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Abstract: In the digital era, the Narrowband Internet of Things (Nb-IoT) influ-
ences the massive Machine-Type-Communication (mMTC) features to establish
secure routing among the 5G/6G mobile networks. It supports global coverage
to the low-cost IoT devices distributed in terrestrial networks. Its key traffic char-
acteristics include robust uplink, moderate data rate/device, extremely high energy
efficiency, prolonging device lifetime, and Quality of Service (QoS). This paper
proposes a Deep Reinforcement Learning (DRL) combined software-defined air
interface algorithm applied on the switching system, satisfying the user require-
ment and enabling them with the network resources to extend quality of service
by choosing the most appropriate quality of service metric. In this framework,
Non-Orthogonal Multiple Accesses (NOMA) and Rate-Splitting Multiple Access
(RSMA) are combined to accommodate massive (Nb-IoT) devices that can be uti-
lized the entire resource (frequency band) for tackling the unknown dynamics pro-
hibitive. The proposed algorithm instantly assigns the network resources per user
requirements and enhances selecting the best quality of service metric optimiza-
tion. Therefore, it has potential benefits of high scalability, low latency, energy
efficiency, and spectrum utility.
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1 Introduction

The development of the Internet of Things (IoT) and its related platforms has piqued the attention of both
scientists and businesses in the flow of data among IoT endpoints, including servers and sensors, in past
decades. This communication pattern is called Machine Type Communication (MTC) [1]. It has two
major categories are (i) critical MTC (cMTC) and (ii) massive MTC (mMTC). Among these, mMTC is
widely used in Wireless Sensor Networks (WSNs) that support many batteries powered devices are
distributed to form underlying networks across heterogeneous environments [2]. Hence, it needs to
support various quality of service requirements for other network traffic on the priority's basics [3,4]. It
can establish a Service Level Agreement (SLA) applicable for both mobile users and management
agencies appropriately. This can be evaluated using different parameters (latency, jitter, and throughput)
extracted from network traffic. It is shown that the global network infrastructure that allows IoT
technology for updating in the communication technique with many heterogeneous devices [5–9]. This
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network significantly improves the systems’ stability, durability, and efficiency [10]. The complexities of
diverse communication techniques with device infrastructures manifest in several aspects of quality-of-
service (quality of service) and safety [11]. IoT presents a software-based air interface [12] to overcome
these challenges as a potential approach for centralized control of dispersed heterogeneous systems
[13,14]. Recently, a novel narrowband radio technology supports the minimum cost of IoT device
deployment that can directly influence global systems for mobile communications (GSM) [15]. It is a
clean-slate standard specified by the Third Generation Partnership Project (3GPP) standardization
organization. Many industries like Nokia, Ericsson, and Huawei have expressed a strong involvement in
Nb-IoT as a component of 5G networks. They have invested significant resources in standardizing Nb-
IoT as part of the 5G/6G mobile network.

Furthermore, it has been widely considered a critical technology for upcoming wireless communication
networks [16]. It supports many Nb-IoT devices, including high-throughput, sensitivity, easy installation,
and energy efficiency for extending spectrum coverage ability [17]. Artificial Intelligence (AI) algorithm
improves intelligence to software-defined air interface, enabling it to learn autonomously to make optimal
air interface adaptable to traffic variations. Thereby, it provides an opportunity to enhance fully
programmable, global vision, software-based air interfaces, centralized logical controller, and controlling
the decoupling network and packet forwarding. Artificial intelligence offers the potential to enhance
networking. In [18], software-defined air interface, allowing them to study on their own to build the best
air interface adaptive to traffic fluctuations. It includes the sensing layer with various devices that are
frequently used. However, it induces high computational complexity while overlying control logic arises
during signal switching and routing. Thus, it restricts the control signal flow and distributes the packets
based on traffic demand requests that arrived before forwarding the mMTC data. Deep Reinforcement
Learning (DRL) is a widely used algorithm for selecting the optimistic routing approach. It functions
under trial and error in the interaction with the environment and, thus, does not depend on labeled
datasets. Moreover, the optimization target is fixed (e.g., throughput and delay) by adjusting the defined
reward functions, which employ link-state metrics for effective routing. Therefore, it mainly focuses on
optimizing delay and neglects other performance metrics.

This paper proposes a deep reinforcement learning (DRL) combined software-defined air interface
algorithm applied on the switching system, which satisfies the user requirement and enables them with
the network resources to extend quality of service by choosing the most appropriate quality of service
metric. In this regard, a novel DRL-QoS enhancement mechanism conducts extensive simulation
experiments regarding performance metrics evaluation. The contributions of the work in this paper are
summarized as follows.

1. We present deep reinforcement learning combined Software-defined air interface switching algorithm
for the quality-of-service enhancement mechanism of 5G/6G Nb-IoT mobile networks.

2. An intelligent air interface switching system is proposed to satisfy user requirements and enable
network resources with enhanced quality of service.

3. The proposed deep reinforcement learning runs beyond different software-defined network scenarios
for secure routing using the quality-of-service metrics and achieves an improved optimization.

2 Literature Survey

Quality of service enhancement in the software-defined air interface system on the Nb-IoT mobile
network has subsequently been a hot research issue with a lot of attention. According to their
optimization goals, the study is categorized into (i) enrich the routing with enhanced quality of service
and (ii) reduce congestion with high network utilization. Song et al. suggested an indoor localization
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technique for Nb-IoT systems employing Channel state information (CSI) for identifying a fingerprinting
[19]. It can detect the resemblance among two CSI values but convert the identical value as a relative
value, and the suggested technique would predict the location with lower complexity. The triangular
centroid method and K closest neighbor enhance location determination. In contrast to previous
approaches, the location inaccuracy is decreased. In addition, to allow a node from an idle condition to
send information. Reference [20] To enhance the number of devices that can be supported, an effective
Smallest Data Transmission (SDT) technology is created. The maximal SDT size SDT ids grouping will
be broadcasted in the system information block (SIB) via eNB. Tabbane et al. presented an open-loop
forward error correction technique for the Nb-IoT network, enhancing the Automatic Repeat Request
(ARQ) signal optimization [21]. This approach has to mark the termination of the DL-based transmitting
information and is not essential to be precise about that particular Packet Data Units (PDU) being
dropped while transferring. This reduces the channel coding technique efficiency and, as a result, reduces
the amount of computing energy used. This technique has been shown to improve the energy efficacy of
the Nb-IoT networking owing to its minimal complexity since it significantly decreases the computational
energy usage owing to information receipt on the Internet-of-Things node's transceiver.

Ratasuk et al. addressed the hybrid automatic repeat request (HARQ) process operated only in half-
duplex mode in the Nb-IoT network [22]. Has the potential of reducing processing time has been shown.
The collected findings show that using the HARQ method can save close to 20% on the total energy
usage of the network. HARQ method is utilized when an increased scaling of the Nb-IoT network is not
shown to impact this energy effectiveness substantially. In addition, Inoue et al. organized a hybrid
channel coding approach for narrowband physical downlink shared channel (NPDSCH) and influenced
error correction scheme [23]. In this case, the user equipment (UE) could be assigned 12, 6, and 3 tones
in such a scenario. Moreover, due to coverage restrictions, just the 6 and 3 tone codecs seem to be
available for Nb-IoT devices, which will not benefit from the more significant device load balancing that
leads to increased energy usage. Due to heavy demand on spectrum efficiency, non-orthogonal multiple
access (NOMA) is influenced in the Nb-IoT, enabling several users to utilize the given radio resource
concurrently. Consequently, practical spectrum usage is achieved while ensuring user unfairness [24]. It
would improve the spectrum utility required to separate users’ messages with competing high complexity.
Additionally, [25] enhancing cell-edge performance needs relaxing channel feedback, decreasing total
latency, and increasing spectral efficacy and fairness compared to traditional-orthogonal multiple access
(OMA). NOMA is an excellent and prospective Multiple Access (MA) option for supporting enormous
connection requirements in 5G systems because of these features [26,27]. Saha et al. proposed a traffic-
aware quality-of-service (quality of service) routing protocol\. In this approach, meeting the quality-of-
service needs of every movement in the software-defined IoT (SD-IoT) network, the suggested method
uses SDN's unique properties, such as flow-based structure and networking flexibility. Subsequently,
Deng et al. developed an application-aware quality of service routing algorithm (AQRA) to provide
various quality of service needs of high-priority IoT programs while also adjusting to the present network
state for improved routing pathways. The quality-of-service routing approach is designed for SDN-IoT to
provide varied quality for different IoT workloads dynamically [28]. Quality of service routing includes
simply throughout or traffic delay. The Software-Defined Networking (SDN) is used to control IoT traffic
to accomplish the quality-of-service routing is created to control the traffic delay of critical information.

3 System Model

This section describes a proposed Deep Reinforcement Learning (DRL) based quality of service
enhancement mechanism for coordinated Nb-IoT mobile networks. The network resources are instantly
provided to the user as per the requirement. This paper analyzes QoS performance and optimization with
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the various QoS metric and evaluates the throughput. In 5G/6G Nb-IoT mobile networks, software-defined
air interface for multiple users without any distortion using the DRL approach with NOMA.

3.1 NOMA Transceiver Section

NOMA 5G has been developed power-assisted multiple-access technology for upcoming cellular
networks. The basic block diagram of the NOMA system is shown in Fig. 1. The many quality of service
augmentation techniques includes Software-defined networking (SDN), Software-defined Wide Area
Network (SD-WAN), 5G network slicing, and virtualization of the functional network. At first, cellular
communications technologies are intended to provide phone services and Internet accessibility.
Nowadays, innovative tools and technology are fostering the growth of new application sets. Various
areas, including the Internet-of-Things (IoT), a network of linked autonomous vehicles, operating robots
remotely, with heterogeneous sensors linked to diverse service applications, make up this application
pool. The slicing network has been developed as a critical technology to accept this novel business
structure in this setting effectively. For 5G NR, coding channel methodologies have shifted in 4G from
Turbo codes to polar codes for controlling channels and low-density parity-check codes (LDPC) for
information channels compared with Turbo codes in 4G. In general, there are two types of NOMA
methods: power-domain NOMA and code-domain NOMA. The latter provides every user with distinct
power levels, while many users share identical time-frequency-code resources utilizing their assigned
power. A power level of users is determined by their channel gain, including a user with a more
significant channel gain is frequently allocated a reduced power level. Various user signals are being
segregated at the receiving terminals by utilizing the SIC-based power-difference of users. To non-
orthogonally assign resources for users, code-domain NOMA uses codebooks, interleaving patterns,
scrambling sequences, and spreading sequential data. Though it concentrates on this essay has been on
power-domain NOMA, as it will also cover the fundamentals of code-domain NOMA, whereas the
power-domain of NOMA is depicted in Fig. 2.

3.2 Power-Domain Downlink NOMA

A primary NOMA network contains two different users with one BS, and every individual is provided
with one antenna, as shown in Fig. 3. Assume x1 as well as x2 signals that the BS will send to user 1 and user
2 appropriately. The BS sends the coded superposition signal as

s ¼ ffiffiffiffiffiffiffiffiffi
P1x1

p þ ffiffiffiffiffiffiffiffiffi
P2x2

p
(1)

Here P;i i ¼ 1; 2; is the transmission energy for i user, then the power unit's information signal is given
as xi; i ¼ 1; 2, that is E{|xi|

2} = 1, with the exception operator, is denoted as E{ ⋅ }. Users 1 and user 2's

Figure 1: Illustrates the block diagram of the NOMA transceiver
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aggregate transmission power may thus be represented as P ¼ P1 þ P2. It is preset for a particular system
setup and is therefore separated into P1 as well as P2 based on the power allocation (PA) method used. The
signal received by user i is expressed as

yi ¼ hiS þ ni (2)

Here, hi denotes the channel gain among the user i and BS and ni denotes Gaussian noise, including
interventions with the spectral density of power Nf,i. Inter-cell interference has been already incorporated
in ni Multi-cell situation. At the receiver's side, SIC is utilized to segregate the signals of various users.

Figure 2: Illustrates the power domain of NOMA multiplexing: a) standard NOMA-SIC receiver; b)
NOMA-MIMO systems; c) NOMA cellular network

Figure 3: User power-domain downlink NOMA
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The ideal decoding order of SIC is defined as |hi|
2/Nf and is in descending sequence of the user's channels

strengths. Every individual user can considerably reduce signals interference of other users if decoding
commands occur after their own using this order. Thus result, user 1 contains the highest channel

strengths jh1j2
Nf ;1

, also known as the power user can terminate interference acquired from user 2 containing

the lowest channel strength jh2j2
Nf ;2

, also known as a weak user. It's worth mentioning that BS executes SIC

sorting regularly depending on the feedback of channel state information (CSI) from users. Consumers
receive revised SIC sorting information from BS.

Without sacrificing flexibility, a user with poorer channel quality is given more power than a more robust
channel quality to improve the signal-to-interference-plus-noise ratio (SINR). When user 1 executes SIC in the

NOMA of 2-user with jh1j2
Nf ;1

. jh2j2
Nf ;2

, therefore P1 < P2. Initially x2 is first decoded, user 2's signal, then reduces

this from the receiver y1 Before decoding its original signals. User 1's signal x1 is considered by user 2 to be
noise and therefore decodes its original signal using y2 independent of using SIC. When SIC is ideal, the
attainable data rate of user i NOMA, RNOMA

i with a transmitter, BW of 1 Hz may be expressed as

RNOMA
1 ¼ log2 1þ P1 jh1j2

Nf ;1

" #
(3)

RNOMA
2 ¼ log2 1þ P2 jh2j2

P1 jh1j2 þ Nf ;2

" #
(4)

The maximum total capacity that may be reached is RNOMA ¼ RNOMA
1 þ RNOMA

2

By adjusting the coefficients of power allocation α1 and α2, then a1 ¼ P1
P ; a2 ¼ P2

P , where the BS may
manage every user data rate. To compare the data rate overall performance of OMA and NOMA, we take into
account the 2-user FDMA system depicted in Fig. 4, wherein the 1 Hz transmitting BW is separated for two
different users–user 1 utilizes W Hz whereas user 2 utilizes the residual 1 WHz BW, then the ratio of power
allocation (α1:α2 = P1, P2) persist equivalent as for the NOMA system. The OMA user i attainable data rate, i.
e., RNOMA, may thus be expressed as

RNOMA
1 ¼ W log2 1þ P1 jh1j2

wNf ;1

" #
(5)

RNOMA
2 ¼ ð1�W Þlog2 1þ P2 jh2j2

ð1�W ÞP1 jh1j2 þ Nf ;2

" #
(6)

Figure 4: User downlink FDMA
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In contrast to NOMA, as demonstrated by Formula (5) and then (6), neither OMA user suffers from
signal interference of the other user.

3.3 Power-Domain Uplink NOMA

An uplink NOMA system includes user 1, and user 2 sending their corresponding signals x1 as well as x2
to the BS at the same time. At the BS, the receiving signal is provided as

y ¼
X2
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pihixi þ n

p
(7)

Pi denotes the i user's transmitting power E{|xi|
2} = 1, n denotes the Gaussian noise in addition to the

power spectral density interferences Nf. Generally, the BS transmits a reference downlink signal that each
user uses to estimate the channel. As a result, based on the channel gains, users may set their system
throughput to P1 or P2. Labeling user 1 as a more robust user with a more significant channel gain is
more considerable than user 2 being labeled as the weaker user. The BS conducts SIC to distinguish the
users’ signals after acquiring the superposed signal. Firstly user 1's signal is decoded by considering the
signal of user 2 as noise. Subsequently, difference user 1's decoded signal ðx̂1Þ acquired from the received
signal (y). User 2's signal ðx̂2Þ is being provided with the remainder is decoded. User 1 obtains user 2's
interference in uplink NOMA, but user 2 obtains zero interference via user 1 because user 1's signal
being eliminated before the signal decoding of user 2. The downlink NOMA with user 2 on the other
hand, receives user 1 interference, but user 1 seems to be not suffering because user 2's signal has been
eliminated before signal decoding of user 1.

When SIC is ideal, the NOMA user's attainable data rate with a transmitting 1 Hz BW is as follows:

RNOMA
1 ¼ log2 1þ P1 jh1j2

P2 jh2j2 þ Nf

" #
(8)

RNOMA
2 ¼ log2 1þ P2 jh2j2

Nf

" #
(9)

RNOMA ¼ RNOMA
1 þ RNOMA

2

On contrasting (9) as well as (10) to its OMA equivalents, uplink NOMA could be demonstrated to be
superior regarding attainable data rate along with total capacities, such as downlink NOMA. For a K-user

uplink, NOMA having jh1j2
Nf

. jh2j2
Nf

. � � � jhk j2Nf
� � � . jhK j2

Nf
as a development of the 2-user scenario, so P1 <

P2 < ⋅ ⋅ ⋅Pk ⋅ ⋅ ⋅ < and 1 Hz BW, user k; k ¼ 1; 2; . . . ; K � 1, and K may be represented as,

RNOMA
k ¼ log2 1þ Pk jhk j2Pk

j¼kþ1 Pj jhjj2 þ Nf

" #
(10)

RNOMA
k ¼ log2 1þ Pk jhk j2

Nf

" #
(11)

Uplink NOMA unlike downlink NOMA, may support a higher number of users since BS can generally
provide the necessary computational power and energy. Furthermore, BS can use more computationally
demanding decoding techniques to decrease interference. As a result, uplink NOMA is superior to
downlink NOMA for massive machine communication interaction.
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3.4 Nb-IoT Architecture

Fig. 5 depicts Nb-IoT's architecture. The formation of control plane and user plane optimizations of
EPC, Nb-IoT provides reduced the EPC architecture to enable the small information transfers necessary
for M-IoT application areas. The eNodeB interacts with Nb-IoT devices or user apparatus, and then the
eNodeB interacts with evolved packet core (EPC) IoT. The packet data networking and serving of GW,
the plane entity of mobile management, and the Home Subscriber servers are all part of this. Afterward,
eNodeB uses s1-lite to send the non-access stratum (NAS) to EPC. NAS protocol sends non-radio signals
among Mobility Management Entity (MME) and then user device that provides session and movement
management information. EPC searches for stratum to resume the procedure and further sends this to the
IoT platform.

The information is forwarded to application servers in a suitable format by the IoT system. The
Application server subsequently processes the information. Information may be transferred among an Nb-
IoT device and an application server in 2 directions, namely IP-based and non-IP-based. Transmitting
Non-IP-based is highly favored because it minimizes the user overhead devices and is also efficiently
secure because only single destination IP is authorized. For optimization signaling, Nb-IoT employs data
over non-access stratum (DONAS) and radio resource control (RRC) suspending/resuming in addition to
current RRC. DONAS allows users to send data without requiring a user account's activation and allows
irregular data transfer. The RRC suspending/resuming process is a user plane improvement that offers a
fast method to delete and reclaim the user plane.

Furthermore, Nb-IoT is intended for the transfer of intermittent and short messages between the device
and the network. The gadget is thought to be capable of exchanging tiny messages over a single cell,
eliminating the need for handoffs. Whether necessary, it must initially enter an idle state before restarting
the cell selection procedure. Other EUTRA features like handover, Inter-RAT mobility, Channel Quality
Indicator (CQI), and dual connectivity monitoring are not supported.

3.5 Deep Reinforcement Learning (DRL) for Quality-of-Service Enhancement

It is equipped to manage large-scale dynamic systems and enable energy-efficient service improvement
for coordinating Nb-IoT networks. If the number of states actions in DRL is very big, DL could be utilized
for functional value approximations, reducing memory and compute needs. Fig. 6 presents observable
system states regarded as the networking input in the DQN for quality of service enhancement. It
retrieves high-level characteristics from the inputs, and then the inputs pass via multiple networking
layers with varied weights. Thereby, evaluates all potential actions in the last stage and generates a
collection of Q-values as outcomes. It may speed up the learning procedure while simultaneously

Figure 5: Nb-IoT architecture

1634 IASC, 2023, vol.35, no.2



reducing the amount of memory required to store model variables. This is particularly essential for electronic
devices featuring constrained capacities, including Internet of Things (IoT) devices.

As a result, DRL is an excellent solution for various issues in systems and network communication,
including resources development, non-convex and complicated issues, scheduling, etc. Furthermore, DRL
may significantly reduce the model's complexity, mainly when it's utilized to solve various problems in
future systems and networking communications. Mainly, the Q-learning algorithm is used in complicated
and specialized settings, including communication networks, its performance suffers considerably. Thus,
DRL may be utilized to better interact with high-dimensional state-space settings as functional
approximations for the Q-function method. HetNets, ad-hoc, IoT, Unmanned Aerial Vehicle (UAV), and
other communication methods and sectors may all benefit from DRL. Quality of service relates to a
collection of techniques for controlling bandwidth, jitter, delay, and packet loss by evaluating several
characteristics. Quality of service methods improves minimum one of those parameters. It has an indirect
effect on the number of fundamental resources available on any network, and they're utilized to enhance
the efficiency with which current resources are assigned to jobs. Specific techniques allow network
management devices to deploy current network resources effectively, including bandwidth. With the
growing number of linked smartphones and its volume of produced traffic, Quality of Service (QoS) is
now a critical tool for dealing with the expanded number and services diversity. ISPs sell Quality of
Service (QoS) in two ways: explicitly (as a choice) and implicitly (as part of a service). For various
services, like phone, data, multimedia, ISPs guarantee a specific degree of performance. To do so, they
must consider a variety of QoS-related parameters, such as loss rate, end-to-end latency, and dependability.

Quality of service mechanism is broadly classified into two major groups: (1) resource management and
(2) traffic handling. The latter relates to processes and approaches in the MAC layer, which try to manage
networking resources, such as radio resources, by configuring and coordinating network elements such as
User Equipment (UE), BS, and Access Points (AP). The two primary techniques for bandwidth
management are admission controlling and resource reserves. Such techniques describe the procedures
that maximize network transmission at heavy traffic flow conditions. It can flow four necessary traffic
handling capabilities: classification, channel access, traffic policing, and packet planning. The primary
DRL-based features in the MAC layer that enable quality of service are divided into 2 classifications:
network accessing and data rate-controlling and resource distribution and planning.

4 Result and Discussion

This section analyzes the results of the proposed Deep reinforcement learning-based Software-defined
air interface switching algorithm for the QoS enhancement mechanism of 5G/6G Nb-IoT mobile networks.
Concentrating on the current frequency range with extremely broad bandwidths will shift the focus away

Figure 6: DRL model for quality of service enhancement mechanisms
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from optimized solutions spectrally and toward systems with enhanced coverage. In this new frequency
spectrum, proper balancing among power efficiency, spectrum performance, and coverage would be
critical in designing devices in such a new spectrum frequency. This will contribute to developing a
modern air interface in which single-carrier systems are more concerned. The OFDM system will be
reviewed for a relatively low-frequency range wherein spectral efficiency is essential. The cyclic prefix
that is merely a duplicate of data but does not store any more data is not using energy efficiently.

Moreover, power amplifiers with a higher peak-to-average power ratio (PAPR) are complicated and
costly. As a result, Deep Reinforcement Learning and NOMA have emerged as potential new approaches
for 5G/6G network communications. In NOMA, every user has accessibility to the entire frequency band
resource simultaneously. As an intelligent air interface for quality of service user enhancement, a novel
software-defined air interface depending on the AI is presented. Multiple waveform arrangements and
two frequency sets are described in release 15 3GPP that provides the requirements for 5G-New Radios
(NR). The software-defined intelligence air interface is used to accomplish the suggested quality of
service based on consumers’ Deep Reinforcement learning increase. Small scale networks in 5G will also
employ NOMA methods to enhance access efficacy by enabling several users to utilize the identical
spectrum frequencies in a non-orthogonal fashion. NOMA introduces considerable co-channel
interference between mobile users, posing central structure and resource network management problems.
As a result, the resources are given in response to user requests for coordinated Nb-IoT networks. The
core NOMA taxonomy is given by concentrating on the resource usage classifications of code-domain
NOMA and power domain.

Furthermore, for uplink and downlink broadcasts, a new radio resource system based on Deep
Reinforcement Learning is given. Lastly, possible applicability and open scientific areas for NOMA in
resource management have been discussed. Fig. 7 shows the number of planned users vs. the total
number of CD-NOMA network users. Fig. 8a shows the data rate areas of downlink NOMA as well as
OMA by displaying a data rate of a user against the data rate of another user at various ratios of power
allocation with h1 = 10 and h2 = 1. As can be seen, the rate range of NOMA is significantly more
extensive than that of OMA. Fig. 8b depicts the combined capacity of two-user downlink NOMA and OMA.

Figure 7: Number of scheduled users vs. a number of users in a CD-NOMA network
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Fig. 9 shows that the quality of service enhancement is examined with the two users using the proposed
Deep Reinforcement learning strategy for the Nb-IoT network. First, consider two users with equal distance
from the base station. In this case, NOMA achieves higher rate pairs than the OFDMA. But at this point, both
the NOMA and OFDMA meet with the same capacity range, only when the SNR values of the two users are
the same. There implies NOMA is more efficient than OFDMA. It is clearly shown in Fig. 9a.

Similarly, consider two users but with different distances from the base station. In this case, NOMA
achieves higher rate pairs than the OFDMA. But it does not meet with same capacity range because the
SNR values of the two users are different. So, NOMA is more efficient than OFDMA. Downlink Sum
capacity is shown in Fig. 8b. Anyhow, the energy and Spectrum efficiency are inversely proportional to
each other in the above two cases. If Energy efficiency (EE) increases, Spectrum efficiency (SE)

Figure 8: Comparison of 2-user downlink NOMAwith OMA (a) Rate region, (b) Sum capacity

Figure 9: Quality of service enhancement is examined at the downlink of two users (a) sum capacity of
SNR1 = SNR2 (b) sum capacity with SNR1 not equal to SNR2
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decreases, and if Spectrum efficiency increases, Energy efficiency decreases. The peak of the curve is where
the system has the maximum energy efficiency. The energy efficiency and spectrum efficiency relationship is
linear with a positive slope of RT

Ptotal
Where an increase in spectrum efficiency simultaneously increases Energy

Efficiency. So, NOMA provides higher energy efficiency than OFDMA. It is clearly shown in Fig. 10.

EE ¼ RT

Ptotal
¼ SE

W

Ptotal
ðbits=jouleÞ

The comparison of 2 users’ SNR with a codeword for 8 and 14 db in the cluster form as receiver
constellation, as shown in Fig. 11. It demonstrates that when the SNR value is high receiver can
differentiate noise and signal, but when the SNR value is decreased, it can't differentiate among them.
Here we compared the two users with SNR values variation by increasing the SNR value among the
users-user 2 has less noise, which is clearly shown, so user 2's is highly beneficial. The received
constellation SNR of 2 Users is shown in Figs. 10a and 10b. On the other hand, the proposed DRL
method examines the QoS parameter under throughput of NOMA for 2 users, as shown in Fig. 12. As
the constellation simulation user 2 has less noise, it is more efficient than user 1. So, user 2 has high
throughput than user 1. User's noise level is less, which leads to better data transmission. It is done by
codeword generation in the transmitter to send the data to its receiver.

Figure 10: Comparison of energy efficiency and spectral efficiency

Figure 11: Received constellation SNR of 2 users (a) 8 dB, (b) 14 dB

1638 IASC, 2023, vol.35, no.2



5 Conclusion

This paper proposes a deep reinforcement learning (DRL) based software-defined air interface algorithm
applied on the switching system that satisfies the user requirement and enables them with the network
resources to extend quality of service by choosing the most appropriate quality of service metric. Nb-IoT
networks, DRL-based quality of service improvement methods, and NOMA approach are expected to be
potential technologies for forthcoming 5G networks communication systems that offer enormous
connection and lower latency. We have demonstrated that the traditional OFDMA outperforms in terms of
total sum capacity, spectral efficiency, as well as energy efficiency. This happened because a unique
codeword is generated for each transmission, so data can be sent to its receiver without scattering or lost
by its transmitter. Thus, constitutes one of the promising solutions to signal interference for future 5G
systems. It is possible only when the transmitter has easily differentiated the noise and signal it can be
executed by increasing the SNR value. As higher the SNR value, the transmission will be better. By this,
the throughput will also be very efficient. Since LTE has become the most used network due to reduced
interference even though the users are more, it has been implemented to improve the efficient usage of
limited network resources and influence high in LTE due to more users. Furthermore, it provides
effectiveness on the rise in SNR value, and their transmission will be good, resulting in highly efficient
throughput.
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