOs to achieve the objective. First stage, OPLKT-EMEHOs algorithm is used to
generate the optical flow from MIIs. Second stage, the MIIs optical flow is applied
as input to 3 layer CNN for detect the abnormal crowd behavior. University of
Minnesota (UMN) dataset is used to evaluate the proposed system. The experi-
mental result shows that the proposed method provides better classification accu-
racy by comparing with the existing methods. Proposed method provides 95.78%
of precision, 90.67% of recall, 93.09% of f-measure and accuracy with 91.67%.

Keywords: Crowd behavior analysis; anomaly detection; Motion Information
Image (MII); Enhanced Mutation Elephant Herding Optimization (EMEHO);
Optimized Pyramidal Lucas-Kanade Technique (OPLKTs) algorithm

1 Introduction

In the present world, video surveillance system is most essential to identify abnormal behavior in the
crowd. There are huge number of unethical events are happening in many crowded places such as theft,
explosions in the markets, subways, religion festivals, stadium.Studying videos has attracted interest in
computer vision, and the areas being explored include object tracking/gait recognitions [1,2] and activity
detections [3] which have promising futures. In addition, the study of crowded places is gaining popularity
owing to large crowds in the markets, subways, religious festivals, public protests, and sporting events.

Studying crowd behaviors in public locations and specifically during public events has attracted much
attention regarding safety controls, predicting potentially harmful situations, and preventing overcrowding
(religious/sports events). These public safety concerns have culminated in the need to investigate crowd
behaviors with high-level descriptions of people’s actions or interactions in crowds.

Growing concerns over public security/safety have resulted in explorations of Abnormal Event
Detections (AEDs) in computer vision [4,5]. AEDs have issues due to frequent occlusions, excessive
noises, congestions, dynamism/complexities, diversities of events, unpredictability, and reliance on
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contexts. Many challenges are involved in analyzing crowd behavior. Anomalies [6] in crowd recognition or
characterizations, change in crowds [7–9]. These factors automatically identify changes or characterize
crowd events through video sequences. Existing methods for analyzing crowd behaviors can be divided
into two categories based on objects and holistic approaches [10–12].

Object-based techniques take crowds as a group of recognized and monitored objects to comprehend
crowd behaviors. The significant disadvantages of these approaches lie in their unreliability of detecting
objects or tracking their actions due to occlusions. In contrast, holistic approaches view crowds as a
global unit and evaluate whole crowds to identify important information like applications of optical flows
to frames and to identify crowd behaviors. Anomalies in the crowds can be detected in their event
representations and anomaly measurements. AEDs can be identified using spatial-temporal information,
where a one-class learning algorithm is used to learn normal samples. Few methods include Histograms
of Optical Flows (HOFs), Histograms of Motion Directions (HMDs), spatial-temporal gradients, chaotic
invariants, dynamic textures, sparse representations, and Behavior Entropies (BEs) [13].

In the field of computer vision, video surveillance has become a popular topic of study. Abnormal event
identification is an important aim in this field that is gaining increasing attention. The goal of aberrant event
detection is to identify activities that are unusual or irregular.

2 Related Works

In the field of computer vision, video surveillance has become a popular topic of study. Abnormal event
identification is an important aim in this field that is gaining increasing attention. The goal of aberrant event
detection is to identify activities that are unusual or irregular.

Approaches based on optical flows for global/local crowd abnormalities are detailed in this section.
Behavior Entropies were used to detect anomalous crowd behaviours [14]. Their scheme estimated BEs
of pixels in images by taking into account behavior certainties of defined pixels. Their evaluation results
suggested that their proposed technique could successfully capture crowd behavior dynamics. Patil et al.
[15] suggested a novel framework for detecting global anomalies using Context Locations (CLs) and
Motion-Rich Spatio-Temporal Volumes (MRSTVs) where the block-level features were extracted.
Normal/abnormal motion characteristics were determined using a histogram of optical flow directions and
features of motion magnitude by Spatio-Temporal Volume (STVs) for global feature descriptions. During
the scheme’s training, single class Support Vector Machines (SVMs) learned normal behaviors from
MRSTVs while identifying aberrant STVs from test data. Subsequently, their Spatio-temporal post-
processing detected anomalous behaviors found in frames, thus minimizing false alarm rates. CLs were
defined properly for identifying anomalous behaviors in unexpected locations. Using MRSTVs, their
suggested approach neglected pixel-level feature extractions and background modeling, resulting in
higher detection rates reducing computational complexities.

In Generative Adversarial Nets (GANs) used by Ravanbakhsh et al. [16], the internal representations of
normal scenes were built with GANs where the frame’s related optical flow images were used. Ravanbakhsh
et al. [17] suggested combining semantic information inherited from CNNs with low-level optical flow to
measure local irregularities. The main advantage of their strategy was that it did not require fine tunings.
Furthermore, they validated their approach on abnormal detection datasets, and their results revealed their
suggested technique’s uniqueness.

Global Event Influences (GEIs), mid-level representations were proposed by Pan et al. [18] for detecting
global anomalies in packed crowds. In GEIs, crowd movements with social-psychological features were
combined to obtain better crowd descriptions. The study abstracted low-level crowd motion
characteristics, including size, velocity, and disorders. Their scheme showed that it was robust in
detecting anomalous occurrences within short times of event occurrences. Optical flows were also used
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by Colque et al. [19], where unique Spatio-temporal feature descriptors were assessed from the Histogram of
Optical Flows (HOFs) in terms of their direction, amplitudes, and entropies. Their experimental findings
showed that their suggested model could handle numerous abnormal occurrences in terms of detections.

Sparse Reconstruction Costs (SRCs) were explored by Cong et al. [20], where SRCs were used on
normal bases for detecting abnormal occurrences. Their SRCs used normal dictionaries to quantify the
testing samples’ normality based on collections of normal training samples, image sequences, or local
Spatio-temporal patch collections. They introduced novel feature descriptors called Multi-scale Histogram
of Optical Flows (MHOFs) for event representations where MHOFs concatenated different spatial or
temporal structures. While estimating motions using optical flows, images were partitioned into basic
units like two-dimensional image patches or three-dimensional Spatio-temporal bricks before extracting
MHOFs from units. Motion histograms were built by concatenating optical flow directions and
magnitudes at different scales. The experiments conducted on three benchmark datasets demonstrate the
benefits of their suggested method compared to similar approaches.

Sparse Linear Models (SLMs) were suggested by Guo et al. [21] for the crowd’s features. They
constructed statistical characterizations of sociality by assuming SLM distributions apriori. Initially,
computed optical flows were used to extract motion information. Subsequently, sparse coding of input
video’s motions produced SLMs. The scheme’s statistical characterizations of sociality were built with
SLMs. Moreover, infinite Hidden Markov Models (iHMMs) were assessed if anomalous events were
discovered. The anomalous detection tests on UMN and simulated datasets demonstrated promising
results compared to other methods.

Hatimaz et al. [22] identified anomalous crowd behavior using optical flow characteristics. They
analyzed surveillance videos and annotated semantically using web technologies. The multimedia
metadata models generate interoperable metadata on aberrant crowd behaviors. The semantic search
interfaces, based on crowd behavior, were used in identifications. Their proposed interface also displayed
statistical data regarding crowd behavior and searched video segments. Extensive user evaluations of
concept-based semantic searches allowed quick search/analysis of aberrant crowd behaviors.

Recent works on detection of abnormal crowd behaviors include Distribution of Magnitude of Optical
Flows (DMOFs), Context Location (CL) and Motion-Rich Spatio-Temporal Volumes (MRSTVs),
Generative Adversarial Nets (GANs), Temporal Convolution Neural Network Patterns (TCNNPs), Global
Event Influence Models (GEIMs), Histograms of Optical Flow Orientations and magnitudes (HOFOs)
[23], Improved Two-stream Inflated 3D ConvNet [24] and Discrete Cosine Transform (DCT) [25]. These
works reported that approaches based on optical flows deliver better results while encountering global/
local crowd abnormalities.

This research proposes detecting abnormal crowd events where the main contribution is in using the
novel MIIs, which accurately represent and discriminate normal and abnormal events. Moreover, outputs
of MIIs are inputs for CNNs, which learn and test MIIs data with promising results. People generally flee
amidst unusual incidents where this is anomalous behavior, particularly in regions with motions. It
increases the angle differences of computed optical flow vectors among previous and current frame’s
pixel positions. Thus, the computed MIIs of frames form the inputs for CNNs, and aberrant crowd
behaviors are learnt. CNNs classify input MIIs images in the testing phase. This work’s evaluations show
better results than other similar approaches in their values of precisions, recalls, f-measures, and accuracy.

3 Proposed Methodology

This work computes Optimizations using Pyramidal Lucas-Kanade Techniques (OPLKT) vectors from
extracted video frames, generating MIIs that CNNs subsequently train to identify anomalous crowd events.
In the initial stage, optical flow angle changes of current and prior frames are determined. Optical flow
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measurements will be noisy, resulting in angle differences. MIIs are formed by multiplying angle differences
with the current frame’s optical flow magnitudes. Secondly, abnormal crowd events in surveillance footage
are detected using CNNs. The usage of MIIs, CNNs results in learning about aberrant crowd behaviors.
Finally, CNNs classifies input MII images in testing phases. Fig. 1 depicts the stages involved in the
proposed system.

3.1 Generation of MIIs

Prior works combined optical flow characteristics with single class CNNs to identify anomalous crowd
behaviors. The optical flow magnitude and optical flow angle difference information were combined [26],
resulting in one-dimensional feature vectors. Feature vectors are extracted from frames for representing
typical behaviors which are subsequently trained by using single class CNNs. When test frames deviated
from normal frames, those frames were treated as abnormal. This work differs from prior works in unique
MII representations that give visual impressions of crowd motions. MIIs are created based on optical
flows. The generated MIIs are fed into CNNs for training and testing crowd behavior types, namely
normal and abnormal. LKTs are then used to compute the optical flow of frames. During panic situations,
people may run in opposite/same directions. Hence, MIIs need to be insensitive to the directional
movements to retain the discriminations between normal and aberrant occurrences in frames. The
proposed OPLKTs aim to align input images I into template frames T by computing warping
transformations among frames for all pixels. In the following equation, p stands for warping vector in
transformations. Assuming a two-vector, its translation can be depicted by Eq. (1),

w x; pð Þ ¼ xþ p1
yþ p2

� �
(1)

Typical LKTs optimize warping parameters p by reducing the sum of squared differences between target
intensities T(x) of pixels of T, and their corresponding intensities I w x; pð Þð Þ in frames. The scale-space
representations are considered [27] GI w x; pð Þ; λð Þ and GT x; λref

� �
of I(x) and T(x), based on scales λ

and λref and depicted in Eqs. (2) and (3)

GI w x; pð Þ; λð Þ ¼ I w x; pð Þð Þ � g x; λð Þ (2)

Figure 1: Flow diagram of the proposed system
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GT x; λref
� � ¼ T xð Þ � g x; λref

� �
(3)

where g(x; λ) stands for Isotropic Gaussian Kernels while � depicts its convolution operator. The alignments
can be done using Eq. (4)

P̂ ¼ argmin
P

1

2

X
x

GI w x; pð Þ; λð Þ � GT x; λref
� �� �2

(4)

where P ¼ p; λð ÞT stands for vectors with scale parameters. Eq. (4) is optimized using forward additive
variant of LKTs. where warping parameters are updated based on Eq. (5)

P P þ aDP (5)

where, a represents the damping parameter. Eq. (4) is used to solve non-linear least squares using Gauss-
Newton scheme and is depicted as Eq. (6)

DP ¼ H�1
X
x

@GI

@P

� 	T
GT x; λref

� �� GI w x; pð Þ; λð Þ� �
(6)

where H is the Hessian matrix’s Gauss-Newton approximation given by Eq. (7)

H ¼
X
x

@GI

@P

� 	T @GI

@P

� 	
(7)

Integrating a for optimizations allows the approach to select the most suitable scale for convergence.

3.2 EMEHOs

EEHO is an Enhanced Elephant Herding Optimization algorithm which is used to improve the
classification algorithm by finding suitable features related to the crowd dataset. To choose the
independent optical flow from the generated MIIs to identify the abnormality. EMEHO choose best
features to CNN architecture to improve the classification result.

Elephant Herding Optimizations (EHOs) are novel metaheuristic approaches for optimizations [28,29].
Explorations and exploitations can be achieved in Enhanced Mutation Elephant Herding Optimizations
(EMEHOs) by updating clan and separating operators. In every generation, individuals (scale parameters
of optical flows) with maximum fitness in clans ci are chosen as matriarchs (m) at time t.

mt
i ¼ argmax

x2xi
F xð Þ (8)

where xi stands clan i’s set of individual elephants.

3.2.1 Clan Updading Operator
Elephants (j) in clans (i) have old positions (xti;j) and new positions (xtþ1i;j ), which are affected due to clan

matriarchs (mt
i) based on Eq. (9).

xtþ1i;j ¼ xti;j þ a � mt
i � xti;j


 �
þ b � cti � xti;j


 �
þ c � r (9)

where α-scale factor ∈ [0,1] influences clan matriarchs and new positions of elephants, β-scale factor ∈ [0,1]
that determines elephant’s movement towards clan’s center, γ-scale factor ∈ [0,1] represents elephant’s
random walks, r ¼ 2 � rand� 1ð Þ xmax � xminð Þ � xmutation
where r-uniform distribution’s randomly drawn vector
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xmin-elephant’s position’s lower bound

xmax-elephant’s position’s upper bound

xmutation-elephant’s position’s mutation parameter.

Addition of new mutation parameters for improving the clan updating operators where cti the clan’s
center position is can be computed using Eq. (10).

cti ¼
1

ni
�
X
j

xti;j (10)

where, ni-elephant (scale parameter counts) in clan i. New update operators control convergences of clans
towards the center, towards the matriarchs, and the random walk independently using three control
parameters(α, β, and γ ) rather than two.

3.2.2 Separating Operator
The separating operator of male elephants can be modeled according to Eq. (11).

xti;worst ¼ xmin þ xmax � xminð Þ � rand (11)

Where xmin, xmax are lower and upper bounds of an individual’s elephants position for the scale parameter
tuning in LKTs and xti;worst is the clan ci’s worst individual elephant. Probability Density Function (PDF)
begins with rand. A standard Pseudo-Random Number Generator (PRNG) function creates a uniformly
distributed random number in the range [0,1]. The floor function should create a uniformly distributed
random integer number in a specified range. It is evident that the floor ((xmin, xmax)) = [xmin, xmax�1];
therefore, a continuous uniform distribution in the range [xmin, xmaxþ1] should be used in order to generate
a discrete uniform distribution in the range [xmin, xmax].

Algorithm 1: EMEHO Algorithm

Initialization: Make t = 1, and set initial values for popsize and MaxGen (Tab. 1)

1. While t � MaxGen do
2. for i = 1 to nClan do
3. Sort clan elephants, according to their fitness

xti;best ¼ firstelephant for scale parameter

xti;worst ¼ lastelephant for scale parameter

4. execute clan updation
5. execute separation
6. Evaluation of the population with updated positions
7. t = t + 1
8. end for
9. end while

People panic and disperse when presented with an unexpected situation. In such scenario, we
observe that the angle difference between optical flow vectors in consecutive frames increases at each
pixel location, especially in motion areas. At each pixel point, the angle difference between two vectors is
determined by Eq. (12):
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ht x; yð Þ ¼ arccos
ðut�1 x; yð Þ:ut x; yð Þ þ vt�1 x; yð Þ:vt x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2t�1 x; yð Þ þ v2t�1 x; yð Þp

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2t x; yð Þ þ v2t x; yð Þp
 �

0
@

1
A (12)

where ot�1! x; yð Þ ¼ ut�1 x; yð Þð Þ: vt�1 x; yð Þ and ot
! x; yð Þ ¼ ut x; yð Þð Þ: vt x; yð Þ are optical flow vectors,

respectively, in the previous frame (t–1), and in the current frame (t) at each pixel location (x,y). ht is the
angle difference in the current frame. Figs. 2a and 2b demonstrate these computed flow angle differences
between vectors. When there are deviations, angle differences rise as shown in Fig. 2a. When there is
marginal or no deviation, then there is no difference as shown in Fig. 2b. Angle differences are multiplied
by optical flow magnitudes, which are determined in current frames.

It x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2t x; yð Þ þ v2t x; yð Þ

q
:ht x; yð Þ (13)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2t x; yð Þ þ v2t x; yð Þp

is the optical flow magnitude in the current frame (t) at each pixel location ðx; yÞ.
htðx; yÞ is the computed angle difference in the Eq. (12). It represents the Motion Information Image of
current frames (t). When magnitudes and angle differences are great, their multiplication outputs also
increase (motion). The multiplication outputs will be small when magnitudes are small, and angle
differences are large. When magnitudes and angle differences are small, their multiplication outputs will
be even lesser. This results in disparities in MIIs allowing disparity between aberrant and normal MIIs.

Figs. 3a and 3c images depict movement of people where they disperse in various directions. In Fig. 3b,
everyone is traveling in the same direction (i.e., towards right). Irrespective of persons moving directions,
they represent panic/escape. MIIs need to be invariant to directional motion while being discriminative
for detecting normal/abnormal events. Fig. 3 depicts various examples of frames showing deviant

Table 1: Parameter settings for EEHO

Parameters Values

Pop-size 80

MaxGen 100

R 1000

nClan 4

a 0.25

b 0.05

c 0.015, 0.020, 0.025

Figure 2: Optical flow angle difference observed behaviour in. (a) Abnormal and, (b) Normal situation
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behavior and their correlates. MIIs produced by deviant behaviors differ greatly from MIIs produced by
regular behaviors (MIIs are scaled to a dimension of 75 * 75 as preparation for inputs into CNNs).
Moreover, MIIs in Fig. 3 are also reversed for clarity.

3.3 CNNs Training and Classifications

Here in our work, 2D CNNs are used to identify aberrant crowd behaviors, where CNNs are trained with
MIIs for detecting normal and abnormal behaviors. The proposed architecture is illustrated in Fig. 4. MIIs are
tested using University of Minnesota (UMN) datasets using CNN architectures with different convolution
counts, channels, filter sizes, and pooling layers to predict accuracy. Fig. 5 depicts the design of CNNs
where they get trained on MIIs for aberrant crowd behavior detection by including three convolution layers.

Figure 3: (a) Abnormal behaviour sample 1, (b) Corresponding MIIs of sample 1 For CNNs, (c)
Corresponding MIIs of sample 1-OPLKTs+CNNs, (d) Abnormal behaviour sample 2, (e) Corresponding
MIIs of sample 2-CNNs, (f) Corresponding MIIs of sample 2-OPLKTs+CNNs
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It’s also worth noting that MIIs are fed to deep networks, used for image recognition. MII inputs are
enlarged to 75 × 75 dimensions in the basic CNNs structure as depicted in Fig. 5. The first convolution
layer employs 5 × 5 filter with 8-channel filters followed by batch normalization, Rectified Linear unit
(ReLu) activations and a max pooling of 3 × 3. The second Convolution layer use 3 × 3 filters with
16 feature maps, followed by batch normalizations, ReLu activations, and 2 × 2 max poolings. The final
convolution layer use 3 × 3 filters with 32 feature maps, followed by batch normalizations, ReLu
activations and 2 × 2 max pooling. Pooling layers are used to reduce the dimension of the feature map,
where pooling layer 1 used 3 × 3 stride and output of pooling layer 1 is 64 × 64, pooling layer 2 used 2
× 2 stride and output of pooling layer 2 is 32 × 32, pooling layer 3 used 2 × 2 stride and output of
pooling layer 3 is 16 × 16.The fully connected layer with two nodes (normal/abnormal) use the softmax
layer for predictions. The classification layer determines whether the input MII image was normal or
abnormal. Stochastic gradient descent with momentum approach is utilized as a solution during training.
The learning rate is set to 0.01, mini-batch size 50, with the number of epochs limited to 10. These
values were determined empirically for obtaining the best results with the generated MIIs. The test frames
in the UMN dataset were identified using 28/28 neighboring frames, implying a window size of 57
(including test frames), where each frame is labeled using CNNs classifier, and the most common class
indicates the test frame’s behavior (normal or aberrant) [30,31].

4 Experimental Results and Discussion

Extensive experiments are carried out on the UMN datasets [32,33] consisting of 11 movies that depict
typical and anomalous crowd behaviors.The result of pooling layer 3 is better than pooling layer 2. As
pooling layer 3 dimensionality reduced to 16 × 16. If we add another pooling layer it reduces the
dimension. Further, done to that the performance is not up to the mark.Therefore,in this work we have
stopped at layer 3. This work is also compared with other global anomaly detection schemes, including
BEMs, DMOFs, GANs and MHOFs, and Motion Information Images+Convolutional Neural Networks
(MII+CNNs). These methods havebeen experimented in MATLAB R2016a. In this work, some standard
statistical indices such as precision, recall, f-measure, and accuracy are used to evaluate the performance
of the classification.

Precision refers to the ratio of positive samples which have been appropriately classified. Estimation of
this metric can be formulated by Eq. (14),

Precision ¼ TP

TP þ FP
(14)

Recall defines the positive samples that have been designated to the total number of positive samples. It
is estimated by Eq. (15),

Figure 5: Proposed CNN architecture
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RecallðSensitivityðSENÞÞ ¼ TP

TP þ FN
(15)

F-measure is referred to the harmonic mean of precision and recall. It is expressed below by Eq. (16),

F � measure ¼ 2 � PP � SEN
PPþ SEN

(16)

Accuracy is a measure considered one of the widely-regarded metrics to analyze classification
performance. This has been calculated in this work for crowd behavior detection by Eq. (17).

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(17)

The symbols TP, TN, FP, and FN denote True Positive, True Negative, False Positive, and False
Negative. The UMN dataset contains three distinct scenes (two outdoor scenes and one indoor scene).
Tab. 1 shows the overall classification results compared to other methods with respect to metrics under
three scenes. Tab. 2 illustrates the precision, recall, f-measure, and accuracy of six methods for this
scenario. The proposed work (OPLKTs+CNNs) outperforms the other methods with an accuracy of 91.67%.

This work’s suggested technique yields the best results in the UMN dataset. Tabs. 2–4 depicts the
accuracy comparisons of various approaches concerning scene 1, scene 2 and scene 3 respectively from
the UMN dataset. The results demonstrate that the proposed technique achieves better precision when
compared to other existing methods. From Tab. 5, it is inferred that the proposed OPLKT+CNN classifier
has a better precision value of 95.78% when compared to BEM, DMOF, GANs, MHOF, and MII+CNNs
gives a precision value of 94.23%, 94.45%, 94.89%, 95.25%, and 95.57%, respectively. In addition, the
proposed classifier gives higher results than the other methods since optical flow is identified via the
Enhanced Mutation Elephant Herding Optimization (EMEHO) algorithm. However, the proposed method
can be improved by incorporating the concept of transfer learning [34] and parameter optimization in
order to achieve the maximum accuracy of 100% which is limited by the number of layers used in the
CNN architecture [35] and the parameter settings in EMEHO algorithm.

Tab. 5 shows the performance comparison results of different methods concerning recall. For example,
the proposed OPLKT+CNN classifier gives a higher recall value of 90.67%, the other methods such as BEM,
DMOF, GANs, MHOF, and MII+CNNs gives lesser recall value of 50.93%, 67.47%, 73.87%, 79.47%, and
85.87% respectively.

Table 2: Results comparison of methods for UMN dataset (for scene1)

Authors Metrics (%)

Precision Recall F-Measure Accuracy

Ren et al. [13] 94.444 40.800 56.983 61.500

Gnouma et al. [14] 96.429 64.800 77.512 76.500

Ravanbakhsh et al. [16] 96.809 72.800 83.105 81.500

Cong et al. [20] 96.970 76.800 85.714 84.000

Direkoglu [30] 97.196 83.200 89.655 88.000

Our proposed work 97.414 90.400 93.776 92.500
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The F-measure results comparison of three different scenes under various methods are illustrated in
Tab. 5. The proposed OPLKT+CNN classifier gives a higher f-measure value of 93.09%, the other
methods such as BEM, DMOF, GANs, MHOF, and MII+CNNs gives a lesser value of 65.39%, 78.65%,
83.02%, 86.60%, and 90.38%, respectively.

Three different scenes with average accuracy results are compared with Behavior Detection methods, as
illustrated in Fig. 6. The results prove that the proposed classifier gives higher accuracy than the other
methods for all scenes. The proposed OPLKT+CNN classifier achieves accuracy value of 91.67%. The

Table 3: Results comparison of methods for UMN dataset (for scene 2)

Authors Metrics (%)

Precision Recall F-Measure Accuracy

Ren et al. [13] 95.000 45.600 61.622 64.500

Gnouma et al. [14] 93.182 65.600 76.995 75.500

Ravanbakhsh et al. [16] 93.617 70.400 80.365 78.500

Cong et al. [20] 94.175 77.600 85.088 83.000

Direkoglu [30] 94.444 81.600 87.554 85.500

Our proposed work 94.643 84.800 89.452 87.500

Table 4: Results Comparison of methods for UMN dataset (for scene 3)

Authors Metrics (%)

Precision Recall F-Measure Accuracy

Ren et al. [13] 93.258 66.400 77.570 76.00

Gnouma et al. [14] 93.750 72.000 81.448 79.50

Ravanbakhsh et al. [16] 94.231 78.400 85.590 83.50

Cong et al. [20] 94.595 84.000 88.983 87.00

Direkoglu [30] 95.082 92.800 93.927 92.50

Our proposed work 95.276 96.800 96.032 95.00

Table 5: Average results comparison for UMN dataset

Authors Metrics (%)

Precision Recall F-Measure Accuracy

Ren et al. [13] 94.23 50.93 65.39 67.33

Gnouma et al. [14] 94.45 67.47 78.65 77.17

Ravanbakhsh et al. [16] 94.89 73.87 83.02 81.17

Cong et al. [20] 95.25 79.47 86.60 84.67

Direkoglu [30] 95.57 85.87 90.38 88.67

Our proposed work 95.78 90.67 93.09 91.67

IASC, 2023, vol.35, no.2 2409



other methods such as BEM, DMOF, GANs, MHOF, and MII+CNNs give a lesser value of 67.33%, 77.17%,
81.17%, 84.67%, and 88.67%, respectively.

ROC results are compared to Behavior Detection methods and are illustrated in Fig. 7. The proposed
OPLKT+CNN classifier gives a higher ROC value of 93.40%. The other methods, such as BEM, DMOF,
GANs, MHOF, and MII+CNNs give a lesser value of 77.30%, 81.20%, 85.60%, 87.70%, and 91.20%,
respectively at False Positive Rate of 100%.

The proposed system produced 91.67% accuracy. Compared to existing algorithms, the proposed system
produced better accuracy. Here the input size is 75 × 75, due to that design convolution layer, pooling layer
are limited to classify the crowd detection. We are working on this to achieve maximum accuracy by
increasing the layers and varying the parameter values of optimization algorithms and CNN architecture.

5 Conclusions and Future Work

Detecting unusual occurrences in cluttered environments is a critical and challenging job in computer
vision. The focus of this work is on global anomalous crowd event identifications from surveillance
recordings. The primary contribution is the development of novel MIIs generations based on OPLKTs,
which then incorporated EMEHOs for optimizing scale parameters and enhancing EHOs with the

Figure 6: Accuracy comparison of scenes vs. methods

Figure 7: ROC curve comparison of different methods
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application of a mutation function. MIIs are determined by angle differences between optical flow vectors in
consecutive frames where specific minor optical flow measurements and angle differences could have altered
observations. CNNs are used to learn normal and abnormal occurrences, and test samples are assigned to one
of the two classes by CNNs. The architecture of CNNs in this work uses three convolutional layers for
identifying aberrant crowd behavior using MIIs. Experiments are carried on using widely used UMN
datasets where the proposed OPLKT+CNN framework achieves results better than the state-of-the-art
methods. It indicates that it can effectively extract abnormal events from videos and is very effective.
Furthermore, the proposed OPLKT+CNN classifier improves the accuracy value by 91.67 %. The
research could focus more on human action recognition and crowd activity recognition in future work.
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