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Abstract: The public is increasingly using social media platforms such as Twitter
and Facebook to express their views on a variety of topics. As a result, social
media has emerged as the most effective and largest open source for obtaining
public opinion. Single node computational methods are inefficient for sentiment
analysis on such large datasets. Supercomputers or parallel or distributed proces-
sing are two options for dealing with such large amounts of data. Most parallel
programming frameworks, such as MPI (Message Processing Interface), are dif-
ficult to use and scale in environments where supercomputers are expensive.
Using the Apache Spark Parallel Model, this proposed work presents a scalable
system for sentiment analysis on Twitter. A Spark-based Naive Bayes training
technique is suggested for this purpose; unlike prior research, this algorithm does
not need any disk access. Millions of tweets have been classified using the trained
model. Experiments with various-sized clusters reveal that the suggested strategy
is extremely scalable and cost-effective for larger data sets. It is nearly 12 times
quicker than the Map Reduce-based model and nearly 21 times faster than the
Naive Bayes Classifier in Apache Mahout. To evaluate the framework’s scalabil-
ity, we gathered a large training corpus from Twitter. The accuracy of the classi-
fier trained with this new dataset was more than 80%.

Keywords: Social networks; sentiment analysis; big data; spark; tweets;
classification

1 Introduction

Analysis of Public Opinion mining [1], often known as sentiment analysis, is a subset of data mining. It
focuses on extracting the polarity of sentiment from a given text. The material is frequently written in plain
English. Sentiment analysis on social media is the process of categorizing data on social media platforms
such as Twitter [2], Facebook, IMBD, and Tumblr based on its sentiments. Sentiment research is
becoming increasingly popular in marketing and business, as public opinion can provide crucial
information to policymakers in order to maximize profits. Authors in [3—6] are modeled Sentiment
analysis as a classification problem that is typically addressed using supervised and unsupervised learning
approaches. To improve accuracy [7,8], a lot of effort is being done into different learning algorithms,
data retrieval, and preprocessing methods. Data gathering, data preprocessing, feature extraction and
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construction of feature vectors, and classification are the major components of opinion mining (Supervised or
Unsupervised).

Various websites allow for a variety of review structures to be used. Some websites allow users to
expressly highlight the benefits and drawbacks, sometimes alongside the overview, while in other
situations there will be no constraints on how users submit reviews, allowing them to write whatever they
want and express their sentiments. Even though there are numerous review websites available, analyzing
user comments from social media websites such as Twitter and Facebook is critical due to the wide range
of audiences available. A new parallel method to classify social network tweets is proposed in this paper.
In this proposed work, Using the Twitter 4J API [9], we gathered our own data set from the Twitter
social network for training purposes.

In this proposed work, we have divided our work into the following sections. In Section 2 related works
for sentiment analysis are discussed. In Section 3 Proposed method is described. In Section 4 our proposed
Spark-based Parallel Naive bayes algorithm and its workflow are discussed. In Section 5 data sets and
experimental results of our proposed method are discussed. Finally in Section 6 conclusion and future
work are discussed.

2 Literature Study

This section contains the results of ongoing research on Opinion Mining and Sentiment Analysis. In
their paper, B. Liu et al. [10] suggested an opinion mining model based on the MapReduce architecture
and the Naive Bayes Classifier. They used the Cornell University movie review dataset and the Stanford
SNAP Amazon movie review dataset to evaluate the algorithm, and it was shown to be 82 percent
accurate. This accuracy is higher than that of other articles’ tweet classifications, which could be related
to the higher and better structure of the text in movie reviews. [10] also assumes that all of the classes’
prior probabilities are equal. For the vast majority of training datasets, this assumption is false, and prior
probability must be estimated explicitly. Li [11] used a MapReduce version of the Naive Bayes algorithm
in his PhD thesis to analyse tweet sentiment and its influence on the stock market depending on
demographics. The statistics required for Naive Bayes classifier training were calculated using two map
reduce tasks. The training time complexity is O(C.V)/n, where C is the number of classes, V is the
vocabulary size, and n is the number of cluster nodes. The framework he provided was simply for
training the Naive Bayes classifier; he did not report on the testing phase or the classifier’s accuracy.
MapReduce Naive Bayes are also available in Apache Mahout 3. It’s also capable of multiclass
classification. To construct feature vectors, several jobs are used, as well as multiple MapReduce
processes to train the Naive Bayes classifier. [12] used Korean language sentiment analysis that was
unsupervised and based on dictionaries. From Twitter and Topsy, they gathered a massive amount of
unstructured data. Four map functions were employed to assess the data once it had been preprocessed.
Step-by-step polarity preprocessing analysis, syntactic word analysis, morpheme analysis, and prohibitive
word analysis were done by these routines. The reduction function was used to add up the negative and
positive scores of the input sentence. If a tweet’s positive score was higher than its negative score, it was
classified as positive, and vice versa. If a Tweet’s positive score equaled its negative score, it was
advanced to the next processing stage. MongoDB was used to store the lexical dictionaries used in these
analyses, as well as the final labels of tweets. By involving more slave nodes, the proposed system was
able to maintain its stability as the data size grew. The accuracy for the positive, negative, and neutral
datasets is 70%, 15%, and 14%, respectively. In [13], DOM was presented as a mobile application for
Thai public sentiment analysis. Hadoop underpins DOM. For data analysis, it employs the MapReduce
framework, while storage is handled by MongoDB. Unstructured data is gathered and saved in
MongoDB on the server side of the application. The map reduction job is used to do subject
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categorization and lexicon-based sentiment analysis, which divides data into three categories: positive,
negative, and neutral. The data that has been analysed is kept in a database. A user can query about a
specific topic on the client side and receive pre-analyzed data. Experiments were conducted with a total
of 12 GB of data collected. When the DOM findings were compared to human annotations, the average
accuracy for long and short text was determined to be 76.32 percent. Supervised sentiment analysis using
MapReduce was also proposed in [14]. For identifying the sentiment of large corpora, it suggested
employing WordMap, a lexicon dictionary, and natural language processing rules in MapReduce
operations. That paper’s planned work isn’t backed up by experiments or findings. [15] utilised
MapReduce and HBase to create a vocabulary database specifically for Twitter sentiment analysis. HBase
is a Hadoop-based distributed database system. The tweets were then classified using this lexicon and the
Adaptive Logistics Regression method. The stated accuracy ranges between 72 and 74 percent. The
strategies described above are based on the Map-Reduce Framework, which stores all intermediate results
on a disc. As a result, both the map and reduce processes demand additional disc access, resulting in
longer execution times. This issue can be solved by storing intermediate results in Main Memory rather
than on discs. As a result, we have unitized Spark [16] Parallel Framework in our system and suggested a
new Spark parallel Opinion categorization algorithm.

3 Proposed Method

Daily data generated from every social network website is enormous. A parallel approach is required to
analyze the vast data. So, a Spark-based parallel Naive Bayes classifier is proposed to classify the tweets
collected from Twitter social network websites. The main aim of this work is to organize the tweets from
Twitter social network websites into positive and negative polarities

3.1 Tweets Classification Process

The proposed tweets classification process is described in Fig. 1. The tweets collected from Twitter social
network are given to the proposed system. Initially, the filtering process removes redundant tweets from the data
sets. Here, cosine [17] similarity is utilized to find the redundant tweets. The removal of stop words and the
stemming process is performed during the pre-processing stage. Then, the pre-processed tweets are divided
into training and testing data sets. The proposed Spark-based Naive Bayes classifier is trained using training
data sets. During the training process, the following statistics have been calculated.

unclassified
data
[
e
N 2
Automated
data Pre Trained Spark Based classified of
collection » Filtering —> A Naive Baise Classifier » tweets
from Processing for Tsting
multiple < @ @ '
sources g,
External Sources “ e,
uses
\_/ A
creating Training the o
Labeled 5| Clazsifier(Sprak Statistical
data to " based Naive |+eosevea..s Components
train the Baizc) Generates
clazssifier

Figure 1: The architecture of proposed Tweets classification method
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N,, N, specifies the number of positive and negative training instances, respectively.

NT,, NT, specifies the number of terms in positive and negatives training instances, respectively.
TP,, TN; specifies the number of times term t occurs in positive and negative training instances, respectively.
V' specifies Vocabulary Size, the total number of distinct terms in training data after pre-processing.

Finally, the trained model and the calculated statistics classify the testing tweets into positive and
negative categories.

3.2 Naive Bayes Classifier

Naive Bayes classifier [ 18] is a probabilistic classifier. To classify a given text document D, Naive Bayes
predicts the class by solving the following equations (Egs. (1) to (5)). The class with the highest probability is
assigned to document D.

argmax crec P(cy) * P(Dlcy) (1)
Pley) = 7ZchkN . @
P(Dlcx) = ﬂpwck) G)
Plilck) = yre @)

Tert + 1 )

Sy Tl +V

where in Eq. (1), ¢ is the probability that D belongs to Class k. P(cy) is also called Prior Probability. If the
training data has an equal instance of all the classes, then P(c;) = 1/number of Classes and can be omitted
from Equation (6.1). In Egs. (2) and (3), C is the set of all classes, and N K is several training instances in

t.
class k. P (—l> in Eq. (3) is the probability of i™ term in document D belonging to documents of class ck,
Ck

t.

where n is the number of total terms in D. P<—l> is be calculated by Eq. (4) where V' is the size of the
Ck

vocabulary. From the above equations, we need V, T, ¢ for all terms ¢ in V', NT,, and N.K for all classes

to train a Naive Bayes classifier.

4 Proposed Spark-Based Naive Bayes Classifier

In this section, we propose a Spark-based Parallel Naive Bayes classifier. We perform binary
classification to classify the data positively or negatively. We use Multinomial Naive Bayes as it provides
reasonable accuracy for text classification. The statistics N,, N,, Nrp, NT,, T,t, T,t, and V have been
calculated to train the Multinomial Naive Bayes classifier. All the above stats have been calculated in a
distributed way. Our proposed Spark-based Naive Bayes algorithm calculates this statistic during the
training phase. The block diagram in Fig. 2 shows the flow of the training phase with the help of a small
example. Tt and T,¢ are calculated as key-value pairs, and V', N,, N,, NT, are counted in parallel during
the training phase. The trained model, which contains all these stats, is stored in the file system. As we
used Twitter as the data source, the word Tweet is used in algorithms for training instances, but it can be
any text. Algorithm 1 works for binary classification; multi-class classification can also be done by
modifying the given algorithms using more counters. We have to keep N.K and NTc; for each class using
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counters, two counters for each class. Usually, sentiments are classified into five classes at a maximum of 5.
Therefore, 10 counters have to be maintained in the case of five classes. All the vital statistics N,,, N,,, NT),
NT,, Tyt, T,t and V, are calculated during the training phase described in Algorithm 1.
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Figure 2: Training phase of the proposed method with a simple example

The process of the testing phase of Naive Bayes on Spark environment is described in Algorithm 2. Each
processor loads the trained model in memory, the path of the model should be provided as an input by the
driver program. Each processor is assigned a test instance to be classified; our testing algorithm predicts a
class and prints tweet id and its predicted label in a separate text file in the file system. Reading input
tweets and parallelizing the process are described in lines 1-—4. Prior probabilities of positive and negative
classes are calculated in lines 5,6. Pre-processing of testing tweets is performed in lines 7-9. The
possibility of each class for every tweet is calculated in lines 10 to 13. The class for every tweet is finally
predicted in line 14. The counters such as TruePositive, TrueNegative, FalsePostive and FalseNegative
are calculated from lines 15 to 22 to calculate the accuracy of the proposed method.

Algorithm 1: Spark Naive Training

Input: tweets without stopwords, class label
Output: Trained model parameters.

1. Begin

2. Sc = getSparkContext()

3.  Records = Sc.readFile()
4

Sc.parallize(Processors = N)

(Continued)
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Algorithm 1: (continued)

A N

10.
I1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

For each r from records:
class,tweets = r.flatMap()

if class == ‘n’

Nn += 1

Else:

Np +=1

End for
//tokens_with_stopwords=Tweets.flatMap()
tokens = tweets.flatMap()
tokens = tokens.Map()

tokens = tokens.shuffling()
tokens = tokens.reduceByKey()
x = tokens.collect()

V = tokens.count()

for each t from x:

y = t.flatMap(f => f.split(“,”))
ity [1]=p:

NTp +=1

Else:

NTn +=1

End for

End

Algorithm 2: Spark Naive bayes Testing

Input: Naive bayes Model
Output: Tweet id with predicted label

A S AN G o e

Begin

sc = getSparkContext()
sc.parallize(Processor = N)

NB = sc.load NaiveBaise Model()

records = sc.textFile()

Proby,os = Prob,,*NB.N,/(NB.N,, + NB.N,,)
Prob,eg = Probpe, *NB.N,/(NB.N,+NB.N,,)
for each record from records:

id,tweet,class = record.flatMap()

(Continued)
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Algorithm 2: (continued)

10.  tokens = tweet.Map().Filter()
11.  for each token from tokens:
i.  Probpos = Probpos*(NB.T ;)/(NB.NT,, + NB.V)
ii. Probneg = Probneg*(NB.T ,+1)/(NB.NT,, + NB.V)
12.  End for
13.  Predicted Label = (Probpos >= Probneg?Pos:Neg)
14.  If Predicted Label == AssignedLabel == “Pos”:
i.  TruePositive += 1
15. Else if Predicted Label == AssignedLabel == “neg”:
i.  TrueNegative += 1
16. Else if Predicted Label! = AssignedLabel and AssignedLabel == “Pos™:
i.  FalsePositive += 1
Else
ii.  FalseNegative += 1
Output (id,PredictedLabel)
17. End for
18. End

5 Results and Discussion

We created our training dataset because most of the training datasets for sentiment analysis are limited.
We used the Twitter API to look for tweets with hashtags synonymous with “Good” and “Bad.” The
information is gathered throughout December 2020. Roget’s Thesaurus is used to find synonyms for
“Good” and “Bad.” Tweets containing synonyms for good were classified as positive, whereas tweets
containing bad ones are classified as negative.

Tab. 1 lists the hashtags are used and the emotions that they evoked. These hashtags are chosen based on
the number of tweets generated using these hashtags. To avoid data biassing, all of these hashtags are deleted
from the tweets before it is used for training. Only English-language tweets are included in our sample. We
also looked over the data to see whether there were any instances of negation, such as ‘not #good.” There are
no such cases found; instead of ‘not #good,” people use #notgood to communicate negative sentiment. A total
of 1 GB of data was collected, with 1122341 negative tweets and 3376458 positive tweets. There were 44,
98, 799 tweets, with 90% of the tweets being used to train the model and 10% testing the trained model. Prior
probability cannot be assumed to be equal because the quantity of tweets in both categories is not equal.

Table 1: Emotions and query terms

Emotion Query terms

+ve #excellent, #great, #wonderful, #happy, #awesome, #good
—ve #terrible, #dreadful, #crappy, #awful, #gross, #unacceptable, #lousy, #bad, #disgusting
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5.1 Testing Data Sets
To test the classification accuracy of the proposed method, the following data sets are utilized.

SemEval-2016 Task4

The tweets in this data collection covered a variety of themes, including Sony, Taylor Swift, Trump,
Teen Wolf, and others.

Sentiment140
This data set covered various topics, including Google, Kindle 2, San Francisco etc.
UMICH SI650

Kaggle’s Sentiment Classification. The topics of the tweets included The Da Vinci Code, Harry Potter,
Mission Impossible, and others.

After integrating these test datasets, the final test dataset comprised 2809 positive and 1346 negative
tweets. 10% of our HashTag data collection is incorporated for model testing in addition to these data
sets. The number of favorable and negative tweets in each data set is listed in Tab. 2. We’re using a
different count for positive and negative tweets in Tab. 2.

Table 2: Testing data set description

Data set Total tweets Positive tweets ~ Negative tweets
SemEval-2016 1024 746 278
Sentiment140 2147 1456 691

UMICH SI650 984 543 441

HashTag 55110 33584 21526

5.2 Experimental Discussion

This section explains how the suggested approach is evaluated and compared to other current methods in
terms of efficiency. The studies are run in a Spark environment with a cluster of 2,4,6,8 nodes. Each node is
equipped with the same hardware: an Intel i5 3.1 GHz processor, 16 GB RAM, and a 1 TB hard drive. The
version of Spark we used was spark 1.6. The time it takes for our suggested algorithm to run on a single
computer is compared to the time it takes in different cluster sizes.

This work uses three metrics to assess the model’s performance: Precision, Recall, and F1 measure. The
equations that are used to calculate these metrics are as follows in Egs. (6) to (8):

True Possitive

precision = 6)

True Possitive + False Positive

True Possitive
recall = — - @)
True Possitive 4+ False Negative

2 x precision * recall
Fscore =

8
precision + recall ®
Tab. 3 demonstrates the suggested technique’s precision, recall, and F score on four testing data sets. It is
evident from this table that the proposed model has a precision and F score of greater than 80%. And, except
for the hashtag data collection, recall on all data sets is over 80% accurate. The graph in Fig. 3 shows that the
suggested Naive Bayes model offers good precision, recall, and F measure accuracy. The proposed Spark
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Naive Bayes technique produces good accuracy (above 80%) for all data sets and graphical representations of
those accuracy values. Because Naive Bayes is a statistical model, its Spark version has the same accuracy as
the sequential version. We also compared the accuracy of the proposed method to that of other machine
learning algorithms such as SVM, Decision tree, and K-NN, which were all tested on the UMICH
S1650 and Sentiment140 data sets and also the proposed method yields good results than those machine
learning methods. The Fig. 4 illustrates these comparison measures

Table 3: Performance metrics evaluation using various datasets

Dataset Precision Recall F-Measure
SemEval-2016 84.13 81.4 82.74
Sentiment140 85.02 82.2 83.58
UMICH SI1650 87.03 85.16 86.08
HashTag 82.73 79.01 80.83

Accuracy of Proposed Method

100
920
80
70
Z 60
g
= 50
S 40
<
30
20
10
0
SemEval-2016 Sentiment140 UMICH SI650 HashTag
Data sets

M Precision H Recall F1-Measure

Figure 3: Performance metrics comparison using various datasets

The main goal of this suggested project is to create an efficient model that can classify input tweets in
parallel. The proposed spark model’s training time on an 8-node cluster with various data sets is discussed
and comparisons to other parallel Naive Bayes models. It is explained in the Tab. 4. The proposed speedup
over an existing parallel naive Bayes model is also demonstrated. The proposed Spark-based model is nearly
9 to 12 times quicker than Li [11] MapRed, as seen in Tab. 4. We’ve set up two map-reduce jobs to execute
his model on our data collection. Our model is compared against Apache Mahout Naive Bayes. Tab. 4 also
shows the total time taken by Mahout to train the Naive Bayes Classifier. The training time on three different
methods are also represented graphically in Fig. 5. This time only includes creating feature vectors (or pre-
processing) and training the Naive Bayes Classifier; it does not include the time spent converting the data into
Hadoop’s Sequence File, which is the required file format for Mahout and also this time is measured on
8 node clusters. Compared to Mahout’s approach, our algorithm achieves a speedup of 16 to 21. Mahout
used roughly 7 MapReduce jobs to construct feature vectors and 3 jobs to train the Naive Bayes model,
which took longer.
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Figure 4: Performance metrics comparison of proposed vs. existing approaches

Table 4: Total time taken by Mahout to train NB classifier model

Data size(in GB) Proposed spark naive bayes =~ MapRed. naive bayes Mahout naive bayes
(HashTag) Training time Training time Speedup Training time Speedup
0.5 105 1276 12.2 2214 21.2

1.0 181 1774 9.8 3196 17.7
2.0 336 3124 9.3 5547 16.5

Training time of three methods
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Figure 5: Training time of three methods on three different size tweets

The training time of the proposed model on various sizes of data sets and Spark clusters is shown in
Tab. 5, where 4 different clusters are built in this work, including 2 nodes, 4 node, 6 node, and 8 node
clusters, and 0.25 GB to 2 GB Hash Set data sets are trained on these clusters. From this Tab. 5, it is
deduced that increasing the size of the clusters from 2 to 8 reduces the training time of the proposed
Spark Model (See Fig. 6).
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Table 5: Spark clusters

1841

Data Set 2 node 4 node 6 node 8 node
Size cluster (in s) cluster (in s) cluster (in s) cluster (in s)
0.25 GB 657 458 98 67
0.5 GB 1194 508 191 105
1 GB 2018 912 397 181
2 GB 3987 1504 814 336
5000
4500
’g 4000
g 3500
(5]
2 3000
£ 2500
S0 2000
=
E 1500
«
£ 1000 /
500
0
0.25 GB 0.5GB 1GB 2GB
Spark Cluster Size
1) nodes ~ ==—d nodes 6 nodes  ====8 nodes

Figure 6: Spark cluster size

6 Conclusion

This research proposes a Spark-based parallel Naive Bayes Algorithm to classify the tweets according to
sentiment polarity. The key feature of this work is to increase the speedup of the classification process by
incorporating the Spark Framework. The proposed Spark-based algorithm is compared with Map Reduce-
based and Mahout-based algorithms regarding training time and speedup. Moreover, the accuracy of the
proposed algorithms is calculated in terms of precision, recall, and F-Measure. The proposed method
yields a good accuracy score on 4 real-world Twitter Data sets. In the Future, advanced pre-processing
and feature selection/extraction techniques are used to enhance the accuracy further, and it is expanded
for multi-class sentiment analysis.
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