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Abstract: Drug-target interactions prediction (DTIP) remains an important
requirement in the field of drug discovery and human medicine. The identification
of interaction among the drug compound and target protein plays an essential pro-
cess in the drug discovery process. It is a lengthier and complex process for pre-
dicting the drug target interaction (DTI) utilizing experimental approaches. To
resolve these issues, computational intelligence based DTIP techniques were
developed to offer an efficient predictive model with low cost. The recently devel-
oped deep learning (DL) models can be employed for the design of effective pre-
dictive approaches for DTIP. With this motivation, this paper presents a new drug
target interaction prediction using optimal recurrent neural network (DTIP-
ORNN) technique. The goal of the DTIP-ORNN technique is to predict the DTIs
in a semi-supervised way, i.e., inclusion of both labelled and unlabelled instances.
Initially, the DTIP-ORNN technique performs data preparation process and also
includes class labelling process, where the target interactions from the database
are used to determine the final label of the unlabelled instances. Besides, drug-
to-drug (D-D) and target-to-target (T-T) interactions are used for the weight initia-
tion of the RNN based bidirectional long short term memory (BiLSTM) model
which is then utilized to the prediction of DTIs. Since hyperparameters signifi-
cantly affect the prediction performance of the BiLSTM technique, the Adam
optimizer is used which mainly helps to improve the DTI prediction outcomes.
In order to ensure the enhanced predictive outcomes of the DTIP-ORNN techni-
que, a series of simulations are implemented on four benchmark datasets. The
comparative result analysis shows the promising performance of the DTIP-ORNN
method on the recent approaches.

Keywords: Drug target interaction; deep learning; recurrent neural network;
parameter tuning; semi-supervised learning

1 Introduction

The evolution of new drugs is a time-consuming and cost-effective method. A per the US Food and Drug
Administrations’ (FDA) static data, the costs of novel molecular entity detection are around $1.8 billion and
it takes typically thirteen years [1]. Additionally, twenty new molecular entities are permitted by FDA
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annually. Hence, it is a major challenge in minimizing these costs in drug finding. The computation method
provides a powerful tool to solve the problem [2]. With the growth of higher-throughput models, a large
amount of drug–target interaction (DTI) information was established [3]. Some data bases have been
generated for providing relevant retrieval servers and storing interaction data. As experimental approach
for potential DTI remains a challenge, computation prediction method is required to resolve the issue. So
far, several silico models were introduced for predicting interactions between their targets and drugs. The
computation models are classified into receptor-based method, literature text mining method, and ligand-
based method [4].

In recent years, various statistical models were introduced to gather DTI data under the assumption that
similar ligand is possible to have interacted with similar protein [5]. The prediction can be performed by
incorporating biological data, like drug target protein sequence, compound-protein interaction, and
chemical structures. Machine learning (ML), a computer technique for data analysis developed to
construct prediction methods utilizing data sets, which become an essential tool of current biological
study. It became a conventional model for solving and analyzing difficulties included in drug–target
interaction prediction studies. Earlier supervised methods [6] considered the unknown DTI as negative
samples that will mainly impact the predictive performance. The major drawback of supervised learning
method is that the dataset must be hand-labelled whether by a data scientist or a machine learning engineer.

To address the problem, the concepts of Semi-Supervised Learning have been proposed. In this kind of
learning, the model is trained on integration of labelled and unlabelled information. Generally, both
combinations have smaller amount of labelled data and larger amount of unlabelled data [7]. The
fundamental process included is that firstly, the programmer cluster similar data using an unsupervised
learning method and later use the current labelled data for labelling remaining unlabelled data. According
to the complex network model, Chen et al. [8] introduced a network-related inference model, NBI, to
DTI predictions that used known DTI data. Xia et al. [9] developed a semi-supervised learning model,
NetLapRLS, to forecast drug-protein interaction through labelled and unlabelled data. Cheng et al. [10]
presented an inference model, NRWRH, by random walk on heterogeneous networks, involving drug-
drug similarity networks, known DTI system, and protein-protein similarity network. The common issues
of the above-mentioned models are that they cannot be used for the drugs without the knowledge of
target data.

This paper introduces a novel drug target interaction prediction using optimal recurrent neural network
(DTIP-ORNN) model in a semi-supervised way. The DTIP-ORNN technique involves data preparation and
class labelling process, where the target interactions from the database are used to determine the final label of
the unlabelled instances. Moreover, drug-to-drug (D-D) and target-to-target (T-T) interactions are used for
the weight initiation of the RNN based bidirectional long short term memory (BiLSTM) technique which
is then utilized to the prediction of DTIs. Furthermore, the Adam optimizer is used for the
hyperparameter tuning of the BiLSTM model. For examining the improved performance of the DTIP-
ORNN technique, a wide range of experiments were performed on four benchmark datasets.

The rest of the paper is orgnanized as follows. Section 2 offers related works and Section 3 provides
proposed model. Next, Section 4 provides experimental validation and Section 5 concludes the work.

2 Literature Review

Kumar et al. [11] presented a new approach to predict DDI based similarity of drugs involving distance-
based similarity, side effects, chemical similarity, ligand similarity, and so on., using FCN models. Xie et al.
[12] modelled the DTI prediction as binary classification method. By employing transcriptome data in the
L1000 dataset of LINCS projects, we proposed an architecture-based DL technique to predict drug target
interaction. The experiment result shows that this method discovers more reliable DTI when compared to
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other models. Feng et al. [13] contrived PADME (Protein and Drug Molecule interaction prediction), an
architecture based DNN model, to forecast real-time interaction robustness among proteins and
compounds without the need of feature engineering. PADME takes protein and compound data as input;
hence it is able to solve cold-target (and cold-drug) issues.

Lim et al. [14] presented a DL model to forecast DTI using a graph NN model. Also, present a distance-
aware graph attention process for differentiating different kinds of intermolecular interaction. Moreover,
extracts the graph feature of molecular interaction straightaway from the three-dimensional data on the
protein–ligand binding pose. Therefore, the algorithm learns key features for precise prediction of drug–
target interactions instead of memorizing some pattern of ligand molecule. Lee et al. [15] introduced a
DL based DTI predictive method to capture local residue pattern of protein participating in DTI. While
employing a CNN on raw protein sequence, we performed convolution on different lengths of amino acid
subsequence for capturing local residue pattern of generalization protein class. It is trained the model with
largescale DTI data and demonstrates the efficiency of the presented technique.

Islam et al. [16] presented DTI-SNNFRA, an architecture to predict DTI, on the basis of fuzzy-rough
approximation (FRA) and shared nearest neighbour (SNN). It applies sampling models to jointly decrease
the searching space covering the available targets, drugs, and millions of interactions amongst others. Ye
et al. [17] developed a DTI predictive method called AdvB-DTI. Regarding this, the feature of DTI
expression profiles is related to Adversarial Bayesian Personalized Ranking via matrix factorization. First,
based on the known drug-target relationship, a collection of ternary partial order relationships was
created. At last, the score of drug-target pair can be attained by the inner products of latent factor, as well
as the DTI predictions can be implemented on the basis of score ranking.

Peng et al. [18] proposed an ‘end-to-end’ learning-based architecture based heterogeneous ‘graph’
convolution network for predicting ‘DTI’ named end-to-end graph (EEG)-DTI. Assumed a heterogeneous
network comprising different kinds of biological entities (that is, protein, drug, side-effect, disease), the
presented method learns lower-dimension feature representations of targets and drugs through a graph
convolution network-based method and predicts DTI on the basis of learned features.

3 The Proposed Model

In this study, a novel DTIP-ORNN technique has been developed to predict the DTIs in a semi-
supervised way, i.e., inclusion of both labelled and unlabelled instances. The DTIP-ORNN technique
encompasses a series of subprocesses namely data preparation, class labelling, D-D and T-T based weight
initialization, BiLSTM based prediction, and Adam optimizer based hyperparameter tuning. The
application of class labelling, weight initiation, and hyperparameter tuning processes helps to
considerably improve the DTIP predictive outcomes. Fig. 1 illustrates the working process of DTIP-
ORNN technique.

3.1 Data Preparation and Class Labeling

In this study, we have employed four DTIP datasets namely Enzyme, Ion Channel, GPCR, and Nuclear
Receptor, available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. These datasets are gathered in
the KEGG BRITE, BRENDA, SuperTarget, and DrugBank. Drug chemical structure data can be obtained
in DRUG AND COMPOUND Sections in the KEGG LIGAND [19]. The chemical formation
resemblance among the components can be determined by SIMCOMP that offers a scoring value
depending upon the size of usual substructures with graph alignments. The sequence similarity among the
target can be determined using the normalized Smith–Waterman technique, depending upon the data of
amino acid order of target protein derived from KEGG GENE database. Consider a pair of proteins Ai

and Aj, the sequence similarity among them can be determined using Eq. (1):
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Sim seqðAi; AjÞ ¼ SW ðAi; AjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW ðAi; AiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW ðAj; AjÞ

p (1)

where SW(Ai, Aj) refers the score of Smith–Waterman technique.

Then, the DTIP-ORNN technique undergoes class labelling process where the target interactions that
exist in the database are used to label the unknown instances.

3.2 Design of RNN Based BiLSTM Model for Predictive Process

RNN is a neural network developed to examine the data stream interms of hidden layers. In several
application areas as text processing, speech detection, and DNA sequence, the final outcome is mainly
based on the earlier computation [20]. As the RNN has the ability to deal with sequential data, it finds
helpful for biomedical informatics domain where massive quantities of sequential data are available for
processing [21].

The simple RNN is designed by altering the simple network to hold latent data from time step to time
step. Initially, the single examination case is clearly defined, which relates to sequence of length 1:

h1 ¼ tanh ðWxhx1 þ bhÞ; (2)

pðc1jx1Þ ¼ rðWhyh1 þ byÞ: (3)

Then, the linear transformation is utilized in the hidden state processing, which is based on the input x
and also previous information which is held by the hidden state. The earlier hidden state is considered as
0 that can be comprehended by holding over no details related to the past:

h0 ¼ 0; (4)

h1 ¼ tanh ðWhhh0 þWxhx1 þ bhÞ; (5)

pðc1jx1Þ ¼ rðWhyh1 þ byÞ: (6)

In the modeling preview, the RNN is almost identical to the classical NN. However, it varies not only in
the notations and operation counts, it can be extended to various instances.

Figure 1: Working process of DTIP-ORNN technique

1678 IASC, 2023, vol.35, no.2



h0 ¼ 0; (7)

h1 ¼ tanh ðWhhh0 þWxhx1 þ bhÞ; (8)

h2 ¼ tanh ðWhhh1 þWxhx2 þ bhÞ; (9)

hT ¼ tanh ðWhhhT�1 þWxhxT þ bhÞ; (10)

pðcT jx1; . . . ; xT Þ ¼ rðWhyhT þ byÞ: (11)

This RNN method can able to process sequence of length, e.g., length of T = 1 and T = 7, since the
transition function and parameter is shared oνer time.

The network training is performed i.e., almost equal to the procedure defined above for feedforward
network. Now, all the patients correspond to sequences of examination, x1, …, xT, and label γT. They
formed computational graph by unrolling the RNN over time step, and by adding operations to calculate
the possibility of loss and malignancy. Next, attains gradient through backpropagation, and enhances
through stochastic gradient descent.

ht ¼ tanh ðWhhht�1 þWxhxt þ bhÞ; (12)

where the hidden layer is neglected, and frequently consider as h0 = 0. Fig. 2 illustrates the framework
of RNN.

At this stage, the D-D and T-T interactions are used to initialize the weights of the RNN based BiLSTM
model which helps to improve the predictive efficiency. LSTM [22] is a different version of RNN. The LSTM
is particularly supposed to avoid the long-term dependency problem. The LSTM has many gates like output
gate, input gate, forget gate, and constant memory cell. In the LSTM based sequential method, it, ft, and ot
signify the input, forget, and output gates correspondingly in Eqs. (13)–(15).

it ¼ rðWi½ht�10xt� þ biÞ (13)

ft ¼ rðWf ½ht�10xt� þ bf Þ (14)

ot ¼ rðWo½ht�10xt� þ boÞ (15)

gt ¼ tanhðWg½ht�1; xt� þ bgÞ (16)

ct ¼ ft � ct�1 þ it � gt (17)

ht ¼ ot � tanh ðctÞ (18)

Figure 2: RNN structure
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When the input order ðx1; . . . ; xtÞ is provided to LSTM, it calculates the hidden control unit
ðh1; . . . ; htÞ, the cell memory order ðc1; . . . ; ctÞ, and b represents the bias vector. At this point, �
stands for the element-wise multiplication, and tanh represents the non-linear hyperbolic functions. But,
the sequential process of LSTM only efforts on present orders from the temporal order. During the
presented method, it can be utilized bi-LSTM as encoded that not only regards the current state along
with regards the future state. It enhances the typical LSTM network by containing other layers. The
2 layers are opposite from the direction and are forecast data combined of preceding and forthcoming by
implementing forward and backward pass. In Eq. (19) is the formula of bi-LSTM.

hi ¼ ½hi!� hi
 � (19)

This point � implies the element-wise outline to chain the onward and backward pass LSTM. Fig. 3
demonstrates the structure of BiLSTM technique.

3.3 Design of Adam Optimizer

For optimally tuning the hyperparameters of the BiLSTM model, the Adam optimizer is applied. Adam
is another widely employed technique which alters the learning rate adoptively for all the parameters. Adam
is an integration of distinct gradient optimization models. It is exponentially decaying average of previous
squared gradient calculated, such as RMSprop and Adadelta, as well as Adam take an exponentially
decaying average of previous gradient that is analogous to Momentum.

Mt ¼ b1Mt�1 þ ð1� b1Þgt; (20)

Gt ¼ b2Gt�1 þ ð1� b2Þgt � gt; (21)

In which β1 and β2 represent the decay rate that is recommended to follow the default value. Mt and Gt

represent the mean and uncentered variance of historical gradient, correspondingly.

Since the decaying rate generally causes some bias problems, it is needed to perform the bias-correction
work.

M̂ ¼ Mt

1� bt1
;

Ĝt ¼ Gt

1� bt2
:

(22)

Figure 3: BiLSTM structure
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Hence, the updated values of Adam are determined by the following equation [23]:

Dht ¼ � affiffiffiffiffiffiffiffiffiffiffiffi
Ĝþ e

p M̂t: (23)

The gradient part of 4ht is determined by the following equation

g0t ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ĝt þ e
p M̂t; (24)

4ht ¼ �a 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĝt þ e

p M̂ t

 !
(25)

It is found that each operation is based on historical gradient of the existing parameter that has no
relationship to learning rate. Therefore, Adam has an effective performance with the help of learning rate
method.

4 Experimental Validation

The performance validation of the DTIP-ORNN technique takes place using four datasets, available at
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. The first enzyme dataset includes 445 instances into
drug, 664 instances into target, and 2926 instances into interactions. The second Ion channel dataset
comprises 210 instances into drug, 204 instances into target and 1467 instances into interactions. The
third GPCR dataset contains 223 instances into drug, 95 instances into target and 635 instances into
interactions. The final Nuclear Receptor dataset encompasses 54 instances into drug, 26 instances into
target and 90 instances into interactions as shown in Tab. 1 and Fig. 4. All these datasets have three
combinations namely D-D, D-T, and T-T. In this study, the D-D and D-T are used for the weight
initiation process of the BiLSTM model. The remaining D-T instances are used for the prediction process.

Tab. 2 and Fig. 5 provide a brief result analysis of the proposed DTIP-ORNN technique interms of
labeled and unlabeled instances in the test datasets. Besides, the results are reported interms of top k(%)
instances. The results show that the DTIP-ORNN technique has effectively labeled the unknown
instances based on the interactions that exist in the known instances.

For instance, on the enzyme dataset with top 10% instances, the count of unlabeled instances is
29250 and the count of labeled instances is 103. In addition, on the GPCR dataset with top 10%
instances, the count of unlabeled instances is 2050 and the count of labeled instances is 177. Similarly, on
the ION Channel dataset with top 10% instances, the count of unlabeled instances is 4130 and the count
of labeled instances is 291. Lastly, on the nuclear receptor dataset with top 10% instances, the count of
unlabeled instances is 130 and the count of labeled instances is 14.

Table 1: Dataset descriptions

Database Drug Target Interactions

Enzyme-dataset 445 664 2926

Ion channel-dataset 210 204 1467

GPCR-dataset 223 95 635

Nuclear receptor-dataset 54 26 90
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Figure 4: Dataset descriptions

Table 2: Labeled data analysis of DTIP-ORNN technique

Enzyme dataset GPCR dataset

Top k (%) Unlabelled Labelled Top k (%) Unlabelled Labelled

10 29250 103 10 2050 177

20 58500 151 20 4100 262

30 87750 191 30 6150 313

40 117000 243 40 8200 361

50 146250 270 50 10250 400

60 175500 294 60 12300 437

70 204750 331 70 14350 447

80 234000 363 80 16400 462

90 263250 399 90 18450 467

100 292500 432 100 20500 511

ION channel dataset Nuclear receptor dataset

Top k (%) Unlabelled Labelled Top k (%) Unlabelled Labelled

10 4130 291 10 130 14

20 8260 528 20 260 17

30 12390 631 30 390 20

40 16520 701 40 520 21

50 20650 798 50 650 21

60 24780 862 60 780 21

70 28910 918 70 910 21

80 33040 950 80 1040 21

90 37170 999 90 1170 21

100 41300 1033 100 1300 21
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Tab. 3 and Fig. 6 reports the performance validation of the DTIP-ORNN technique under distinct SEED
values on the applied datasets. The experimental values indicated that the DTIP-ORNN technique has
obtained effective predictive outcomes with the maximum AUC and AUPR values on the test datasets.
For instance, on the enzyme dataset with CV_SEED value of 3201, the DTIP-ORNN technique has
obtained higher AUC and AUPR values of 91.81% and 53.25% correspondingly. Meanwhile, on the
GPCR dataset with CV_SEED value of 3201, the DTIP-ORNN technique has attained increased AUC
and AUPR values of 85.20% and 61.50% correspondingly. Eventually, on the ION Channel with
CV_SEED value of 3201, the DTIP-ORNN technique has resulted in improved AUC and AUPR values
of 81.57% and 64.95% respectively. Lastly, on the Nuclear Receptor dataset with CV_SEED value of
3201, the DTIP-ORNN technique has offered higher AUC and AUPR values of 89.84% and 73.21%
respectively.

Figure 5: Labeled data analysis of DTIP-ORNN technique
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Tab. 4 provides a comparative AUC analysis of the DTIP-ORNN technique with recent approaches on
four datasets. Fig. 7 inspects the AUC analysis of the DTIP-ORNN technique on the Enzyme and GPCR
datasets. The figure reported that the DBSI technique has offered lower AUC values of 80.6% and 80.3%
on the test Enzyme and GPCR datasets respectively. Followed by, the KBMF2K, IFB Model, UDTPP,
and Nearest Neighbour techniques have resulted in moderately closer values of AUC. Though the Bi-
gram PSSM model has reached near optimal AUC of 94.80% and 88.90%, the presented DTIP-ORNN
technique has accomplished higher AUC values of 96.10% and 91.53% respectively.

Fig. 8 demonstrates the AUC analysis of the DTIP-ORNN approach on the ION channel and nuclear
receptor datasets. The figure reported that the DBSI methodology has accessible minimal AUC values of
80.30% and 75.90% on the test ION channel and nuclear receptor datasets correspondingly. Then, the
KBMF2K, IFB Model, UDTPP, and Nearest Neighbour methodologies have resulted in moderately closer
values of AUC. However, the Bi-gram PSSM system has reached to near optimal AUC of 87.20% and
86.90%, the projected DTIP-ORNN approach has accomplished maximum AUC values of 90.14% and
98.72% correspondingly.

Tab. 5 offers a comparative AUPR analysis of the DTIP-ORNN approach with existing methods on four
datasets. The results stated that the BLM technique has offered lower AUPR values of 57% and 55% on the
test Enzyme and GPCR datasets correspondingly. Afterward, the SELF-BLM, PULBLM-7, and PULBLM-
3 approaches have resulted in moderately closer values of AUPR. Then, the PULBLM-5 algorithm has
reached near optimal AUPR of 67% and 64%, the presented DTIP-ORNN methodology has
accomplished maximum AUPR values of 69.01% and 67.20% correspondingly. The table values
indicated that the BLM system has offered lesser AUPR values of 47% and 42% on the test ION channel
and nuclear receptor datasets correspondingly. Similarly, the SELF-BLM, PULBLM-7, and PULBLM-
3 techniques have resulted in moderately closer values of AUPR. Though the PULBLM-5 technique has
achieved near optimal AUPR of 61% and 59%, the projected DTIP-ORNN methodology has
accomplished superior AUPR values of 68.12% and 86.38% correspondingly.

Table 3: AUC and AUPR on different CV_SEEDs values of applied dataset

Enzyme dataset GPCR dataset

CV_SEED AUC AUPR CV_SEED AUC AUPR

3201 91.81 53.25 3201 85.20 61.50

2033 95.67 65.07 2033 83.32 65.08

5179 94.72 66.89 5179 84.88 62.06

2931 86.92 58.29 2931 86.83 59.76

9117 96.10 69.01 9117 91.53 67.20

ION channel dataset Nuclear receptor dataset

CV_SEED AUC AUPR CV_SEED AUC AUPR

3201 81.57 64.95 3201 89.84 73.21

2033 86.21 59.46 2033 92.54 75.24

5179 89.65 61.52 5179 97.49 81.28

2931 81.88 65.91 2931 98.07 86.38

9117 90.14 68.12 9117 98.72 84.57

1684 IASC, 2023, vol.35, no.2



Table 4: AUC analysis of DTIP-ORNN technique with existing methods

Methods Enzyme GPCR ION channel Nuclear receptor

UDTPP 86.00 87.60 77.50 80.00

Bi-gram PSSM 94.80 88.90 87.20 86.90

Nearest neighbour 89.80 88.90 85.20 82.00

IFB Model 84.50 81.20 73.10 83.00

KBMF2K 83.20 85.70 79.90 82.40

DBSI 80.60 80.30 80.30 75.90

DTIP-ORNN 96.10 91.53 90.14 98.72

Figure 6: AUC and AUPR analysis of DTIP-ORNN technique on different CV_SEEDs value
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In order to further ensure the predictive outcomes of the DTIP-ORNN technique, a validation process of
the predicted interactions takes place with four databases namely chembl (C), Drug bank (D), Kegg (K), and
Metador (M). The interaction confidence obtained by the DTIP-ORNN technique with the matching
databases is listed out in Tab. 6 [24,25].

Figure 7: AUC analysis of DTIP-ORNN technique on enzyme and GPCR datasets

Figure 8: AUC analysis of DTIP-ORNN technique on ION channel and nuclear receptor datasets

Table 5: AUPR analysis of DTIP-ORNN technique with existing methods

Methods Enzyme GPCR ION channel Nuclear receptor

BLM 57.00 55.00 47.00 42.00

SELF-BLM 63.00 60.00 51.00 45.00

PULBLM-3 67.00 64.00 60.00 58.00

PULBLM-5 67.00 64.00 61.00 59.00

PULBLM-7 66.00 65.00 63.00 59.00

DTIP-ORNN 69.01 67.20 68.12 86.38
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The drug id, target id, predicted interaction confidence, and matching database details are provided. On
the enzyme dataset, the interaction confidence of 0.9988 has been obtained for the drug id D00097 and target
id hsa5743, which is matched with the D and M database. By looking into the above mentioned tables and
figures, it is ensured that the DTIP-ORNN technique has accomplished effective predictive outcomes over
the other approaches.

5 Conclusion

This paper has developed a novel DTIP-ORNN method for predicting the DTIs in a semi-supervised
way, i.e., inclusion of both labelled and unlabelled instances. The DTIP-ORNN technique encompasses a
series of subprocesses namely data preparation, class labelling, D-D and T-T based weight initialization,
BiLSTM based prediction, and Adam optimizer based hyperparameter tuning. The application of class
labelling, weight initiation, and hyperparameter tuning processes helps to considerably improve the DTIP
predictive outcomes. For examining the improved performance of the DTIP-ORNN technique, a wide

Table 6: Results of proposed method on predicted drug-target interactions of applied dataset

Enzyme dataset GPCR dataset

Drug ID Target ID Inter. Conf. Database Drug ID Target ID Inter. Conf. Database

D00097 hsa5743 0.9988 D and M D00283 hsa1131 0.6928 D

D00569 hsa5742 0.9322 D D00283 hsa1132 0.6399 D

D00418 hsa5742 0.9322 D D00283 hsa1133 0.6692 D

D00448 hsa5743 0.8820 D and C D00528 hsa1128 0.6423 M

D00448 hsa5742 0.8185 D and C D00437 hsa1128 0.6319 M

D02561 hsa1565 0.6607 M D00528 hsa1129 0.6141 M

D00512 hsa1565 0.6607 M D00726 hsa1129 0.6046 M

D00279 hsa1565 0.6581 M D00437 hsa1129 0.6963 M

D00043 hsa1636 0.6671 M D01603 hsa154 0.7365 D

D00279 hsa1557 0.6437 M D00283 hsa1814 0.6315 D, C, and M

ION channel dataset Nuclear receptor dataset

Drug ID Target ID Inter. Conf. Database Drug ID Target ID Inter. Conf. Database

D00499 hsa1139 0.6066 D D00554 hsa2100 0.7489 K

D03365 hsa1137 0.5618 D and C D00312 hsa2100 0.8485 K

D03365 hsa1138 0.7925 D D00067 hsa2100 0.6484 K

D03365 hsa1139 0.8753 D D00898 hsa2100 0.6470 K

D02207 hsa1145 0.7048 K D00962 hsa2100 0.8484 K

D02173 hsa1145 0.6891 D D00443 hsa5241 0.6477 D

D00611 hsa1145 0.8891 K D00443 hsa367 0.8352 D

D02356 hsa1134 0.6807 M D00586 hsa2099 0.6968 M

D03742 hsa1137 0.8711 D D00951 hsa2099 0.7947 D

D02356 hsa57053 0.6619 M D00954 hsa367 0.8925 D
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range of experiments are performed on four benchmark datasets. The comparative result analysis shows the
promising performance of the DTIP-ORNN technique over the recent approaches. Therefore, the DTIP-
ORNN technique can appear as an effective tool for DTIP. In future, fusion of DL models can be
designed to boost the predictive outcomes of the DTIP-ORNN technique.
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