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Abstract: Recognizing irregular text in natural images is a challenging task in
computer vision. The existing approaches still face difficulties in recognizing irre-
gular text because of its diverse shapes. In this paper, we propose a simple yet
powerful irregular text recognition framework based on an encoder-decoder archi-
tecture. The proposed framework is divided into four main modules. Firstly, in the
image transformation module, a Thin Plate Spline (TPS) transformation is
employed to transform the irregular text image into a readable text image. Sec-
ondly, we propose a novel Spatial Attention Module (SAM) to compel the model
to concentrate on text regions and obtain enriched feature maps. Thirdly, a deep
bi-directional long short-term memory (Bi-LSTM) network is used to make a con-
textual feature map out of a visual feature map generated from a Convolutional
Neural Network (CNN). Finally, we propose a Dual Step Attention Mechanism
(DSAM) integrated with the Connectionist Temporal Classification (CTC) -
Attention decoder to re-weights visual features and focus on the intra-sequence
relationships to generate a more accurate character sequence. The effectiveness
of our proposed framework is verified through extensive experiments on various
benchmarks datasets, such as SVT, ICDAR, CUTE80, and IIIT5k. The perfor-
mance of the proposed text recognition framework is analyzed with the accuracy
metric. Demonstrate that our proposed method outperforms the existing
approaches on both regular and irregular text. Additionally, the robustness of
our approach is evaluated using the grocery datasets, such as GroZi-120, Web-
Market, SKU-110K, and Freiburg Groceries datasets that contain complex text
images. Still, our framework produces superior performance on grocery datasets.

Keywords: Deep learning; text recognition; text normalization; attention
mechanism; convolutional neural network (CNN)

1 Introduction

Text in natural scenes can provide rich and precise semantic information, which is beneficial for
understanding the world around us. High-level semantics embodied in the text is vital in a wide range of
vision-based application scenarios, such as Unmanned Aerial Vehicle (UAV) navigation, industrial
automation, image search, robot navigation, intelligent navigation inspection, etc., [1]. As a result, the
detection and recognition of scene text have become a popular and important research topic in computer
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vision. Various backgrounds and arbitrary imaging conditions such as uneven illumination, low resolution,
distortion, blurring, low contrast, and other artefacts discriminate text in natural scenes. Furthermore, the
variety of font types and sizes available adds to the complexity of Scene Text Recognition (STR) algorithms.

There are two stages involved in recognizing the text, they are for text recognition: text detection and
text recognition [2]. The goal of text detection is to find text areas in images, and the goal of text
recognition is to transcribe the image into editable text format. Traditionally, Optical Character
Recognition (OCR) techniques are used to recognize text from well-formatted scanned documents
captured in a controlled environment. However, OCR techniques have exhibited excellent accuracy when
recognizing characters in scanned document images. OCR has limited efficacy when used to recognize
characters in images because of the distinctive properties of the text images [3]. There are two types of
text images: Regular text with nearly horizontally aligned characters and Irregular text for the arbitrarily
shaped text (e.g., curved text). Recognizing irregular text in an image is a challenging task.

CNNs such as VGGNet [4] and Residual Network (ResNet) [5] were utilized to extract features from the
complex background images. The CTC and the encoder-decoder framework are two popular text recognition
methods that use CNN as a feature extraction network to acquire high-level information. The CTC decoding
module was designed for speech recognition [6]. Built-in Conditional Independence is one of CTC’s flaws,
and it’s not ideal for many-to-many mapping. The combined decoding module has high recognition accuracy
compared to a separate CTC or Attention method. On the other hand, Attention-based techniques failed to
handle irregular text images because they cannot precisely match image feature regions and targets. In
comparison, the encoder-decoder framework generates variable-length outputs, which satisfies the
requirement of text recognition.

The summary of our work’s contributions as follows:

� Designed a new framework by combining the CTC and Attention mechanism under encoder-decoder
architecture to recognize the irregular texts from the images.

� Proposed a new Spatial Attention Module (SAM); it performs a feature filtering operation, enriching
feature columns by eliminating redundancies and clutters. It can help to minimize the effects of
inaccuracy in text detection.

� Proposed a Dual Step Attention Mechanism (DSAM); the first step in the attention process is to
determine the visual and contextual elements that focus more on text regions. The second step
concentrates more on the intra-sequence relationships. Finally, a Joint CTC-Attention decoder
decodes both visual and contextual features simultaneously.

� The combined decoding module has high recognition accuracy compared to a separate CTC or
Attention method. The proposed framework is optimized to be weakly supervised from top to
bottom, requiring only ground truth text and input images. Extensive experiments on multiple
benchmarks have been demonstrated that the proposed framework outperforms state-of-the-art text
recognition methods on regular and irregular text datasets.

2 Related Works

Despite deep learning and CNN’s dominance in visual recognition tasks [7–9], several new text
recognition methods have been proposed, with significant improvements. Ghosh et al. [10] introduced a
visual attention model using the Long-Short Term Memory (LSTM) network composed under the
encoder-decoder. The model passes convolutional features from a typical CNN into an LSTM network,
which selectively focuses attention to text regions of the image at each time step to recognize character
sequence without using a pre-defined vocabulary. An Arabic text recognition system proposed by Zayene
et al. [11] based on multi-dimensional LSTMs and CTC avoids complex OCR steps such as text line
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segmentation and feature extraction. Liao et al. [12] use a common backbone architecture for detection and
recognition tasks. The recognition module uses two different prediction branches. Semantic character
segmentation was used to segment text images from the original image and a spatial attention decoder
generates text from the segmented word image.

Liu et al. [13] proposed a method to detect and correct individual characters known as Character-Aware
Neural Network (Char-Net). The attention network comprises of two levels: The character-level encoder uses
a spatial transformer to reduce character distortions. The word-level encoder generates the feature map input
into the recurrent RoIWarp layer. The decoder fed the feature maps into the LSTM. This method has
significantly increased its ability to deal with various types of distortion. Li et al. [14] introduced an off-
the-shelf deep neural network framework composed of ResNet, LSTM, and a 2D attention module called
Show Attend and Read (SAR). The LSTM encoder was used to encode the feature map and considered
as a holistic feature. The LSTM decoder was used to decode the feature maps into character sequences.
2D attention module was used to compute the sum of weights of features and efficiently handle text
irregularity. To tackle the occurrence of undesired noise during text recognition, Huang et al. [15]
proposed an Effective Parts Attention Network (EPAN). The Character Effective Parts Decoder (CEPD)
in EPAN decodes important features from feature maps to generate character informations. The Effective
Parts Decoder (EPD) ignores the noise in feature maps and enhances character information.

Chen et al. [16] proposed an Adaptive Embedding Gate (AEG) module that uses character language
modelling to adaptively strengthen the impact of recent predictions in the decoding phase. Wang et al.
[17] designed a Memory Augmented Attention Network (MAAN) to predict the character at the current
time step by feeding the previously computed character sequence and entirely attended alignment history
to the attention network. As a result, the glimpse vector computed by MAAN is more robust for character
representation at each timestamp. Lee et al. [18] introduced a recursive CNN for image encoding; to
extract contextual information, followed by feature selection and decoding using a 1D attention model.
The fiducial transformation points on the slope and arbitrary texts are regressed in ASTER [19].

Lin et al. [20] applied a series of simple transformations such as translation, scaling and rotation to
obtain flexible rectification. They also proposed a grid projection approach for smoother sequential
transformation to make recognition tasks easier. However, this approach failed to recognize text under
certain situations, such as severely curved text, low-resolution text images and noisy images. Yang et al.
[21] suggested utilizing a coarse-to-refined method to decompose the classification process. Instead of
decoding the character in a single iteration, a single attention module was utilized multiple times to
improve the appropriate features until the outcome was satisfactory. This technique produces impressive
results in character recognition. Bai et al. [22] developed a new method termed Edit Probability (EP) to
solve the misalignment problem. The Arbitrary Orientation Network (AON) was proposed by Cheng
et al. [23] to capture visual features of irregular texts. A filter gate mechanism and an attention-based
decoder are employed to retain the sequence of characters.

Thin-Plate Spline transformation (TPS ) [24] was used to handle the irregular shaped text and feed it into
an attentional sequence-to-sequence model to recognize the sequence of characters. TPS proposed two
networks to recognize perspective text and curved text: a rectification network to solve the alignment
problem and a recognition network for scene text recognition. Distorted scene text is recognized via
iterative rectification [25]. Cheng et al. [26] proposed Focusing Attention Network (FAN) to tackle the
“attention drift” problem; it was made up of two major sections: Attention Network (AN) to recognize
target characters and Focusing network (FN) to evaluate AN attention on target areas. An end-to-end
model based on an attention-based RNN recognizes irregularly shaped text by presenting two important
components auxiliary dense character detection and an alignment loss. These two components achieve
fast convergence and high classification accuracy for perspectively distorted text or curved text.
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3 Text Recognition Framework

In this paper, a new encoder-decoder architecture for text recognition is proposed. The input text image
is fed into the text recognition framework to carry out an accurate text recognition task. The overall
architecture of the proposed text recognition framework is shown in Fig. 1. The encoder block comprises
of image transformation, feature extraction with SAM, a deep Bi-LSTM network to mark the most
contributive text features and a proposed DSAM model. The decoder block contains a Joint CTC-
Attention joint decoding mechanism that decodes the output and produces the final character sequence.
Each module in the architecture is explained in the following sections.

3.1 Image Transformation

The main reason for employing an image transformation module is to normalize the input text image,
eliminate distortion and simplify irregular text recognition tasks. In particular, the irregular text refers to
text with a perspective distortion or an unusual curved shape, making recognition tasks more difficult.
However, the text images come in various shapes, such as curved and slanted texts. If such diverse
shaped input images are fed directly without altering, the feature extraction step must learn an invariant
representation for such geometry. To reduce the burden of the additional learning process, it employs a
TPS transformation to normalize the input text image (I).

The TPS transformation has been applied with its flexibility to various aspect ratios of text lines. TPS is
an alternative to the Spatial Transformer Networks (STN) [27]. TPS interpolates between a collection of
fiducial points using a smooth spline (see Fig. 2). TPS identifies a set of fiducial points at the top and
bottom of the text area and reduces the projected region to a pre-defined size. Image Transformation is
otherwise called as Image Normalization, in which the resulted normalized image is generally represented
as (I’).

Figure 1: The overall architecture of the text recognition framework

Figure 2: Illustration of the image transformation module

2074 IASC, 2023, vol.35, no.2



3.2 Spatial Attention Module (SAM)

Fig. 3 illustrates our proposed SAM. In this module, feature representation of the normalized image (I’)
is extracted using a fully convolutional network-based architecture that uses ResNet-34 as its backbone; the
extracted features are named FeatureMaps. Original ResNet-34 has a stride of 32, which is large for cropped
text images. As a result, significant adjustments are done to make it suitable for further processing. Also
eliminated the 3 � 3 max-pooling and replace the 7 � 7 convolution with a 3 � 3 equivalent
convolution. As an outcome, the height and width of FeatureMaps are remarkably reduced by 1/8 of the
normalized image (I’) and there are 512 channels.

The SAM is introduced to acquire high-level features. A 3 � 1 convolution with stride 1 � 1 is applied
on the FeatureMaps, followed by a sigmoid activation function, which generates AttentionMask has the same
resolution as FeatureMaps. The only difference between AttentionMask and FeatureMaps is the number of
channels. AttentionMask contains only one channel, whereas FeatureMaps contains 512 channels. A high-
level feature map (AttentionFeatureMaps) represented by F = [f1, f2, …,fN] are generated by performing a
broadcast element-wise product operation on FeatureMaps and AttentionMask. The SAM performs a
feature filtering task, enriching feature columns by providing semantic information and eliminating
clutters and redundancies in the feature maps. The proposed SAM guides the framework to focus on the
most important parts of the text image. Meanwhile, it can also help to minimize the effects of false text
localization; for example, the localized bounding box isn’t near enough to the text region.

3.3 Visual Attention Features (VAF) Extraction

In this module, Recurrent layers are layered on top of convolutional layers to create a deep bi-directional
Recurrent Neural Network (RNN). The recurrent layers have three advantages: RNN specializes in extracting
contextual information within a sequence. For image-based sequence recognition tasks, these contextual cues
are more helpful and accurate than handling each symbol independently. In addition, it allows training both
the recurrent and convolutional layers in a fused network, because it has the ability to propagate error
gradients back to its input. It can function on sequences of any length. LSTM is a class of RNN units.
Hence, a bi-directional LSTM is designed by combining two LSTMs, one forward and one backward. A
deep bi-directional LSTM is developed by stacking multiple bi-directional LSTMs. The deep structure
provides a higher degree of abstraction than the shallow structure.

AttentionFeatureReps are transformed into a feature sequence. Assume that AttentionFeatureReps are
H × W × D in size, where H, W and D represent the height, width and depth respectively.
AttentionFeatureReps are converted into W feature vectors using a CNN. The propagated gradients are
fused into maps at the bottom of the recurrent layers, reversing the translation of maps into sequences and
giving back to the convolutional layers. This process is known as Map-to-Sequence, as used in [28].

Figure 3: Illustration of spatial attention module (SAM)
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Visual features are represented by V = [v1, v2,…,vN], where N is the length of the feature sequence that
contains valuable context information. Visual features are considered as the most crucial factor for the
text recognition process. The CNN’s receptive field is limited where the extracted features may suffer
from a lack of contextual information. So, it employs a deep multi-layer Bi-LSTM to derive long-term
dependencies in both directions, conduct bidirectional analysis of feature sequences and output additional
contextual features of the same length to extend. The contextual feature can be represented as C = [c1, c2,
….,cN]. The output of multi-layer Bi-LSTM is concatenated, i.e., contextual feature with the visual
feature, which yields a new feature space J = (V, C) named as visual attention feature map represented by
J = [j1, j2,….,jN].

3.4 Dual Step Attention Mechanism (DSAM)

The schematic illustration of the proposed DSAM is shown in Fig. 1. Here, a 1D self-attention operation
[29] is employed on a visual attention feature map (J) from these feature maps; an attention map (A) is
computed using a fully connected layer. Next, the attentional features (H) are calculated by performing an
element-wise product between a visual attention feature map (J) and an attention map (A). The newly
generated attentional features (H) are decoded using a CTC-Attention-decoder [30], for each time the
decoder generates an output (yt) using the Eq. (1).

yt ¼ Generate st; gtð Þ (1)

st ¼ RNN yt�1; gt; St�1ð Þ (2)

where st and gt in Eqs. (2) and (3) are RNN hidden states at time t and a weighted sum of sequential
feature vectors (h1, h2 ,…, hk). A feed-forward network and an LSTM recurrent network are represented
by the Generate and RNN functions, respectively. The decoder produces a vector called glimpse by
linearly combining a vector G with the columns of H.

gt¼
Xn
j¼1

at;jhj (3)

where at 2 RT is a vector of attention weights given in Eqs. (4) and (5), also known as alignment
factors. Then, at is calculated by scoring each weighted sum of sequential feature vectors (h1, h2,…,hk)
separately and normalizing the computed scores.

et;i ¼ wk tanh Wst�1 þ Vhj; þ b
� �

(4)

at;j ¼
exp et;j

� �
Pk

j¼1 exp et;j
� � (5)

where V, W, b, and u are trainable parameters. At time t, St-1 is the hidden state of the recurrent cell
within the decoder, and hj is a column of H. Following that, the decoder’s recurrent cell is fed with Eq.
(6).

xt; stð Þ ¼ RNNðSt� 1; gt; f yt� 1ð Þð Þ (6)

The concatenation of gt and one-hot embedding yt−1, represented by (gt,f(yt-1)). The probability of a
given character can be calculated using the following Eq. (7):

p ytð Þ ¼ softmax W0xt þ b0ð Þ (7)
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The following equation Eq. (8) is used to compute the attention model’s loss function:

Lattn ¼
X
t

ln PðŷtjI0; uÞ (8)

where ŷt and u are the ground truth of t
th character and a vector containing all the network’s parameters.

3.5 CTC-Attention Decoder

In this paper, global attention replaces with local attention for decoding. Here, a directed one-way Long
Short Term Memory (LSTM) network is used for decoding. To enhance the performance of the recognition
network, the CTC module and the Attention module get integrated and made as CTC-Attention mechanism
[31]. The CTC-Attention integrated approach can take all the necessary feature information and utilize this
feature information by computing global probability in the CTC. The decoding network decodes the
attention-based feature sequence (H) produces Y = (y1, y2, …, yk) under the joint CTC-Attention
mechanism. This integration process improves recognition accuracy and speeds up network convergence.

The decoder input attention feature sequence H = [h1,h2,…,hn], hidden variable Z = {zt ∈ D ∪ blank |
t = 1,…,W}, Here, t and Ware the total number of characters and encoding sequence respectively, produces a
character sequence of length (l), Attention feature sequence H = {hl ∈ D | l = 1,…,W}, The character
dictionary (D) contains all the available characters. The posterior probability of the predicted text
sequence is computed using Bayes’ theorem given in Eq. (9); the CTC strategy assumes that generated
labels are independent.

PCTC ¼ YjXð Þ �
X
Z

Y
t

p ztjzt�1;Yð Þp ztjXð Þp Yð Þ (9)

where p Yð Þ is letter-based language model, p ztjzt�1; Yð Þ is the hidden variable’s conditional probability
derived from the hidden variable at the previous timestamp, and the probability of a hidden variable is
represented by p ztj Xð Þ derived from the input feature map. The probability of the joint attention
predicted text sequence is given in Eq. (10).

Patten ¼ YjXð Þ �
Y
l

pðyljy1:l�1;XÞ (10)

where pðyljy1:l�1; XÞ is the probability of the predicted text sequence, X is the input characteristic, and l is
the output obtained. The attention mechanism can predict long text sequences [32]; it failed to impose any
constraint that leads to misalignment during the decoding process and is sensitive to noise. The two crucial
difficulties, such as training long sequence input and extracting information from extended characters, are
effectively addressed by the CTC-Attention algorithm. The linear combination of the joint CTC-Attention
prediction is given by:

Ŷ ¼ argmaxY2D λ log pctc YjXð Þ þ 1� λð Þ log pattenðYjXÞf g (11)

The decoder calculates a score for each partial hypothesis during the word beam search process using
Eq. (11). Combining the CTC-Attention score in the beam search is unfair because CTC performs frame
synchronously while attention performs out label synchronously. Rescoring [33] and the forward
algorithms [34] incorporate CTC probabilities into the hypothesis score. Rescoring generates and rescores
complete hypotheses. The forward algorithm computes CTC probabilities (see Eq. (11)). CTC and the
attention model to calculate the probability of each partial hypothesis in One-Pass decoding based on Eq.
(12). The one-pass CTC-Attention decoding is given in Tab. 1.
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pctc h; . . . jXð Þ ¼
X

v2 u[ , eos.f gð Þþ
pctcðh:vjXÞ (12)

CTC score is computed based on Eq. (13),

actc h;Xð Þ ¼ logpctcðh; . . . :jXÞ (13)

where v contains all possible label sequences does not contain empty sequence characters.

4 Experiment

In this section, the performance of the proposed text recognition framework is evaluated against state-of-
the-art algorithms on several public benchmark datasets, including both regular and irregular datasets.

Table 1: Joint CTC-attention decoding algorithm

Function one_pass_beam_search(X, Smax)
{
Smax = the maximum number

of hypotheses to be examined
Ψ0 = {<sos>}
�̂ = ø
for l = 1 to Smax do
Ψl = ø
while Ψl-1 != ø do
b = head (Ψl-1)
dequeue(Ψl-1)
for each t є � ∪ {<eos>} do
h=b.t
a(Y) = {λ log pctc (Y|X)+

(1-λ) log patten (Y|X)}
if t = <eos> then
enqueue(�̂,Y)
else
enqueue(Ψl,Y)
if |Ψl| > beamwidth then
removeworst(Ψl)
end if

end if
end for

end while
if stopdetect(�̂,l) = true then
break

end if
end for
return argmaxŶє �̂ α(Ŷ)

}

Function log pctc (Y|X), Y, X
{
g,c ← Y
if c = <eos> then
return log{c nð Þ

t gð Þ þ c bð Þ
t gð Þ}

else
c nð Þ
t Yð Þ← p z1 ¼ cjXð Þ if g ¼ , sos.

0 otherwise

�

c bð Þ
t Yð Þ ← 0
’ ← c nð Þ

t Yð Þ
for t=2,…., T do

b ← c bð Þ
t�1 gð Þ + 0 if last gð Þ ¼ 0

c nð Þ
t�1 gð Þ otherwise

�

c nð Þ
t Yð Þ ← (c nð Þ

t�1 Yð Þ þ b) p zt ¼ cjXð Þ

c bð Þ
t Yð Þ ← (c bð Þ

t�1 Yð Þ þ c nð Þ
t�1 Yð Þ)

p(zt ¼ , b. jX Þ)
’ ← ’ + b .p zt ¼ cjXð Þ

end for
return log(’)

end if
}
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4.1 Datasets

In this paper, two synthetic datasets (SynthText, SynthAdd) proposed by Gupta et al. [35] and Jaderberg
et al. [36] respectively, are used to train the proposed framework. In addition, seven standard benchmarks that
contain four ‘regular’ datasets (IC03, IC13, SVT, IIIT5K) and three ‘irregular’ datasets (IC15, SVTP, CUTE)
are used to evaluate the proposed framework.

Regular Datasets the performance of the proposed framework was evaluated using standard benchmark
datasets such as IIIT5K-Words [37], Street View Text [38], ICDAR 2003 [39] and ICDAR 2013 [40]. The
majority of the text images in these datasets are almost horizontal text images.

Irregular Datasets ICDAR 2015 Incidental Text [41], Street View Text Perspective [42] and
CUTE80 [43] are the benchmark datasets used to evaluate the performance of our framework. Most text
images in this dataset are curved, rotated and low-quality.

Grocery Datasets Four publicly available datasets such as GroZi-120 [44], WebMarket [45] and SKU-
110K [46], Freiburg Groceries Dataset [47] are used to train and test the proposed text recognition
framework.

4.2 Implementation Details

Our framework experiments are performed using PyTorch on an NVIDIA GTX 1080Ti GPU with
12 GB memory. The training datasets SynthText and SynthAdd consists of 6-million and 8-million
synthetic images, respectively. Additionally, text images from grocery datasets that contain complex text
shapes and styles are cropped to train our text recognition framework. The framework is trained using the
AdaDelta optimizer. Different batch sizes were rehearsed, and it was observed that a batch size of
128 was found to be the most efficient. Similarly, various learning rates were examined, and a learning
rate of 0.01 was the most effective. The number of training epochs was set to 80 and 36 different symbol
classes were employed including 10 digits and 26 letters. Three special punctuation letters are added to
the decoder: “<sos>”, “<eos>”, and “<unk>”, which indicate the start, end, and unknown characters,
respectively. The average decoder probabilities are calculated until the “<eos>” symbol is encountered to
compute a prediction confidence score. The final prediction is then decided as the highest confidence
score. The beam-search algorithm was used for decoding. However, the authors of [14] claim it increases
accuracy by around 0.5%. The world beam algorithm-based text recognition decoding enhances
performance by eliminating grammatical mistakes, allowing arbitrary numbers and punctuation marks,
and employing a word-level language model.

4.3 Ablation Studies

In this section, experimental trials were carried out to interpret the comparison of performance
improvements and assess the effect of our key contributions. Tab. 2 shows the impact of the key
contributions in the text recognition framework. Experiments (b), (d), (f) and (i) show the effect of the
image transformation module in the text recognition task. The image transformation module reduces the
burden of feature extraction steps and normalizes the distorted or irregular text images. The
transformation module significantly improves the performance of the proposed framework on all datasets,
notably on IC15 (1.1%), SVTP (0.8%) and CUTE (0.6%).

The impact of the proposed Spatial Attention Module (SAM) is shown in rows (a), (d), (g), (h) and (i) of
Tab. 2. SAM is primarily designed to suppress redundant features and clutters. Compared to baseline
(without SAM), accuracy was improved around 3.1% on IC15, 4.3% on SVTP and 3.7% on
CUTE80 datasets. The performance of the SAM can be improved, particularly for the irregular datasets
(IC15, SVT, and CUTE), which comprise low-quality text images and complex text shape images.
Similarly, The importance of obtaining the Visual Attention Feature (VAF) is given in rows (b), (c), (d),
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(g) and (i) of Tab. 2. The CNN’s receptive field is limited. The features it extracts may suffer from a lack of
contextual information. A deep bi-directional LSTM network was used to generate a contextual feature map
over CNN’s outputting feature map to address this shortcoming. Then, the contextual feature map from the
deep Bi-LSTM network is combined with the visual feature map to generate the contributive VAF. The VAF
greatly supports the proposed framework to improve its recognition accuracy marginally on both regular
(3.4% on IC13 and 3.9% on IIIT5K) and irregular datasets (5.4% on IC15, 2.8% on SVTP and 3.9% on
CUTE80) by comparing with baseline. The effect of our final key contribution, DSAM, is given in rows
(b), (f), (g), (h) and (i) of Tab. 2. The sixth row shows the improvement over the baseline results on
regular text datasets (3.5% on IC03, 2.5% on IC13, 5.7% on SVT and 2.7% on CUTE80) and irregular
text datasets (4.4% on IC15, 2.2% on SVTP and 1.5% on CUTE80).

Our proposed framework used a powerful feature extractor and advanced attention-based sequence
network, which deals with complex texts. Compared to the separate CTC or Attention mechanism, the
combined CTC-Attention mechanism substantially improved text recognition accuracy and the training
speed of the model is much faster than existing methods. Unlike traditional attention decoders that
perform recognition alone, our decoupled text decoder takes encoded features and attention maps as input
and performs alignment and recognition simultaneously. In our encoder-decoder framework, the total
LSTM layers in the model significantly impact recognition accuracy. As the number of LSTM layers
increases, it is observed that the encoder has a higher advantage over the decoder.

The two-layer LSTM decoder and the three-layer LSTM encoder is used in our experiment shown in
Tab. 3; the accuracy value of the model was better. Despite this, an attempt to expand the layers count in
both the encoder and decoder is performed, but the model faces an overfitting problem. The CTC-
Attention-based text recognition model can recognize the curved shaped text, image with non-uniform
spacing between the words and multiple texts in an image. Our architecture is built with four Bi-LSTM

Table 2: Performance comparison among four variations. In the rectification column, “Yes” indicates image
normalization is performed. “No” indicates image normalization is not performed. Our key contributions: SAM,
VAF, and DSAM are achieved superior performance on the text recognition task. ✗ represent the particular
proposed module is not carried out for the particular iteration. ✓ represent the particular proposed module is
performed for the specific iteration

Exp Rectification Key contributions Regular text dataset Irregular text dataset

SAM VAF DSAM IIIT
5K

SVT IC
03

IC
13

IC
15

SVT-P CUTE80

(a) No ✓ ✗ ✗ 83.3 82.8 79.2 81.6 77.5 80.2 72.5

(b) Yes ✗ ✓ ✓ 92.6 91.6 89.4 90.2 84.8 84.6 82.1

(c) No ✗ ✓ ✗ 84.2 85.1 82.8 84.2 82.9 84.1 79.5

(d) Yes ✓ ✓ ✗ 90.8 93.5 92.4 93.6 84.9 88.0 82.6

(e) No ✗ ✗ ✗ 82.4 81.7 74.6 80.3 77.5 81.3 75.6

(f) Yes ✗ ✗ ✓ 85.9 84.2 80.3 83.0 81.9 83.5 77.1

(g) No ✓ ✓ ✓ 95.9 95.7 94.0 94.0 86.0 87.9 85.2

(h) No ✓ ✗ ✓ 93.0 92.3 91.2 91.8 85.1 86.3 84.3

(i) Yes ✓ ✓ ✓ 96.3 96.1 94.7 94.7 87.1 89.7 87.8
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layers based on intermediate supervision levels. The relative improvement in accuracy on regular and
irregular text is +0.4% and +1.8%, respectively.

By adjusting the learning hyperparameter value (λ) between 0 and 1, the CTC puts various weight
restrictions on attention. A learning hyperparameter (λ) is introduced in the joint decoding to balance the
weight of the CTC and Attention mechanism. When λ = 0, attention alone is used for decoding; similarly,
When λ = 1, CTC alone is used for decoding. A possible value between 0 and 1 is taken as a
hyperparameter value shown in Tab. 4. When λ = 0.4, the most significant level of recognition accuracy;
when the hyperparameter increases gradually, the accuracy decreases. Compared to the separate CTC or
Attention method, the combined CTC-Attention mechanism achieves high recognition accuracy.

4.4 Comparison with Existing Algorithms

In this section, the recognition accuracy of the proposed method is compared with state-of-the-art
methods on both regular and irregular datasets are shown in Tab. 5. Some precise and false recognition
results on the public benchmark text recognition and retail product datasets are shown in Fig. 4, green

Table 3: Experimental results are comparing the number of LSTM layers in decoding vs. Recognition accuracy

Decoding layer Regular text dataset Irregular text dataset

IIIT5K SVT IC03 IC13 IC15 SVT-P CUTE80

1 85.4 82.8 82.3 86.5 81.7 80.0 81.0

2 91.2 88.7 88.8 92.6 86.6 86.4 84.5

3 96.3 96.1 96.6 94.7 87.1 89.3 87.8

4 89.7 87.3 86.1 88.4 86.2 86.7 82.6

5 84.7 84.0 82.3 84.5 85.1 83.9 84.1

Table 4: Experimental results varying Hyperparameter vs. Recognition accuracy

Hyperparameter Regular text dataset Irregular text dataset

IIIT5K SVT IC03 IC13 IC15 SVT-P CUTE80

CTC (λ = 0) 88.1 85.9 89.5 90.5 84.2 83.6 81.7

Attention (λ = 1) 88.6 86.3 89.7 90.6 83.1 82.4 83.5

CTC – Attention (λ = 0.1) 91.0 89.4 90.3 92.1 84.7 84.6 83.8

CTC – Attention (λ = 0.2) 93.4 93.9 92.0 93.8 87.5 85.4 85.2

CTC – Attention (λ = 0.3) 93.7 94.6 92.6 94.5 89.4 88.9 87.4

CTC – Attention (λ = 0.4) 96.3 96.1 96.6 94.7 87.1 89.3 87.8

CTC – Attention (λ = 0.5) 93.7 93.2 93.4 95.0 92.8 91.6 88.3

CTC – Attention (λ = 0.6) 92.5 92.4 92.7 94.6 91.4 90.7 87.5
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characters represent correctly predicted characters, and red characters represent wrongly predicted characters.
Liao et al. [12] and Liu et al. [13] used a self-designed feature extractor to generate a high-level feature
extractor. Unlike Liao et al. [48], word-level annotated text images are used to train our framework. A
powerful feature extractor, ResNet is utilized as CNN’s Backbone to obtain relevant and high-level
features. Our proposed text recognition framework obtained the highest accuracy on the IIIT5K, SVT,
IC03, IC15 and SVT-P datasets and the second-highest on the CUTE80 dataset in lexicon-free mode.

Table 5: Comparisons with existing methods over seven public benchmark datasets. All the values from columns
3 to 9 are expressed in percentage (%). In column 2, “90 K”, “ST”, “SA” and “Wiki” stand for Synth90K,
SynthText, SynthAd and WikiText-103 respectively. Also, “Self” denotes the use of a self-designed
convolution network or self-made synthetic datasets. The outcomes are all in the no lexicon indicated by “None”

Method ConvNet, Data Regular text Irregular text

IIIT5K SVT IC03 IC13 IC15 SVT-P CUTE80

None None None None None None None

Liao et al. [12] Self, 90K+ST 95.3 91.8 95.0 95.3 78.2 83.6 88.5

Liu et al. [13] Self, 90K+ST 83.6 84.4 91.5 90.8 – 73.5 –

Li et al. [14] ResNet, 90K+ST 95.0 91.2 – 94.0 78.8 86.4 89.6

Huang et al. [15] ResNet, 90K+ST 94.0 88.9 95.0 94.5 73.9 79.4 82.6

Shi et al. [19] ResNet, 90K+ST 93.4 93.6 94.5 91.8 78.5 76.1 79.5

Lin et al. [20] ResNet, 90K+ST 94.1 90.6 95.1 92.8 76.7 82.2 83.3

Yang et al. [21] ResNet, 90K+ST 88.3 87.5 94.6 94.4 – 73.9 –

Cheng et al. [23] BCNN, 90K+ST 87.0 82.8 91.5 – 68.2 73.0 76.8

Shi et al. [24] CNN, 90K+ST 81.9 81.9 90.1 88.6 71.8 – 59.2

Zhan et al. [25] ResNet, 90K+ST 93.3 90.2 95.0 92.4 79.6 76.9 83.3

Cheng et al. [26] ResNet, 90K+ST 87.4 85.9 94.2 93.3 71.5 – 63.9

Shi et al. [28] CNN, ST 78.2 80.8 89.4 86.7 66.8 – 54.9

Gao et al. [29] Self, ST 81.8 82.7 89.2 88.0 – – –

Yu et al. [30] ResNet, 90K+ST 94.8 91.5 – 95.5 82.7 85.1 87.8

Wang et al. [31] ResNet, 90K+ST 93.2 89.2 94.3 92.8 76.6 82.6 82.6

Lu et al. [32] ResNet, 90K+ST+SA 95.0 90.6 96.4 95.3 79.4 84.5 87.5

Wu et al. [33] ResNet, 90K+ST 89.5 86.5 94.1 90.1 76.6 – 78.0

Zhang et al. [34] ResNet, 90K+ST+Wiki 96.2 93.9 – 97.7 85.5 89.0 91.9

Liao et al. [48] ResNet, ST 91.9 86.4 – 91.5 – – 79.9

Litman et al. [49] ResNet, 90K+ST+SA 93.7 92.7 96.3 93.9 82.2 86.9 87.5

Luo et al. [50] Self, 90K+ST 91.2 88.3 95.0 92.4 76.1 68.8 77.4

Liu et al. [51] CNN, ST 83.3 83.6 89.9 89.1 73.5 – –

Liu et al. [52] Self, 90K 89.4 87.1 94.7 94.0 73.9 – 62.5

Yang et al. [53] ResNet, 90K+ST 94.4 88.9 95.0 93.9 78.7 80.8 87.5

Proposed Framework ResNet, 90K+ST 96.3 96.1 96.6 94.7 87.1 89.3 87.8
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Our proposed framework outperforms the state-of-the-art techniques such as Liao et al. [12] and Li et al.
[14] approach by an absolute margin of 3.8% and 2.3% on average, respectively, on irregular text datasets
(IC15, SVTP, CUTE). Our framework improves the recognition rate of irregular texts, such as those with a
curved shape, perspective distortion, or arbitrarily orientated, common yet difficult to recognize. Litman et al.
[49] used the additional dataset (SynthAdd represent as SA) in their model. Even though, our framework
surpasses Litman et al. [49] on both regular and irregular text datasets.

Similarly, Zhang et al. [34] utilized an additional training dataset (WikiText-103 represented as Wiki).
However, proposed framework outperforms Zhang et al. [34] on IC15 (87.1% vs. 85.5%) and SVT-P (89.3%
vs. 89.0%) datasets, whereas it surpasses proposed framework on CUTE (91.9% vs. 87.8%) dataset. The
proposed text recognition framework accuracy is considerably outperformed the linguistic-based
approaches (such as Luo et al. [50]) on all datasets, notably irregular texts (2.5% on IC15 and 3.6% on
CUTE).

Our framework performs substantially better on regular and irregular text datasets than the baseline
approach (see Tab. 2). It boosts accuracy by 13.9 % (from 82.4% to 96.3%) on IC03, 14.4% (from
80.43% to 94.7%) on IIIT5K, 14.4% (from 81.7% to 96.1%) on IC13, 20.1 % (from 74.6% to 94.7%) on
SVT, 9.6% (from 77.5% to 87.1%) on IC15, 8.4% (from 81.3% to 89.7%) on SVT-P and 12.2% (from
75.6% to 87.8%) on CUTE80 datasets. This indicates that our key contributions, such as SAM, VAF and
DSAM, effectively recognize text. To conclude, our framework obtains the top recognition score on five
(IIIT5K, SVT, IC03, IC15 and SVT-P) out of seven benchmarks. Unlike existing approaches, the
proposed framework is a top performer as it works on both regular and irregular text datasets. However,
the additional training with cropped text images from the grocery dataset improved the recognition
performance significantly by around 0.5%.

Figure 4: Visualization of precise and false results by our proposed framework on both regular and irregular
text datasets. Green indicates true predicted characters whereas red indicates false predicted characters
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5 Conclusion

In this paper, a simple but effective text recognition model based on an encoder-decoder framework is
presented. The main aim of the proposed work is to recognize both regular and irregular text. Different
modules supported our framework to accomplish the task. Thin Plate Spline (TPS) is incorporated to
convert the irregular text image into more readable text. The proposed Spatial Attention Module (SAM)
extracts the enriched feature maps. It avoids the problem of learning an invariant representation by
directing the model to focus more on the text regions. The proposed Dual Step Attention Mechanism
(DSAM) integrated with the CTC-Attention decoder to generate a more accurate character sequence. The
joint one-pass CTC-Attention decoding helps to boost the convergence of the training and enhances
sequence recognition. The research trials infer that the CTC-Attention joint mechanism increases the
model’s text recognition performance and gives it an advantage in recognizing text images. The
robustness of our approach is evaluated using public benchmarks, including the grocery datasets, such as
GroZi-120, WebMarket, SKU-110K, and Freiburg Groceries datasets, which contain complex text shapes.
Our proposed framework outperforms the state-of-the-art approaches on both regular and irregular text
recognition methods.
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