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Abstract: The recent trends in Industry 4.0 and Internet of Things have encour-
aged many factory managers to improve inspection processes to achieve automa-
tion and high detection rates. However, the corresponding cost results of sample
tests are still used for quality control. A low-cost automated optical inspection
system that can be integrated with production lines to fully inspect products with-
out adjustments is introduced herein. The corresponding mechanism design
enables each product to maintain a fixed position and orientation during inspec-
tion to accelerate the inspection process. The proposed system combines image
recognition and deep learning to measure the dimensions of the thread and iden-
tify its defects within 20 s, which is lower than the production-line productivity
per 30 s. In addition, the system is designed to be used for monitoring production
lines and equipment status. The dimensional tolerance of the proposed system
reaches 0.012 mm, and a 100% accuracy is achieved in terms of the defect reso-
lution. In addition, an attention-based visualization approach is utilized to verify
the rationale for the use of the convolutional neural network model and identify
the location of thread defects.

Keywords: Automated optical inspection; deep learning; real-time inspection;
attention

1 Introduction

As the basis of Industry 4.0, automated inspection is widely performed in various manufacturing
applications to ensure consistent product quality [1–7]. However, manual and sampling inspections
remain prevalent in quality control for reducing manufacturing costs; additionally, monitoring systems to
reduce losses caused by machine tool abnormalities are insufficient. In previous studies, the importance
of system integration and costs are not considered in the system design. Consequently, a low-cost
automated optical inspection (AOI) system that integrates a production line to inspect products
completely without adjustment is required. In addition, the results of automated full inspection or product
monitoring can be used to directly diagnose the tool wear status of machine tools directly [8–10]. This
provides a low-cost monitoring function for ensuring product quality without installing expensive
monitoring equipment. This study focuses on the development of an AOI system using deep learning for
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the real-time inspection of screws. An automated mechanism was designed, and inspection image
recognition was used to identify the size and thread defects in screws (as shown in Figs. 1 and 2),
thereby ensuring consistent product quality.

In automation, the mode of transportation affects the speed and efficiency of inspection. Currently,
production line transportation is typically performed using robot manipulators [11–14]. Robot
manipulators can improve the adjustability of the process; however, calibration for different tasks is time
consuming, particularly in collaborative robotic systems. Another typical transportation method involves
automatic guided vehicles (AGVs) [15–17]. AGVs with suitable path-planning algorithms used in
intelligent workshops render material transportation more efficient. However, AGVs are more suitable for
transporting bulk or large materials. Moreover, companies with low capital cannot afford the high costs of
robots and land. Because the conveyor is suitable for transporting unconfined materials [18,19] and does
not require calibration, it is typically used in workshops. To establish an inspection system rapidly, a
conveyor was adopted in this study. In addition, image histogram equalization and Canny edge detection
are typically used to improve the detection accuracy of image recognition systems for determining the
dimensions of an object [20–22]. Recently, detection consistency has been improved using deep learning
methods, particularly convolutional neural networks (CNNs) [23–28]. Among CNNs, VGG16 is trained
using one million images, which contain 1000 categories that encompass almost all objects in daily life
[29]. The complex structure and significant amount of data of VGG16 endow it with high feature
extraction ability. In this study, VGG16 with transfer learning was used to establish the proposed defect
detection system. To verify the detection results, two visualization methods with attention mapping,
gradient-weighted class activation mapping (Grad-CAM) [30,31], and Grad-CAM++ [32,33] were used to

Figure 1: Technical drawing of a screw

Figure 2: Detection results of (a) normal (qualified) and (b) defective thread
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generate attention maps. Unlike previous visualization methods [34–36], Grad-CAM does not require model
structure changes to provide effective explanations. The areas of interest of the model are denoted in the
attention maps with weights. Grad-CAM++ improves the weight wc

k , which considers the pixel location.
In this study, actual differences caused by pixel location abnormalities are compared. Attention maps are
used to denote the locations of defects that assist in the reverification process.

System integration is a complex process for achieving intelligent manufacturing, particularly for
workshops with low capital. To reduce production costs, the equipment used often spans multiple
generations and is sourced from different suppliers, rendering system integration difficult. Therefore, an
add-on quality control system is introduced to provide the maximum production benefits. The design of
the mechanism allows the AOI system to be connected to the production line without additional
calibration. In addition, the transfer learning method for the defect detection model can reduce the
number of computer calculations required. The full evaluation of the dimension and the defect detection
results can be recorded via real-time full inspection; as such, condition monitoring without requiring
numerous sensors in the equipment is achieved. Finally, the results of the attention map verify the
rationale for using the CNN model and denoting the location of thread defects, which improve the
credibility of the model.

The remainder of this paper is organized as follows: Section 2 introduces the system mechanism and
hardware specifications. The established deep learning defect detection method is introduced in Section 3.
Section 4 presents the corresponding experimental results and discussion. Finally, the conclusions are
presented in Section 5.

2 Mechanism Design

Fig. 3 shows the mechanism of the automated real-time inspection system. As shown in Fig. 3, the
proposed system includes an input conveyor, position grooves, an inspection area, and a classification
region. To achieve real-time inspection, two conveyors are used to integrate the proposed system with the
machining process. Screw positioning, image capture, and recognition are achieved for each screw during
movement. The proposed system can be placed directly at the end of the production line without adjustment.

The feeding conveyor transports the screws from the machining process to the positioning mechanism.
The feeding conveyor belt, which is flat and high speed, is used to move the workpieces. To ensure stability

Figure 3: Mechanism of automated real-time inspection

IASC, 2023, vol.35, no.2 2089



during inspection, a double-sided toothed belt is used in the detection conveyor to fix the screw in place,
thereby preventing slippage between the belt and pulley. In addition, a pad is placed in the middle of the
detection conveyor to roll screws over this area; thus, the upper camera can capture multiple images with
different thread angles to ensure the integrity of detection. The mechanism for rolling the screw as it
passes through the upper camera is illustrated in Fig. 4.

In this study, a mechanism that does not require additional power is designed to fix the direction and
position of the screw. The mechanism comprises a landslide and an aluminum block. The shape of the
landslide is similar to that of a funnel, which fixes the screw to the positioning block in a particular
direction. Subsequently, the weight of the aluminum block enables the screw to be turned over and
placed securely on the detection conveyor when it enters the aluminum block. After the screw departs
from the aluminum block, it automatically returns to its original position. The positioning process can be
completed without additional power sources or sensors.

The light source directly affects the image quality. In this study, four LED strips were arranged in a
square to achieve an effect similar to that of a ring light. In the classification area, four servomotors were
used to control the four barriers. The classification area was classified into one area for qualified screws
and three areas for unqualified screws, namely those with a large diameter, a small diameter, or thread
defects. After an object is inspected, a barrier opens based on its classification, and the other barriers
close, forming a slope that enables the screws to enter the appropriate area. The system is integrated with
Arduino Uno programmed using Python and C#. The Arduino Uno is matched with L298N to operate
the motor at the required speed. To facilitate operation, the camera, motor, and light source are integrated
with the C# user interface through the Arduino Uno. In addition, the interface communicates with Python
to update the dimension measurements and defect detection results. The proposed system combines image
recognition and deep learning to measure the dimensions of the thread and identify its defects within
20 s, which is lower than the production-line productivity per 30 s. Thus, the AOI system can achieve
real-time quality control.

3 Defect Detection Using Deep Learning with Attention Map

The proposed defect-detection method using a CNN with an attention map is introduced in this section.
Grad-CAM++ was adopted to create the defect region for monitoring and reverification. First, we used
discontinuous edge images to determine the dimensions of the recognized objects. After image
preprocessing, the Sobel operator and Canny edge detection were used to identify boundaries by
adjusting the threshold.

Figure 4: Mechanism of rolling the screw as it passes through upper camera
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3.1 CNN

Neural networks can mitigate fluctuations in inspection results caused by the manual inspection of
abundant data; meanwhile, extensive calculations, which are performed via mathematical or
computational models that mimic the structure of biological neural networks, are performed in machine
learning and cognitive science to approximate neurological functions. Neural networks are adaptive
systems, and the most typically used type of deep learning method in image processing is CNNs [23–28].
CNNs are advantageous owing to their capability to automatically extract features from images. CNNs
comprise three layers, i.e., convolutional, pooling, and fully connected layers, as illustrated in the
architecture shown in Fig. 5.

3.1.1 Convolutional Layer
The convolutional layer contains a filter matrix for calculating the output neurons via local input weights

and the connected region. In a grayscale image, the convolutional operation is expressed as follows:

ðI � KÞij ¼
Xm

m¼1

Xn

n¼1
Km;nIiþm;jþn; (1)

where I � K denotes the convolutional operations of the images and kernels;m and n denote the pixels in the
m-th row and nth column, respectively. Subsequently, after convolution, a nonlinear activation function such
as a sigmoid or rectified linear unit is used to determine the output (feature map), as follows:

Cp;q
m;n ¼ ReLUð

Xm

m¼1

Xn

n¼1
Im�u;n�vK

p;q
u;v þ bp;qÞ (2)

3.1.2 Pooling Layer
The pooling layer is used to reduce the size of the input image. In the pooling process, the convolutional

feature matrix is partitioned into regions, and the maximum or average values of each region are obtained.
The pooling operation is expressed as

Pp;q
m;n ¼ maxðCp;q

m;nÞ (3)

Extracting representative features from the pooling layer significantly reduces the number of parameters.

Figure 5: Convolutional neural network structure
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3.1.3 Fully Connected Layer
The fully connected layer calculates the classification score and determines the final category. The

operation of the j-th neuron in the fully connected layer L is expressed as

yLj ¼ f
Xi

i¼1
xL�1
i wL

ij þ bLj

� �
; (4)

where xL�1
i denotes the input of the j-th neuron, wl

ij the weight of the input x
L�1
i , bLj the bias, f the activation

function, and yLj the corresponding output.

3.2 Attention-based CNN

In numerous deep-learning models, multilayer networks are used to automatically select features to
achieve high accuracy. In most CNNs, global average pooling (GAP) is used in class activation mapping
(CAM) to replace the fully connected layer, enabling the model to support inputs of any size and retain
abundant information after multiple convolutions and pooling. Recently, the global average of the
gradient is used in Grad-CAM to calculate the weights from the feature maps to overcome the limitations
of CAM [30,31]. In Grad-CAM, the weight of the kth feature map of category c is defined as follows:

wc
k ¼

1

Z

X
i

X
j

@yc

@Ak
ij

; (5)

where Z denotes the number of pixels in the feature map, yc the score of the corresponding category c, and Ak
ij

the pixel value at position (i, j) in the kth feature map. After obtaining the category weights of all feature
maps, the weighted sum is calculated to obtain the attention map (or heat map). The attention map can be
represented as

Lc ¼ ReLUð
X

k
wc
kA

kÞ (6)

The attention map obtained using Grad-CAM increases the transparency of the CNN model. Although
Grad-CAM provides the visualization of CNN for classification, it cannot accurately locate objects when the
input images contain multiple objects in the same class [32,33]. Therefore, to identify object locations more
accurately, the weight formulation connected to the feature map should be modified. The weights wc

k
independent of position (i, j) in Grad-CAM can be represented as shown in Eq. (5). In Grad-CAM, every
sample is composed of multiple input image categories; therefore, its formulation can be used to identify
the target location without the position (i, j). However, the pixel position is critical for an input image
containing multiple objects in the same class. In Grad-CAM++, the pixel locations are considered in the
weights wc

k [32,33], and the calculation formula is

wc
k ¼

X
i

X
j
akcij � ReLU

@yc

@Ak
ij

 !
; (7)

where yc denotes the score of class c, and akcij denotes the gradient weights. akcij can be obtained by partially
differentiating yc and Ak

ij twice, and akcij can be represented as

akcij ¼
@2yc

@Ak
ijð Þ2

2 @2yc

@Ak
ijð Þ2 þ

P
a

P
b A

k
ab

@3yc

@Ak
ijð Þ3

� � ; (8)

where (i, j) and (a, b) denote the same iterators in the kth feature map, and Z�1 is the solution for akcij in Grad-
CAM++. When akcij ¼ Z�1, Grad-CAM++ reduces to Grad-CAM, i.e., Grad-CAM++ provides a general
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formulation for obtaining the attention map of the input image. Grad-CAM and Grad-CAM++ exhibit the
same structure despite their various differences, as shown in Fig. 6.

3.3 Defect Detection System

Fig. 7 shows the system flowchart of the proposed AOI defect detection. The screw is sent from the
machine tool to the positioning mechanism by the feeding conveyor (shown in Fig. 3) and then placed on
the detection conveyor. When the screw enters the classification area, the corresponding images from
three perspectives are captured, and then measurement and defect detection are performed. The computer
completes the image recognition and then sends the results to the classification area, where the screw is
sorted. After the screw is sorted, the results are shown in the user interface (Fig. 8) and the webpage for
monitoring (Fig. 9). The detection results and thread defects are updated at the interface after each
inspection, and the images are updated simultaneously. Dimension measurements can assist in evaluating
the tool-wear condition of the machine tool. The functions of real-time monitoring, alarm, and suspension
systems are provided. The user interface shown in Fig. 8 presents the dimension measurements and
defect detection results. In the defect detection results, the output value of a qualified thread is 1, and the
output value of a failed thread is 0 (as shown in Fig. 9). The red lines indicate the range of acceptable
tolerance. Both the interface and webpage can assist in determining whether the machine is operating
abnormally.

4 Experimental Results of Defect Detection

Herein, we consider a scenario in which the acquisition and labeling of numerous images is challenging.
VGG16, which exhibits high feature extraction capabilities, was utilized and fine-tuned via transfer learning
[29], and the corresponding structure is shown in Fig. 10. Because the number of defect samples is typically
small, VGG16 with parameter transfer learning for defect detection was employed in this study.
VGG16 comprises multiple convolutional layers, which endows it with better feature-extraction

Figure 6: Differences between Grad-CAM and Grad-CAM++
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capabilities compared with ordinary neural networks. VGG16 uses millions of images to classify thousands
of categories through 13 convolutional layers and emphasizes the use of numerous 3 × 3 filters in its
convolutional layers. When larger filters are used instead of smaller filters, the receptive field is
improved, which increases the amount of information obtained. In this study, the output layer of
VGG16 was rewritten to classify the two categories regardless of whether a thread contained a defect.

Figure 7: System flowchart for inspection detection

Figure 8: User interface of system
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Figure 9: Webpage for monitoring machine tools

Figure 10: VGG16 structure [29]
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In this study, an insufficient image was augmented via the translation, rotation, and flipping of the
screw. The model was trained for 1000 generations, and the training data included 242 and
228 qualified and defective components. Furthermore, the model achieved 100% accuracy. The
laptop computer used in the proposed system comprised an Intel Core i5-5200U processor, a
GeForce 930M graphics processing unit, and 8 GB of random-access memory. Test data were
obtained from the actual machining results, including those of 20 qualified and 20 defective
components. To avoid data imbalance and insufficient data in the training model, only 40 screws
were used for the test data. The confusion matrix presented in Fig. 11 indicates that 100% accuracy
was achieved after the actual testing of the system. The corresponding accuracy, precision, and
recall rates were all 100%. These results demonstrate the effectiveness of the proposed approach.

As indicated above, the established model achieved high accuracy despite the low amount of
training data used. To ensure that the model accurately identifies defects and facilitates in
reverification, Grad-CAM methods were utilized to visualize the defect. The corresponding weight
attention maps for defect detection calculated using Grad-CAM and Grad-CAM++ are presented in
Figs. 12 and 13, respectively. As shown by the heat map in Fig. 12, the attention map prevents the
defect region even when the classification accuracy is 100%, i.e., the attention map does not directly
indicate defects by selecting the defect area. All test data exhibited the same phenomena. Therefore,
Grad-CAM++ was adopted to improve the localization of the defects. The corresponding attention
map obtained using Grad-CAM++ is shown in Fig. 13, where the defect region is denoted. Thus, the
judgment of the model is reasonable. Based on this test, the effects of the weights wc

k considering the
pixel location can be observed. Grad-CAM++ not only confirms the rationality of the model, but also
provides indicators for the entire thread.

Figure 11: Confusion matrix of inspection results based on test data
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5 Conclusions

The proposed system was operated at minimal cost and integrated into a production line without the
adjustment of existing processes. Using a five-megapixel camera, a dimensional tolerance of 0.012 mm
was obtained, and a defect detection accuracy of 100% was achieved using a limited number of samples.
Furthermore, the user interface and webpage can be used to monitor the production lines and equipment
status. Additionally, the developed model was visualized using Grad-CAM and Grad-CAM++, and the
results of the two methods were compared. Grad-CAM++ performed more effectively, provided a
reasonable explanation for each classification result, and accurately located the thread defects. The
proposed system resulted in a more complete process and increased consumer confidence as it was able
to perform quality control within 20 s.
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Figure 13: Defective thread after performing Grad-CAM++

Figure 12: Defective thread after performing Grad-CAM
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