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Abstract: Achieving sound communication systems in Under Water Acoustic
(UWA) environment remains challenging for researchers. The communication
scheme is complex since these acoustic channels exhibit uneven characteristics
such as long propagation delay and irregular Doppler shifts. The development
of machine and deep learning algorithms has reduced the burden of achieving reli-
able and good communication schemes in the underwater acoustic environment.
This paper proposes a novel intelligent selection method between the different
modulation schemes such as Code Division Multiple Access(CDMA), Time Divi-
sion Multiple Access(TDMA), and Orthogonal Frequency Division Multiplexing
(OFDM) techniques using the hybrid combination of the convolutional neural net-
works(CNN) and ensemble single feedforward layers(SFL). The convolutional
neural networks are used for channel feature extraction, and boosted ensembled
feedforward layers are used for modulation selection based on the CNN outputs.
The extensive experimentation is carried out and compared with other hybrid
learning models and conventional methods. Simulation results demonstrate that
the performance of the proposed hybrid learning model has achieved nearly
98% accuracy and a 30% increase in BER performance which outperformed
the other learning models in achieving the communication schemes under
dynamic underwater environments.

Keywords: Code division multiple access; time division multiple access;
convolutional neural networks; feedforward layers

1 Introduction

The Underwater Sensor Network has enchanted a prominent deal of interest over the past decades on
various applications in science and explorations on the diagnosis of natural disasters [1,2]. Radio
Frequency (RF) in an underwater environment is enervated due to rough water conductivity. So, the
audio is the only attribute to travel the long communication path [3]. Moreover, there is limitation faced
by acoustic communication faces serious issues like (i) restricted bandwidth, (ii) long propagation, (iii)
consumption of massive energy. These issues act as the propelling factor for acoustic communication in
designing the protocols in medium access control (MAC) promotions, as shown in Fig. 1. Several MAC
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promotions are propounded in three various categories are (i) random access [4], (ii) reservation-based [5],
(iii) schedule-based [6]. Molins et al. [7] proposed the reservation relay protocol to attain the best throughput
with a massive data load. Most of the nodes participating in transmission in an underwater sensor network are
not the assumption an understanding of the massive data load [8].

The network throughput decreases, and the network is not participating in transmission data on
eradicating the timeslots. To enhance the throughput, the rate of generating the data plays a significant
role in underwater sensor networks. As the rate of generating the data is low, a low throughput occurs.
Each time slot comprises transmission time and propagation, avoiding frame collision. The MAC
protocols are further classified into three contentions they are (i) contention-based MAC without RTS/
CTS, (ii) contention-based MAC with RTS/CTS, (iii) contention-free MAC to avoid frame collision.

The first contention is the modified ALOHA protocol that uses a short tone [9] to notify the neighbour
nodes. In this modified ALOHA, when one participating node is aware of the notifications of transmission of
packets, it reverses its transmission. Otherwise, it reschedules that transmission, leading to channel
bandwidth and energy [10]. The second contention uses virtual carrier sense to extricate the energy,
thereby excluding the conflicts. While during the data transmission, the node estimates the busy time and
pauses the listening period. Hence sensor nodes in this contestation wait for the long round trip time to
exchange the RTS/CTS [11].

Moreover, the handshake RTS, CTS protocols produce a long propagation delay, decreasing network
throughput [7]. The third contention-free MAC comprises CDMA, FDMA, TDMA. Approaches of
CDMA have several issues like a near-far problem, long propagation delay, and long-distance
communication range, which is not adequately addressed [12]. Where else FDMA divides the frequency
band into several narrow bands results in a low throughput [13].

Yun et al. [14] proposed that the CDMA protocol for underwater sensor networks uses adaptive token
polling to decrease energy consumption, excludes collision, and avoids propagation delay problems. CDMA
protocols play a significant role in the underwater sensor network and are classified into two classifications.
They are (i) one slot approach (ii) multi-slot approach. The one slot approach needs the transmission would
be attained in one slot; therefore, one frame would be designed for the length of the timeslot added with
propagation delay [15]. As the name implies, multi-slot requires more than one slot to complete the one
packet transmission among the two neighbours. Compared with the other traditional time slots, CDMA
approaches would enhance the network throughput and decline receiver end idle time [16].

Figure 1: Radio frequency acoustic communication in underwater sensor network
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While exploring underwater, the autonomous process is essential for declining the deadly high severe
pressure in the deep-sea environment. Canny computer vision needs to be very intelligent, as the marine
environment had very low illumination and low enhancements in image quality attribute to improve the
autonomous process. Ferguson et al. [17] propounded the underwater image enhancement technique
relayed on the deep learning method, which builds the trained data set from the category of degraded
underwater images and restored underwater images [18]. The deep learning method enhances the deep-
sea image quality from the training sets. CNN method in deep learning is identified as the rapid detection
method [19]. Though deep learning models play a vital role in better communication, handling the more
extensive datasets and achieving high performance remains the darker side of research. The paper
proposes a hybrid combination of Convolutional Neural Networks (CNN) and Boosted Single Feed
Forward Layers (BSFL) to select the modulation schemes under CDMA, TDMA, and OFDM underwater
communication environment to overcome the above challenge. The contribution of our work is bi-folded.

1. A hybrid combination of Convolutional Neural Networks (CNN) and Boosted Single Feed Forward
Layers are used for a good selection of modulation schemes under CDMA, TDMA, and OFDM.

2. Achieving better communication and high performance using the proposed model under a dynamic
underwater environment.

The rest of the paper is as follows: Section-1 discusses the related works by different authors with their
features and pitfalls. The System model is presented in Section-2. Additionally, channel estimated features,
the working mechanism of the proposed learning model are also presented in Section-3. Section-
4 demonstrates the proposed learning model’s experimentation and performance evaluation with
comparative analysis under the different underwater scenarios. The paper concludes with a future scope
presented in Section-5.

2 Related Works

Liu et al. created a novel underwater sensor network called multimodal-network (MM-NET). The
proposed multi-modal sensor architecture supports heterogeneous hardware and software. MM-NET is
modelled with software-defined ratio, NDN routing, and address-based routing structure for sensors
communication. The significant purpose of MM-NET is to support heterogeneous hardware structures at
the front ends and provide secured communication through various MAC layers [20]. Nodes are
interlinked in a distributed method called the KNN model. The limitation of the proposed model is
sufficient for short-distance communication and only efficient for single-user communication.

Huang et al. studied the role of machine learning approaches on underwater acoustic communication
[21]. The author focused on adaptive modulation coding (AMC) techniques that support underwater
acoustic communication. The suggested aided-KNN AMC classifier differs from the typical single coding
model in structure, communication, and support for uncertainty scenarios in underwater communication.
In aided-KNN, a transmission mechanism called multicarrier-multiple frequency shift keying is used. The
suggested adaptive modulation coding technique uses a “squared Inversion kernel function” and a
clustering approach to reduce the dimensions. The limitation of the proposed supervised learning AMC
model is achieved less accurate for the large-size database. Also, the features used to train the classifier
are randomly selected, which affects the performance.

Park et al. adopted various supervised learning algorithms called the “Multilayer perceptron, KNN,
support vector classifier, decision tree” model for forecasting the handover in underwater communication
[22]. Deciding the handover buoy under uncertainty scenarios is difficult in underwater sensor networks.
The proposed ML-based handover deciding technique is mainly designed to foresee the ocean current and
handover buoy nodes based on the current moving directions on the network and uncertain conditions.
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Decision trees achieved better performance compared to traditional algorithms. The limitation of the
proposed prediction algorithm is focused on handover nodes selection, and the performance achieved is
inefficient for large networks.

Rauchenstein et al. focused on minimizing the localization errors in underwater reservoirs. The author
developed a regression-based learning algorithm to calibrate the localization errors of a time-difference-of-
arrival (TDOA)-based acoustic sensor array [23]. Initially, locations are assumed using the approximate
maximum likelihood heuristic, and a regression model is used to detect the high-error nodes removed
from the network. The best data points are selected with minimum trade-offs to achieve the high-
performance localization process in the underwater reservoir.

Kim et al. developed a semi-supervised learning classifier for selecting the best modulation technique
among CDMA and OFDM in the underwater acoustic network [24]. The proposed ML classifier
combined the convolutional neural network as feature extractor and random forest as modulation scheme
selector. The significant purpose of this semi-supervised learning model is to reduce the bit-error-rate in
underwater acoustic communication by extracting the dependent variables from the receiver data and
selecting the modulation either as CDMA or OFDM at minimal BER. Random forest is achieved better
performance in BER reduction due to the appropriate selection of modulation model than conventional
CNN, DNN classifier.

Similarly, Wang et al. proposed deep learning unsupervised algorithms for modulation recognition
techniques for underwater communication networks [25]. The “VGGNET” architecture is adopted as a
selection classifier with an external network and random disconnection model to reduce the overfitting
issues on CNN. The intense layer comprises 32, 64 neurons, and the output layer with 5 neurons
corresponding to 5 possible modulations, including BPSK, QPSK, 8PSK, 16QAM, and 64QAM. The
limitation of VGGNET is inefficient at the low-SNR rate in underwater communication.

3 System Model

The proposed architecture uses the system model as mentioned in [26]. The acoustic signal is attenuated
concerning the distance and frequency is involved. The acoustic attenuation is expressed as to

A d; fð Þ ¼ A0d
la fð Þd (1)

where d is the distance of transmission, f is the frequency of the acoustic signal, A0 is the normalization
factor, l be the spread function, and a fð Þ is the absorption coefficient. In terms of dB range of frequency,
the above equation can be expressed as

10 log log
A d; fð Þ
A0

¼ l: 10 log log d þ d: 10 log log a fð Þ (2)

The r.h.s of the above expression holds both the propagation loss of the signal and the absorption loss.
The term l: 10 log log d corresponds to the propagation loss of signal. The term d: 10 log log a fð Þ
corresponds to the loss due to absorption. The spread function ranges from 2 to 4, with l ¼ 2 for the
spherical spread function, for cylindrical spread function and l ¼ 1:5 for other non-regular spread
unction. Considering the acoustic signal frequency in the kHz range Eq. (2) is rewritten as

10 log log a fð Þ ¼ 0:11
f 2

1þ f 2
þ 44

f 2

4100þ f 2
þ 2:75� 10�4f 2 þ 0:003 (3)
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For low range acoustic signals, expression (3) becomes

10 log log a fð Þ ¼ 0:002 þ 0:11
f 2

1þ f 2
þ 0:011f 2 (4)

Three noise functions coexist in acoustic communication and the attenuation factor. The noise due to
turbulence, wave movement and thermal noise also exists in the channel given as

10 log log N fð Þ ¼ Ni � g log log f (5)

The loss occurs due to directional gain being ignored, and the SNR of the acoustic channel is confined as

SNR d; fð Þ ¼ P=A d; fð Þ
N fð ÞDf (6)

where Df corresponds to the noise the at receiver half-open transmitted signal power. The fading effect is
modelled with Rayleigh fading effect, and the bit error rate (BER) is evaluated for single-bit transmission
for a particular distance as

Pe dð Þ ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR d; fð Þ

1þ SNR d; fð Þ

s !
(7)

3.1 Underwater Acoustic Channel Estimation

In UWA communication, many channel parameters that affect communication performance vary with
time. The BER performances of CDMA and OFDM schemes jointly depend on these parameters. Since
CDMA utilizes spreading codes, the maximum data rate is less than OFDM. Thus, the design margins of
the CDMA system are small to keep up with the data rate of OFDM. If the data rates of the two systems
are similar and the channel variations are within the system margins, CDMA provides better BER
performance than OFDM. However, when the channel variation is out of the design margins, the gain of
CDMA decreases, and at a specific value, the BER performance of CDMA is lower than that of OFDM.
Thus, to attain the best BER performance, the selection of two schemes needs to be developed. This
section describes the parameters that affect the BER performance of CDMA and OFDM schemes. For
CDMA, if the maximum excessive delay time is longer than the designed pilot length, all multipath
channels cannot be estimated, causing a channel estimation error. In this case, the Rake receiver cannot
fully obtain a time diversity gain. The channel estimation error occurs when the coherent time is shorter
than the designed pilot interval, decreasing BER performance. When Doppler frequency (fd) shift exceeds
the design margins, the BER performance of CDMA becomes low. For OFDM, when the maximum
delay spread (τm) exceeds the CP, ISI is not ideally removed. A coherent bandwidth becomes narrower
than the pilot spacing, which causes channel estimation errors of OFDM.

Unfortunately, several channel parameters jointly affect the BER performance. If the BER performance
of all scenarios is tested and reserved for the lookup table, the selection is effortless. However, several
channel parameters jointly interact, and each parameter’s influence is different. In addition, the effects of
the parameter variations on the modulation schemes are nonlinear, so the estimation of the effect on the
BER performance is complicated. Hence we consolidate the following channel parameter which affects
the modulations schemes are Doppler Frequency Shift (fd), Maximum Delay Spread (τm), Signal To
Noise Ratio (SNR), Received Signal Strength (RSSI), and Delay Spread (µ).
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3.2 Proposed Hybrid Learning Model

This section discusses the proposed hybrid learning models, a general overview of convolutional neural
networks, and boosted single feed-forward layers.

3.3 System Overview

Fig. 2 shows the complete working mechanism of the proposed architecture. The proposed architecture
works in two different phases. The convolutional neural network extracts the channel features based on the
input data in the first phase. In the second phase, single feed-forward layers are trained with the features
extracted from the CNN to predict modulation schemes’ CDMA or OFDM schemes. The less
computational time and high speed are two essential advantages of single feedforward layers, which
trigger the research to predict the modulation schemes.

CHANNEL 

ESTIMATION

PREDICTION 

AND SELECTION

CONVOLUTIONAL LAYERS

POOLING LAYERS

FEATURE MAPS 

CHANNEL ESTIMATED FETAURES 

BOOSTED SINGLE FEED FORWARD 
LAYERS

ADAPTIVE SELECTION BETWEEN CDMA 
AND OFDM

INPUT CHANNEL 
DATA  

Figure 2: Overall block diagram for the proposed architecture
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3.4 Convolutional Neural Networks-An Overview

A convolutional neural network (CNN) is a biologically propelled advancement of Multi-Layer
Perceptron MLP. CNN is broadly utilized for picture characterization, picture bunching, and object
identification in pictures. They are additionally utilized for optical character acknowledgement and
regular language handling. Aside from pictures, when addressed outwardly as a spectrogram, CNNs can
likewise be applied to sound. Additionally, CNN’s have been applied straightforwardly to message
examination, just as in chart information with convolutional diagram networks. The condition of quality
craftsmanship proficiency of CNN contrasted with its gauge calculations makes it an accomplishment in
numerous fields.

Fig. 3 in CNN shows that the highlights are recognized using otherwise called bits channels. A channel
is only a network of qualities, considered loads prepared to distinguish explicit highlights. The reason for the
channel is to do the convolution activity, which is a component insightful item and entirety between two
networks. The preparation of the CNN is secured by lessening the measure of repetition present in the
information. Thus, the measure of memory devoured by the organization is likewise decreased. One basic
strategy to accomplish this is max pooling, in which a window disregards input information and the most
extreme worth inside the window is pooled into a yield framework. The calculation is made proficient for
including extraction by connecting various convolution layers and max-pooling tasks. The information is
handled through these deep layers to deliver the element maps, which are at last changed over into an
element vector by going through an MLP. It alludes to a fully connected layer that performs undeniable
level thinking in the created model.

3.5 Ada-Boost Algorithm

In this approach, hybrid ensemble learning algorithms are formed by integrating the LSTM [27]
networks with Ada-Boost Learning algorithms. Freund et al. [26] was the first to propose the Ada-
Boost algorithm, which strengthens the weak classifiers. Usually, the Ada-boost algorithm
strengthens the week classifiers by updating their weights until classification/prediction accuracy is
obtained as maximum. The final model is robust when every weak classifier satisfies its
performance rather than guessing. The pseudo-code for the ADA-boost, used in a proposed
network, is explained next.

Input 
layer

Pooling 
Layer

Fully 
Connected 

Layer

Output 
Layer

…

Convolution Layer

Figure 3: Schematic representation of convolution neural networks
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Algorithm 1: Pseudo Code for Ada-Boost Algorithm

1 Inputs Samples Training Sets {xi, yi} where x = {x1, x2, x3, x5…….xn} where n = no of input samples and
yi V (1, −1) where yi is the label associated with x

2 Initialize D(k) = n

3 For k = 1, 2, 3, …………….K

4 Train the weak classifier using the distribution Dk

5 Calculate the error function, ek, concerning the function D(k)

6 ek = Pr(hk(xk is not equal to yk)) where hk is the hypothesis function

7 Choose αk = 0.5 {ln(1 − ek)/ek} where αk is the weight of the hk,

8 Reinitialize the weight with Dk+1

9 Calculate the error function and repeat step 5

10 If an error is less than ek

11 Then the output is calculated by H(x) = sign(∑αkhk)

12 End

13 End

3.6 Proposed Boosted CNN Models

In the proposed, estimated features are trained by the proposed boosted feed-forward layers that
replace the traditional backpropagation layers in traditional CNN. The mechanism of feedforward layers
is based on the principle of long short-term memory. Fig. 4 shows the architectural diagram for the
proposed learning model.

The convolutional layer uses six layers, followed by the RELU activation and batch normalization. A
selection method between the CDMA, TDMA, and OFDM is developed based on the estimated features.
Since this model is used for larger datasets, it maintains less misclassification and high performance.
Hence the proposed algorithm uses the boosted feedforward layers to select the different techniques.
Since the ADA-boost algorithm is used in the proposed algorithm, accuracy is boosted even after adding
larger data samples. The boosted training networks are trained on estimated channel factors with the
modulation techniques associated with the CDMA, TDMA, and OFDM mechanisms. The pseudo-code
for the proposed algorithm is depicted in Algorithm-2

INPUT 1

INPUT.N

CNN FEATURE 
EXTRACTION

PREDICTED 
OUTPUT

INPUT-2 BOOSTED
FEED
FORWARD
LAYERS

Figure 4: Block diagram for the proposed architecture
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SL.NO Algorithm-2 // Pseudocode for the Proposed learning model

01 Inputs: Doppler Frequency Shift (fd), Maximum Delay Spread (τm), Signal To Noise Ratio (SNR),
Received Signal Strength (RSSI) and Delay Spread (µ)

Output: Selection of CDMA, OFDM, TDMA

02 For n = 0 to N − 1 where N is iteration = 1000

03 T = Convolutional Layer(τm, SNR, RSSI, fd, µ)

04 F = Concatenate (T) where T is Channel Estimated Features

05 X = Boosted_FeedForward (F)

06 If X == x1 // where x1 = predicted threshold for CDMA at SNR

07 //CDMA is predicted, and Selected

08 Else if X == x2 // where x2 = predicted threshold for OFDM at SNR

09 //OFDM is predicted and selected

10 Else

11 // TDMA and Other Technique is selected

12 End

13 End

14 End

4 Results and Discussion

Metrics such as accuracy, sensitivity, specificity, recall, and f1-score are calculated to evaluate the
performance of the proposed architecture. Tab. 1 shows the mathematical expressions for calculating the
metrics used for evaluating the proposed architecture.

Table 1: Mathematical expressions for the performance metrics’ calculation

SL.NO Performance metrics Mathematical expression

01 Accuracy TP þ TN

TP þ TN þ FP þ FN
02 Sensitivity or recall TP

TP þ FN
× 100

03 Specificity TN

TN þ FP
04 Precision TN

TP þ FP
05 F1-Score

2:
Precison � Recall
Precisionþ Recall

Note: TP is True Positive Values, TN is True Negative Values, FP is False Positive and FN is False-
negative values.
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4.1 Parameter Estimation

Tab. 2 presents the underwater acoustic parameters used for the simulations. The datasets were used
for the generation of UWA datasets. Nearly 60000 data were used which 70% were used for training and
30% for testing.

The 6000 input samples at the first layer were filtered by 128 convolutional filters with a length of six,
followed by ReLu. Zero padding is used for them. After Batch normalization, the same convolution was
executed. The optimizer function utilized Adam. L2 kernel regularization with β = 0.001 was set to
prevent over-fitting. The batch size and epoch were 34 and 120, respectively.

Figs. 5 & 6 show the validation curve of the proposed architecture in detecting the modulation
techniques. From Fig. 5, it is found that the proposed architecture reaches its maximum accuracy after
200 iterations and remains constant till 1000 iterations. A similar fashion of performance is found in
Fig. 6 also. The ROC curves in Fig. 7 of the proposed framework detect the category different multiple
access classification effectiveness.

Tabs. 3 and 4 presents the comparative analysis between the performances proposed for 9000 and
12000 samples. From Tab. 5, it is found that the proposed algorithm has shown the accuracy of 98.6%,
100% precision, 99.23% recall, and a high f1score of 98.89% in detecting the CDMA type signals. Also,
the proposed algorithm has exhibited similar performance in detecting the OFDM. From the above tables,

Table 2: Underwater channel parameters used for simulations (CDMA)

Sl.NO UWA specifications Parameters

01 Number of datasets 60000

02 Maximum delay 0–30 ms

03 Doppler frequency 0–10 Hz

04 SNR 2–12 db

05 RSSI −40 to −87 dBm

06 Modulations 16-QAM

07 Multiple access technique CDMA

08 Spreading factors 12

09 Date rate 200 kbps

10 CP length 30 ms

11 Pilot spacing 20

12 Frequency reptation 3 m

A
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)

No of Iterations

Validation  Curves 

Figure 5: Validation curve for the proposed architecture in detecting the CDMA based modulations
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it is clear that the proposed boosted ensemble algorithm has exhibited consistent performance though the data
samples are increased.
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Figure 7: ROC curves for the proposed algorithm (a) CDMA (b) OFDM
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Figure 6: Validation curve for the proposed architecture detecting the OFDM modulation type

Table 3: Performance metrics for the proposed algorithm for the prediction of signals using 9000 samples

Sl.NO Type of cancer Performance metrics (%)

Accuracy Precision Recall Specificity F1-score

01 CDMA 98.6% 100 99.2% 97.5% 98.89%

02 OFDM 98.56% 99.4% 99.23% 99.67% 98.90%
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4.2 Comparative Analysis

To establish the superiority of the proposed algorithm, we have compared the other existing models,
such as CNN+RF [25], traditional deep learning methods, and conventional methods.

In Tab. 6, the proposed method demonstrates 98.6% accuracy, while hybrid CNN+RF shows 90% and
conventional methods show 89.5% accuracy. Also, the proposed algorithm’s precision and recall shows
nearly 100%, and CNN+RF shows 82%, DCNN SHOWS 84.5%, respectively. In Tab. 4, the proposed
model shows 98.6% accuracy, 99.5% precision, 99.2% recall, 97.5% specificity, 98.89% F1-score for an
increased sample, whereas the other algorithms have shown decreased performance. It is clear from the
tables that the proposed hybrid model has shown consistent performances even though the samples are
increased and a better selection method.

Table 4: Performance metrics for the proposed algorithm for the prediction of signals using 12000 samples

Sl.NO Type of cancer Performance metrics (%)

Accuracy Precision Recall Specificity F1-score

01 CDMA 98.6% 99.5% 99.2% 97.5% 98.89%

02 OFDM 98.56% 99.4% 99.23% 99.67% 98.90%

Table 5: Performance analysis of different algorithms for detection of modulation under CDMA using 9000
samples

Sl.NO Algorithm Performance metrics (%)

Accuracy Precision Recall Specificity F1-score

01 CNN+RF 90% 89.5% 88.5% 88.45% 89.7%1

02 DCNN 84.5% 83.5% 84.5% 82.5% 80.4%

03 Conventional
methods

85% 84.3% 83.5% 84% 83.2%

04 Proposed architecture 98.6% 100 99.2% 97.5% 98.89%

Table 6: Performance analysis of different algorithms for detection of modulation under CDMA using 12000
samples

Sl.NO Algorithm Performance metrics (%)

Accuracy Precision Recall Specificity F1-score

01 CNN+RF 82% 79.5% 78% 75.45% 76%

02 DCNN 75.5% 71% 72% 70% 72%

03 Conventional
methods

64% 60% 62.4% 62% 63%

04 Proposed architecture 98.6% 99.5% 99.2% 97.5% 98.89%
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Figs.8–10 shows the BER analysis for the different algorithms implemented for the underwater acoustic
environment. Fig. 9 shows the BER performances of the different algorithms in handling the 3000 samples
and found to have stable BER performance. From Figs. 8 to 10, the proposed algorithm has shown good BER
performance even though the samples increase. The enhanced ensembled model’s integration into the
proposed architecture has reduced the misclassification rate. Implementing the proposed hybrid model has
maintained a better BER performance than other algorithms.

B
E

R

SNR(dB)

BER VS SNR 

PROPOSED ARCHITECTURE

CNN+RF

CONVENTIONAL CNN

Figure 8: BER and SNR analysis for different algorithms implemented in an underwater receiver
environment for 3000 samples
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Figure 9: BER and SNR analysis for different algorithms implemented in an underwater receiver
environment for 9000 samples
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Figure 10: BER and SNR analysis for different algorithms implemented in an underwater receiver
environment for 12000 samples
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5 Conclusion

This research proposes the hybrid deep learning models to effectively select the CDMA and OFDM
modulations to attain the BER performance for dynamic UWA parameters. CNN was utilized to extract
the channel features, and boosted ensembled training network was used to predict the modulation
schemes to maintain better BER performance. Extensive experimentation is carried out using many
samples and compared with other algorithms such as CNN+RF and conventional CNN. The study shows
that the proposed algorithm has outperformed the other learning models with less miscalculation rate and
better BER performances. Further, the computational complexity of the proposed algorithm needs
improvisation for better real-time implementation.
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