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Abstract: Recent developments in computer vision applications have enabled
detection of significant visual objects in video streams. Studies quoted in literature
have detected objects from video streams using Spatiotemporal Particle Swarm
Optimization (SPSOM) and Incremental Deep Convolution Neural Networks
(IDCNN) for detecting multiple objects. However, the study considered optical
flows resulting in assessing motion contrasts. Existing methods have issue with
accuracy and error rates in motion contrast detection. Hence, the overall object
detection performance is reduced significantly. Thus, consideration of object
motions in videos efficiently is a critical issue to be solved. To overcome the
above mentioned problems, this research work proposes a method involving
ensemble approaches to and detect objects efficiently from video streams. This
work uses a system modeled on swarm optimization and ensemble learning called
Spatiotemporal Glowworm Swarm Optimization Model (SGSOM) for detecting
multiple significant objects. A steady quality in motion contrasts is maintained
in this work by using Chebyshev distance matrix. The proposed system achieves
global optimization in its multiple object detection by exploiting spatial/temporal
cues and local constraints. Its experimental results show that the proposed system
scores 4.8% in Mean Absolute Error (MAE) while achieving 86% in accuracy,
81.5% in precision, 85% in recall and 81.6% in F-measure and thus proving its
utility in detecting multiple objects.

Keywords: Multiple significant objects; ensemble based learning; modified
pooling layer based convolutional neural network; spatiotemporal glowworm
swarm optimization model

1 Introduction

Studies indicate recent surges in Significant Object Detections (SOD) [1] which is natural to humans
who can easily identify visually distinctive areas in images. They identify based on dissimilar areas when
compared with their surrounding regions [2–4] or they pay intrinsic attention to such differing image
areas called SODs. Further, the rapid evolution of technologies has made it possible to trace significant
image regions in digital images which has also paved the way for applications like object detection/
recognition, compression of video frames/images, video tracing and healthcare image segmentations [5].
Studies have also demonstrated the possibility of object segmentations or SODs or motion tracings from
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videos [6,7]. Studies have also proposed solutions for discriminating significant objects in videos [8,9] by
applying eye fixation tasks. Though they managed to distinguish objects as non-significant or significant,
they failed to capture required features due to several factors.

Significant video regions were detection in [10]. The study presented a unified approach in constructing
graphs for smoothing significant spatial-temporal regions for improving performances in large margins. A
quick detection of significant video objects using Convolution Neural Networks (CNN) was presented in [11].
The study had two modules with one static and one dynamic model for capturing spatial and sequential
scenes. The study in [12] projected a framework for enhancing model’s detection results by including
spatiotemporal refinements, localized estimations and significant updates. The scheme was tested on 4 video
dataset with good performances in terms of detections. The only drawback was in its obtained lesser precision.

KL divergence was used in [13] to detect video objects of significance efficiently. Scanty coding was
used in the study to update pre attentive patch sets for identifying significant objects and for
discriminations amongst them. Their scheme was found to be robust and achieved high precision value in
experiments. Random Fields figured in the technique Spatio-Temporal Conditional Random Field
(STCRF) proposed in [14]. The study found spatial relationships between video regions based on their
temporal consistencies and proved its utility when tested on publicly available datasets.

Deep Neural Networks (DNNs) are being used in recent times to extract deep visual features of videos/
images directly. These networks achieve these features from raw videos or images due to their higher
discriminatory power and thus are modeled for systems detecting significant objects in videos. Most
systems using DNNs established their supremacy over hand-crafted feature models in experimentations.
One disadvantage found was in the accuracy of object detections while extracting deep features from
independent frames on a frame by frame basis and specifically for dynamically moving objects.

Detecting Objects of Interest (OOI) in videos is more challenging than object detections in images. This
is mainly because the motion blurs and ambiguities of moving objects. The complexity increases when
objects are obstructed for a specific period of time while viewing them. Traditional object detection
techniques use two frame detections where image frames have cluttered backgrounds. Hence, this study
involves an ensemble approaches to detect multiple SODs efficiently from video streams.

The main aim of this research work is accurate motion contrast detection. There is numerous research
and methodologies introduced but the analysis of performance is not ensured significantly. The existing
approaches have drawback with accuracy and error rates. To overcome the abovementioned issues, in this
research, Spatiotemporal Glowworm Swarm Optimization Model (SGSOM) is proposed to improve the
overall detection performance. The main contribution of this research is detecting multiple significant
objects. The proposed method is used to provide better results using effective approaches.

The rest of the paper is organized as follows: a brief review of some of the literature works in detecting
multiple significant objects is presented in Section 2. The proposed methodology for accurate motion contrast
detection is detailed in Section 3. The experimental results and performance analysis discussion is provided
in Section 4. Finally, the conclusions are summed up in Section 5.

2 Related Work

The Significant objects were detected using visible background by the study in [15]. The study used
Scale-Invariant Feature Transforms (SIFTS) for integrating long-range frames from multiple flow pairs. A
bidirectional consistent obtained accurate temporal backgrounds. A bi-graph-based structure used these
spatiotemporal backgrounds for computing significance of appearances and motions in information videos.

SODs in videos were also detected while detecting SODs near the border of frames, the detections may
be incomplete. This study overcame this problem by joining virtual borders to detect SODs efficiently and
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accurately. The study in proposed Deeply Supervised Significant (DSS) object detections for improving SOD
accuracy by introducing short connections in Holisitcally-nested Edge Detector (HED) architecture for
skipping layer structures.

The study in detected SODs using a new method Spatiotemporal Constrained Optimization Model
(SCOM). The work maximized energy functions for producing optimal significance maps for their
processes. However, it performed better for single SOD. Spatiotemporal Particle Swarm Optimization
Model (SPSOM) with IDL (Incremental Deep Learning) was proposed in for detecting multiple SODs.
Incremental Deep Convolution Neural Network (IDCNN) subtracted foregrounds and backgrounds in
images. Their proposed SPSOM identified globally optimized significant objects by constraining the
object’s spatial/temporal data. Their scheme achieved higher and accurate detections.

High-accuracy Motion Detection (MD) scheme based on a look-up table (LUT) is proposed and
experimentally demonstrated in an Optical Camera Communication (OCC) system. The LUT consists of
predefined motions and strings that represent the predefined motions. The predefined motions include
straight lines, polylines, circles, and number shapes. At the transmitter, the data with on-off keying
(OOK) format is modulated on an 8 × 8 Light-Emitting Diode (LED) array. The motion is generated by
the user’s finger in the free space link. At the receiver, the motion and data are captured by the mobile
phone front camera. The captured motion is expressed as a string indicating directions of motion, then it
is matched as a predefined motion in LUT by calculating the Levenshtein Distance (LD) and Modified
Jaccard Coefficient (MJC). Using the proposed scheme, four types of motions are recognized accurately
and data transmission is achieved simultaneously. Also, 1760 motion samples from 4 users are
investigated over the free space transmission. The experimental results show that the accuracy of the
proposed MD scheme can reach 98% at the distance without the loss of finger centroids.

Wang et al (2019) presented novel visual system model for small target motion detection, which is
composed of four subsystems-ommatidia, motion pathway, contrast pathway, and mushroom body.
Compared with the existing small target motion detection models, the additional contrast pathway
extracts directional contrast from luminance signals to eliminate false positive background motion. The
directional contrast and the extracted motion information by the motion pathway are integrated into the
mushroom body for small target discrimination. Extensive experiments showed the significant and
consistent improvements of the proposed visual system model over the existing models against fake features.

3 SGSOM Methodology

The proposed SGSOM system analyzes consecutive frame batches for detecting multiple SODs. In the
SGSOM system foreground and background image subtractions are performed by an ensemble based
learning which includes SVM (Support Vector Machine), MPCNN (Modified Pooling layer based CNN)
and KNN (K-Nearest Neighbours). The proposed system is depicted as Fig. 1.

3.1 System’s Video Inputs

The proposed system aims to identify SODs in video frames depicted by Ft, t being the index of the
frame. Assuming, regions with significant objects or backgrounds exist and analysis of spatial and
temporal spaces in a video sequence help in the derivation of significant seeds in detected regions for
achieving global optimization for SODs. The model segments regions using SLIC for generating super-
pixels (Approximately 300 in number) in each video frame. Thus, SOD can be treated as a labeling
problem of si (super-pixel) within a frame in the interval [0,1].

This work uses E(S), an energy constrained function for solving the super-pixel issue. If the set of super-
pixels is denoted by R = {r1, r2, . . . , ri } in a spatial feature space S = {s1, s2, . . . , sN }, foregrounds are
denoted by Φ, Γ depicts backgrounds and Ψ implies smoothness, then labels reliability can be found
using Eq. (1)
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Figure 1: SGSOM framework for detecting multiple SODs

E Sð Þ ¼
XN
i¼1

�ðsiÞ þ
XN
i¼1

�ðsiÞ þ
X
i;j2N

� si; sj
� �þ k (1)

where, k is the constraint vector of the energy minimizing function and N stands for spatially connected
super-pixels pairs in the neighborhood within the frame Ft.

3.2 Ensemble Learning of the Proposed System

Ensemble learning is used in the study to subtract foregrounds and backgrounds in images by involving
SVM, MPCNN and KNN.

SVM: SVM separates multiple class instances by generating an optimal hyper-plane and maximizes its
distance from class instances within a search space. This linear separation using margin maximization of
SVMs is depicted in Fig. 2.

This optimal hyper-plane can be expressed as a function of Support Vectors (Nearest Instances). If the
video dataset is depicted as D with n frames the function can be represented as Eq. (2):

D ¼ xi; yið ÞjxieRp �1; 1f gwith i ¼ 1; ::; nf g (2)

where yi-foreground/background classes corresponding to an entry point xi (input frames), p-number of
feature vectors of x. Eq. (3) depicts SVM’s hyper-plane formation

w � x� b ¼ 0 (3)

which is a dot product of a normal vector (w) a vector x in the hyper-plane, for separating data linearly into
two hyper-planes. A hyperplane in an n-dimensional Euclidean space is a flat, n − 1 dimensional subset of
that space that divides the space into two disconnected parts. To define an optimal hyperplane it needs to
maximize the width of the margin (w). If the data is linearly separable, there is a unique global minimum
value. The region without data points between the planes is called the margin. Both Eqs. (4) and (5)
define hyper-planes:
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w � x� b ¼ 1 (4)

w � x� b ¼ �1 (5)

with 2/||w||-distance between hyper-planes. A constraint defined in Eq. (6) avoids data points in the
margin.

yi w � xi � bð Þ � 1 i ¼ 1; . . . ; n (6)

Thus, a strong margin is formed when ½ ||w||2 gets reduced to the described constraint. Classifications
may have errors and can be avoided by modifying the constraint as depicted in Eq. (7)

yi w � xi � bð Þ � 1� ni; i ¼ 1; ::n and ni � 0 (7)

The resulting OF (Objective Function) is expressed in Eq. (8)

OF ¼ min
w;n;b

1

2
jjwjj2 þ C

Xn
i¼1

ni

( )
(8)

MPCNN: This work uses MPCNN to subtract foregrounds and backgrounds in frames. CNNs are
generally tri-layered and operate with convolutional, sub-sampling and fully connected layers Video
frames are the input and output layer with intermediate hidden layers and is depicted in Fig. 3.

This work’s MPCNN uses 8 layers with 3 sub-sampling layers, 3 CNN layers and 2 fully connected
layers. CNNs enclose local pooling for improving computational efficiency and robustness when inputs
vary. Local/average/max pooling methods fail to minimize loss of information. This work uses a convex
weight based pooling layer to overcome this issue. Video frames form the input for convolution layer
which has 16 kernels of 5 � 5 size. Each input is independently convolved with the kernel for n output
frames. CNN’s first two layers is of size 5 � 5 while the last layer is 1 � 1 and n filters in each
convolution layer are convolved with input for generating maps n∗ (specific frames) which is equal to the
filters applied in convolution operations.

Figure 2: SVM linear separation using margin maximization
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The lth output of the convolution layer denoted as C lð Þ
j is made of maps computed using Eq. (9)

C lð Þ
i ¼ B lð Þ

i þ
Xa l�1ð Þ
i

j¼1

K l�1ð Þ
i;j �C lð Þ

j (9)

where, B lð Þ
i - Bias matrix, K l�1ð Þ

i;j -convolution filter which connects jth feature with the ith frame on a one-to-
one basis within the same layer. C lð Þ

i -output layer consists with feature maps, C l�1ð Þ
i -1st convolution layer in

the input space or C 0ð Þ
i ¼ Xi; The activation function applied as a non-linear transformation of the outputs of

the convolution layer on the kernel generated frame map can be expressed as Eq. (10)

Y lð Þ
i ¼ Y C lð Þ

i

� �
(10)

where, Y lð Þ
i -activation function output and C lð Þ

i -input. The activation functions used are sigmoid functions,

tan h, and ReLUs (Rectified Linear Units) denoted as Y lð Þ
i ¼ maxð0; Y lð Þ

i Þ. These functions are used in
deep learning models for reducing non-linear effects and interactions. The ReLUs convert outputs to 0 on
negative inputs, while returning same input value when positive. These activation functions train faster
due to error derivatives which are minimized in the saturating region and weight updates disappear also
called the disappearing gradient problem.

Sub-Sampling: This layer comes after the convolution layer where this system’s CNN has 3 sub-
sampling layers. Initial sub-sampling has a size of 2 � 2 while the last sub-sampling has 1 � 1 size.
Sub-sampling reduces dimensionality of frame maps extracted from convolution layer. The outputs of
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Figure 3: MPCNN
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convolution layer have 120 frame maps with 1 � 1 size. A part of global pooling layer is an important aspect
in deep CNNs. A Convex weight based pooling layer in the proposed research work characterizes the pooling
functionality. Local pooling operates on the cth channel map of an input tensor X ∈ RH × W × C can be
depicted by Eq. (11)

Yc
q ¼

X
p2Rq

wc
pX

c
p (11)

where, fwc
pgP2Rq

� convex weight and p, q-2-D positions on the input and output maps.

Fully Connected Layer: The proposed work used Softmax activation function depicted in Eq. (12) for
outputs:

Y lð Þ
i ¼ f z lð Þ

i

� �
; where z lð Þ

i ¼
Xm l�1ð Þ
i

i¼1

wHy
l�1ð Þ
i (12)

where wH -weight value to be tuned by the fully connected layer for representing classes and f-transfer
function representing non-linearity.

KNN: Video frames form the inputs for classification of backgrounds and foregrounds by KNN
clustering as it classifies based on neighbor similarity. K value in this work is the frames used in
classification. Euclidean Distances can be found using Eq. (13)

ED x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
j¼1

Xi � Yið Þ2
vuut (13)

where, X-test samples and = (x1, x2, x3, · · · xn) and Y-database samples and = (y1, y2, y3, · · · yn)

For given inputs, the output probabilities from SVM, MPCNN and KNN is averaged before decisions.
For an output i, the average output Si is given by Eq. (14):

Si ¼ 1

n

Xn
j¼1

rj ið Þ (14)

where rj (i)-output i of network j for input video frames. Different weights are applied for each network
and validations have a lower error and larger weights when combining the results. Output probabilities
from the combination of SVM, MPCNN and KNN are multiplied by a weight α before predictions and
given in Eq. (15)

Si ¼
Xn

j¼1
ajrj ið Þ (15)

This work computes a weighted mean for α value following Eq. (16)

ak ¼ AkPn
i¼1 Ai

(16)

where Ak–Validation accuracy for network k as i runs over n. The foreground and background are subtracted
from images based on these average outputs.

IASC, 2023, vol.35, no.2 1663



3.2.1 Foreground Potential
In visually analyzing spatial features the foreground potential of significant object O’s regions can be

computed from super-pixels ri in a frame Ft using Eq. (17)

� sið Þ ¼ F rið Þ 1� sið Þ2 (17)

where F(ri)-Probability of super-pixel ri to be a foreground.

Motion energy term: This work uses motion energy M in its modeling where M encompasses a
Significance map (St−1), distribution (Md), edge (Me) and history (Mh). Motion edges are generated
using Sobel edge detectors which extract motion’s object contours in optical flows. A closer look at the
spatial distribution of optical flows reveals that the background of objects in motion has a uniform color
within frames and this distribution of motion can be depicted as Eq. (18)

Md rið Þ ¼
XN
j¼1

pt rj
� �� li

�� ���� ��2vij (18)

where, ri-super-pixel, pt rj
� �

-super-pixel ‘s Normalized centroid and li-super-pixel ‘s similar color weighted
centroid. Previous studies on SODs extracted low-level features like texture from frames using center-
surrounded maps (Mc). Initially, motion contrast M1 within frames is extracted in optical flows to model
object motion clues. This contrast generated from the centre-surrounded map and distribution of motion is
not inter-independent while locating objects in an optical flow. Their collective normalized motion
contrast computations for each super pixel is done using Eq. (19)

M1 s ið Þ ¼ Md sið Þ � exp �c �Mc sið Þð Þ (19)

where, c-Balance factor, Md-Motion distribution, Mc-Center-surrounded map, si-Significant land space
value: Hence, M1 represents the significance values derived from intra and inter frame information. It is
difficult to maintain a steady quality in M1 due to inaccurate optical flows. The proposed system avoids
inaccuracies from being uncorrected as even a single bad outcome of M1 can lead to propagation of
errors. This work nullifies errors in contrast using consequent frame’s context information. Every contrast
M1 map is split into grids for matching frames on a 1–1 basis using Eq. (20)

Dchebyshev t; t0ð Þ ¼ max
L ð jj Ft lð Þ � Ft0 Þjj (20)

where, Dchebyshev t; t0ð Þ-Chebyshev distance matrix, Ft lð Þ-Contrast Maps in time window (t = 1,2,···, M)
with grids (L = 1,2,···, L), t; t0ð Þ ∈ {1,2,···, M} (M = 5). The ratio of changes in contrast maps R(t) are

computed by contrast comparisons with the lowest contrast within a batch
PM

t0¼1 Dchebyshev t; t0ð Þ and
depicted as Eq. (21)

R tð Þ ¼
PM

t0¼1Dchebyshev t; t0ð Þ
minðPM

t0¼1Dchebyshev t; t0ð ÞÞ (21)

Thus, changes in maps found have their contrasts normalized based on using thresholds where Max R
(t) > 1.3 results in repairing the map.

3.2.2 Background and Smoothness Potential
The background potential’s �ðsiÞ likelihood to be the background for each super-pixel for each super-

pixel ri, as well is defined as Eq. (22)
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�ðsiÞ ¼ xb rið Þs2i (22)

where xbðriÞ -background term for measuring probability of background for superpixel ri.

Smoothness potential paves the way for overall significance by assigning neighboring pixels with
different significance labels and represented as Eq. (23)

� si; sj
� � ¼ xij ri; rj

� � ðsi � sjÞ2 (23)

3.2.3 Reliable Object Regions
This work defines a reliable object region as O with B being its reliable background. Super-pixels within

a region are clustered where cluster intensity I(ri) based on the pixel’s proximity to the cluster center is
defined in Eq. (24)

IðriÞ ¼
X
ri;rj2K

dð V rið Þ � V rj
� ��� ���� ��� dcÞ (24)

where dc is the proposed system’s non-sensitive cutoff value in the interval [0.05,0.5]. Delta function used in
this work is depicted in Eq. (25)

d xð Þ ¼ 1 if x < 0
0 otherwise

�
(25)

The intensity values of a cluster imply super-pixels have greater number of neighbors within the cutoff
distance and cluster centers have higher probabilities in being objects when they have lesser super-pixels in
their neighbourhood when compared to the cluster intensity. Super-pixel of an object is selected when the
intensity greater than threshold h0 and treated as a background super-pixel when intensity is lesser than
threshold hb where these threshold values are obtained using Eqs. (26) and (27)

h0 ¼ t0�max I rið Þð Þ; ri 2 K (26)

hb ¼ tb�min I rið Þð Þ; ri 2 K (27)

where, to and tb control cluster intensity’s spanning extent for O and B.

3.3 Multiple SODs

Relative significance of detected objects regions is used to predict SODs. This si done by defining an
affinity matrix Woi 2 RN�N from K super-pixels ro 2 O in all N ri 2 S and defined as Eq. (28)

Woi ¼ . . . ; xoi ro; rið Þ; ::;xKN ðrK ;TN½ Þ (28)

where,

xoi ro; rið Þ ¼ exp � dis2c ro; rið Þ
2r2

	 

; ro; rið Þ 2 N (29)

Reliable background region for Wbi2RRM�N is also defined from M super-pixels 2B to all ri2S.
SGSOM detects multiple significant objects and ranks them using GSO (Glowworm Swarm
Optimization) which is inspired by lighting worm’s natural behaviour. Assuming these worms exist in
random locations within a swarm, then each worm is a solution within a search space based on an
objective function. The worms carry a certain amount of luciferin (positional fitness) where if they are
bright implies that the solution is better. Worms with higher luciferin values attract other worms which
have lesser brightness and their movement is towards the brighter ones. Thus, luciferin density

IASC, 2023, vol.35, no.2 1665



determines local decisions within a domain or called its decision radius. Low densities result in extending
their radius to attract more worms or split the swarm when intensity is very high. This merging and
splitting is iterated till termination conditions are satisfied implying most worms gather around brighter
glowworms. The main phases of the algorithm are initialization, luciferin-update, neighborhood selection,
moving probability, movement and decision radius update phases. The proposed algorithm is depicted as
Fig. 4. and its phases are detailed below.

GSO initialization: Glowworms are super-pixels distributed randomly in fitness function space. The
worms have equal luciferin quantities. Iteration is set to 1 and the distance between super-pixels is the
fitness value in the proposed work.

Luciferin-updates: luciferin updates depend on fitness and prior luciferin values and guided by the rule
given in Eq. (30)

li t þ 1ð Þ ¼ 1� qð Þli tð Þ þ cFitness xi t þ 1ð Þ (30)

where, i-super pixel, li tð Þ-luciferin value of super-pixel at time step t, q-constant luciferin decay value where
ð0 < q < 1Þ, c-constants for luciferin value enhancements, xi t þ 1ð ÞERM -super-pixel’s location at time step t
and Fitnessxi t þ 1ð Þ-super pixel fitness values at location in time step t þ 1.

Neighborhood-Selection: Neighbors of super pixels i at t time Ni tð Þ have brighter ones written as
Eq. (31)

Ni tð Þ ¼ fj : dij tð Þrid tð Þ�� ���� ��; li tð Þ, ljðtÞ (31)

where i,j-super-pixels, rid tð Þ-variable local-decision domain, di;j tð Þ-Euclidean distance between super-pixels
at time step t.

The Euclidean distance between two points in Euclidean space is the length of a line segment between
the two points. The collection of all squared distances between pairs of points from a finite set may be stored
in a Euclidean distance matrix, and is used in this form in distance geometry.

Figure 4: Proposed algorithm for detecting multiple SODs
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Moving Probability: Super-pixels use a probability rule for getting closer to other super-pixels with
higher luciferin values. The probability pij tð Þ of super-pixels (i, j) moving towards each other can be
defined as Eq. (32)

pij tð Þ ¼ lj tð Þ � li tð ÞP
k2Ni tð Þ lk tð Þ � li tð Þ (32)

Movements: When super-pixel i selects another super-pixel j2 Ni tð Þ with pij tð Þ, the movement’s
discrete-time model is given by Eq. (33)

xi t þ 1ð Þ ¼ xi tð Þ þ s tð Þ xj tð Þ � xi tð Þ
xj tð Þ � xi tð Þ
�� ���� ��

 !
(33)

where, S-step size, and ||.||-an Euclidean norm operator

Decision Radius Updates: The decision radius of a super-pixel is given by Eq. (34)

rjd t þ 1ð Þ ¼ min frs;max 0; rjd tð Þ þ b nt � Ni tð Þj jð Þ� �g (34)

where, b-constant, rs -sensory radius of super-pixel i, and nt-control parameter of number of neighbors.

4 Experimental Results

The proposed SGSOM was implemented in Matlab and benchmarked on the SegTrackV2 FBMS
(Freiburg-Berkeley Motion Segmentation) and DAVIS (Densely Annotated Video Segmentation) datasets.
SegTrackV2 items include girl, parachute, bird falls, cheetah, dog, monkey, penguin and many more
items in short sequences of 100 frames, except for frogs and worms. The items taken for
experimentations in this study are depicted in Fig. 5.

Many video sequences were found to be motion-blurred in addition to objects with similar color
backgrounds which made SODs a challenging task. The proposed system was experimented by splitting
the datasets into training and testing sets where 29 video sequences from FBMS dataset was used in
training and testing had 30 video sequences. Additionally, Davis dataset was used in experimentations as
its 50 HD video sequences have dense annotations of frames.

4.1 Evaluation Metrics

5 standard metrics were used to measure performances including Precision, Recall, accuracy, f-measure
and MAE (Mean Absolute Error) and the methods DSS (Deeply Supervised Significant) object detection,
SCOM and SPSOM-IDCNN (Spatiotemporal Particle Swarm Optimization Model with Incremental Deep
Convolution Neural Network) were taken for benchmarking SGSOM. Tabs. 1 and 2 represents the
performance analysis of the proposed and existing approaches for SegTrackV2, FBMS and Davis datasets.

4.2 Performance Metrics of SGSOM

MAE: It is absolute errors average given by |eij = |yi � xij, where yi is the prediction and xi the true value.
The mean absolute error is given by

MAE ¼
Pn

i¼1 yi � xij j
n

(35)
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Fig. 6. displays this work’s proposed SGSOM’s comparative performance results with DSS, SCOM and
SPSOM-IDCNN techniques on SegTrackV2, FBMS and Davis datasets in terms of MAE. Methods are
denoted in the x-axis methods while their corresponding MAE values are plotted on the y-axis. This
work’s ensemble-based learning performs well in SODs as it has reduced MAE values of 4.8% when
compared to DSS, SCOM and SPSOM-IDCNN which have 22%, 15% and 9% respectively as their
MAEs for SegTrackV2 dataset.

Fig. 7 shows the accuracy of proposed SGSOM with ensemble approach and existing DSS, SCOM and
SPSOMwith IDCNN approaches for SegTrackV2, FBMS and Davis datasets. X-axis denotes methods while
their accuracy values are plotted in the y-axis. From the graph, it can be concluded that SGSOM achieves
86% in accuracy while DSS, SCOM and SPSOM with IDCNN attains 73%, 77.5% and 81% respectively
for SegTrackV2 dataset.

Fig. 8 shows the precision of proposed Spatiotemporal Glowworm Swarm Optimization Model
(SGSOM) with ensemble learning approach and existing DSS, SCOM and SPSOM with IDCNN
approaches for SegTrackV2, FBMS and Davis datasets. X-axis denotes methods while their precision
values are plotted in the y-axis. The glow worm swarm is focused to generate best fitness values which
are used increasing the motion detection accuracy. The proposed SGSOM achieves 81.5% in its precision
whereas existing DSS, SCOM and SPSOM with IDCNN approaches attains 70%, 71.5% and 79%
respectively for SegTrackV2 dataset.

Table 1: Comparison of performances in the SegtrackV2 and FBMS datasets

Methods SegtrackV2 dataset FBMS dataset

MAE Accuracy Precision Recall F-measure MAE Accuracy Precision Recall F-measure

DSS 22 73 70 71.2 70.5 21 72 68 70 70.5

SCOM 15 77.5 71.5 75.3 73.4 15 77 71 75 73.4

SPSOM
with
IDCNN

9 81 79 78 78 8 80 78 77 78

SGSOM
with
ensemble

4.8 86 81.5 85 81.6 5 85 81 84 81.6

Table 2: Performance comparison for Davis dataset

Methods Davis dataset

MAE Accuracy Precision Recall F-measure

DSS 19.5 70.5 69 81 70

SCOM 16 78 72.5 76.3 74.4

SPSOM with IDCNN 7 79 78 79 78

SGSOM with ensemble 4 87 86 86.2 85.4
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The recall of the proposed Spatiotemporal Glowworm Swarm Optimization (SGSOM) with ensemble
learning approach and existing DSS, SCOM, SPSOM with IDCNN approaches are represented in Fig. 9.
X-axis denotes methods while their recall values are plotted in the y-axis. The CNN extracts the
important features from the given datasets and improves the detection accuracy higher. The proposed
SGSOM achieves 85% in recall values when other methods such as DSS, SCOM, SPSOM with IDCNN
achieves 71.2%, 75.3% and 78% respectively for SegTrackV2 dataset.

(a) MAE for SegtrackV2 dataset (b) MAE for FBMS dataset
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Figure 6: MAE comparison
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(a) Accuracy for SegtrackV2 dataset (b) Accuracy for FBMS dataset

(c) Accuracy for  Davis dataset
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(a) Precision for SegtrackV2 dataset (b) Precisionfor FBMS dataset

(c) Precision for Davis dataset
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5 Conclusion

The proposed SGSOM detects multiple SODs from video sequences. Initially the foreground and
background region subtraction is done using ensemble learning with SVM, MPCNN and KNN for
attaining an optimal predictive model. Chebyshev distance matrix is computed to avoid inaccurate motion
contrasts. This work’s SGSOM achieves a global significance optimization for multiple objects. It
considers the distance between the super pixels as an objective function, thus enhancing its accuracy of
SOD predictions. Thus, it is designed for global optimizations for detecting multiple SODs. SGSOM
demonstrates its utility by scoring 86, 85 and 87 is accuracy percentage forSegtrackV2, FBMS and Davis
datasets. It also outperforms other techniques used in experimental evaluations in terms of its higher
precision, recall, f-measure and MAE values.
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(a) Recall for SegtrackV2 dataset (b) Recall for FBMS dataset
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